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MA TEMA TICHESKII SBORNIK 

Finite Difference Method for Numerical Computation of Discontinuous 

Solutiona of the Equations of Fluid Dynamic• 

1959 

Introduction 

S, K. Godunov 

v. 47 (89) No.3 p. 271 

Translated by 1. Bohacheveky 

The method of characteristics used for nume_rical computation of solutions 

of fluid dynamical equations is characterized by a
_ 

large degree of nonetandard­

nesa and therefore il not suitable for _automatic computation on electronic 

computing machines t especially for problems with a large number of shock 

waves and contact discontinuities. 

In 1950 v. Neumann and Richtmyer (1) prOp<!ted to use, for the solution 

of fluid dynamics equations, difference equationa into which viscosity was 

introduced artificially; this has the effect of smearing out the shock wave over 

aeveral mesh points. Then it was proposed to proceed with the co�putations 

across the shock waves in the ordinary manner. 

In 1954 Lax (Z) published the "triangle'' acheme suitable for computation 

across the shock" waves. A deficiencfof this scheme is that it doea not allow 

computation with arbitrarily fine time steps (as compared with the space steps 

divided by the sound speed) because it then'tranaforma any initial data into 

linear functions. In addition this scheme smears out contact discontinuities. 

The purpose of this paper is to choose a scheme which is in some sense 

best and which still allows computation across the shock waves. This choice 

is made for linear equations and then by analogy the scheme is applied to the 

general equations of fluid dynamics. 

Following this scheme we carried out a large number of computations 

on Soviet electronic computers. For a check, some of these computations 

were compared with the computations carried out by the method of character· 

istics . The agreement of results was fully satisfactory. 
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I have found out through the courtesy of N. N. Yanenko that he has also 

inves tigated a scheme for the solution of equations of fluid dynamics which 

is clos ely related to the scheme proposed in this paper . 

Chapter I Finite Difference Schemes for Linear Equations 

§ 1. A new requirement on difference schemes 

To s olve the differential equations of mathematical physic s one 

often use s the method of finite differences. It is natural to require of the solution 

obtained by an approximate method that its qualitative behavior sh_ould be similar 

to the behavior of the exact solution of the differential equation. Such a require­
ment , however, is not always satisfied. 

For example, consider the heat equation 

�!.t. i1za ----

�t � "/.� 

If initially the tempera ture li.. is a monotonic funct ion of � then, clearly, it 

will remain such for all later times. When solving this equation by a finite 

difference scheme, even though it be stable and sufficiently accurate, �t may 

happen that the tempe rature u.. which is monotonic initially will develop a 

maximum or a minimwn at some late r time. 

where u,,� 

are :1'-.rmh, 

As an 'example c ons ider the scheme: 

is the value of temperature u. at the point whose coordinates 
t = rt l" • This scheme is stable for all po siti ve I' •tjh2 • 

Prescribe the following initial conditions: 

a,� • 0 for m > 0, 
(/ " .. ! lor m r 0. 1/l "' 
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After the first time step we obtain for the quantity 

·of equations which when s olved yields: 

t./ 
m an infinite system 

1 1 t 21• f' r r - ye r + 9-"' f a ., - or m < 0, m . 

lJ..' = "' 

2 f' .,. t + (21' + l r 

2ft (' + f' - (21'-�' 1")"'-1 T()f' m � o. 
2r.;.t+f2f'+f r 7 

For m tending to t- ooJ u.;, tends to 0 , and f or m tending to 

-oo, tl.� tend s to l. It is  not difficult to s how by an analy s i s  of �e above 

s olution that its monotonicity will be always violated for f' > 3/2 . 
It is natural that f or r > 3/2 this scheme should not be cons idered 

as a satisfactory one. However it must be noted that the effects connected with 
nonmonotonicity will appear only in the solution of problems with sharply varying 

initial condition s. Smooth s olutions will be computed by this scheme with 

suffi cient accuracy with a sufficien tly fine mesh. 

Analogous fac ts obtain also f or difference scheme s devised to 

solve the equation 

. 
au. au. 

----· at b% 

It is well known that the s olution of thi s  equa ti on has the form of a stationa ry 

wave* ll..= u..(zrt), and if U.. was m onotonic for t •0 it will remain so 

afterwards. 

Let us examine examples of difference schemes f or thi s 

equation and verify whether they preserve m onotonicity of s oluti on. 

1. The "triangle" scheme of first-order accuracy: 

A "stationary" waves is defined as one which is stationary in a 
c oordinate system moving with the wave velocity. 
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* IJ. o • _u.....;,_r-_u_._t + _"t"_ • { u. t - u -I) . 
2 2h 

� 
It cleaily ca n be rewritte n as follows: 

U··l' -· 
2 

where r =t:/A (the stability condition for this scheme: r '1) . Consider the 

initial conditions for t = 0 in the form of a step function: 

u.k. - 1 toT' l > I, 

and compute � for t • t: . We obtain 

ali = 0 for i � - t, 

uf = 

I f ., 
2 

lt"1' 
z 

, 

Since for f' .( f, I r 11 ( I , we conclude that the monotonici ty in thi s case 
z 

i s  not violate d. 

Here and in the following we shall denote U0 • t.L{t0, X0), U.IJ=t.L{t0-t- z:, �.J, 
"-t = u(t0• �0 rh), LL.1 �u(t0, X.-h) etc.; � and h =time a.nd space s teps 

respe ctively, 
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An arbitrary monotonic function on the mesh of size h can 

be represented as a sum of step functions each of which changes its value only 

in one mesh interval and such step functions are either increasing or 

dec reasing . Using tqis fact we may conclude that the " triangle" scheme 
transforms an arbitrary monotonic function into another monotonic function. 

2. The scheme " tripod" of second order accuracy: 

This scheme is stable for f' ' I . If again we take the step function 

tli. = 0 . fo,. � " 0 f 

u,� - t lor � � I 

for initial data at t = 0 then from this scheme we obtain at t = t:' 

, 1- .,..z u,O - , 

2 

r- f'2 u,'- I+ ---- , 
2 

,. 

Sl'nce 1' ) #!2 for 41 < I h "1 > I d th 
· · · · 

d r ' · , t en "<- an e monotomc1ty 1s v1olate . 

Note that the scheme of second order accuracy expressing 

the value u./' in terms of u,, u.0, IL-l is unique; i.e., among these 

schemes there are none which wculd t ransform every monotonic function 

into other monotonic ones . 

§ 2. Criterion to verify the monotonicity condition 

We begin by noting that difference s ch e mes can be either 

explicit or implicit. 
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An explicit scheme expresses the value of tL. at the desired 

point only in term s of known values of U. at the precedin g time interval. 

For a linear equa tion wi.th constant coefficients such a scheme has the form 

Here the sum can be either finite or infinite. In the latter case the differe nce 

scheme will be defined not f o r  all mesh !unc�ions { ""'} but only for those 

which do not i ncrease very rapidly with the increase of m ; the allowable 

rate of growth is determined by the rate at which the coefficients Cj decrease: 

It is necessary that the sum L c,.rf:_ (1.." should converge . 

.An implicit scheme is a system d. equations for the determination 

of the unknowns ll111 , i.e., it has the form 

We assume that the left hand sum is finite. 

An example of an implicit scheme is the dif!e renee scheme for 

the heat equation examined at the be ginning of Section 1 of this chapter. 

Implicit schemes are of value to u s  only because they determine l.LJ, uniquely. 

We shall seek { u.A-} in the clas s of sequences bounded for 

I -tl-+ oo . In this class uniqueness holds obviously for all schemes for which 

the difference equations 

do not have a nontrivial bounded solution. As is well known the general 

solution of these difference equations has the form 
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where A;. are the roots with multiplicity -k· ' of the equation 

From the examination of the expres sion for the general s olution it i s  clear 

that in order to ensure uniquenes s it is neces sary and sufficient that the 

equation 

not have roots of modulus one . In the following we shall ass ume that all 

difference schemes with which we will deal �atisfy this condition. 

It is not difficult to show that each such difference scheme can 

be solved for U.l., and written in the form 

'd thus converted into an explicit s c heme. Therefore, even though in thiS 

and the following paragraph we will c onsider only explicit schemes, the 

results o btained can be applied directly to implicit schemes. 

We shall not c onsider schemee.-.whic h connect more than 

two layer s. 

We s hall now give a simple criterion allowing one to verify 

easily whether an arbitrary diffe rene e scheme transforms monotonic functions 

into mono tonic ones or not. 

In order that the diffe renee sch�me U, � = 'l.,c,_, u,, s hould 

transform all monotonic functions into monotonic ones with the same sense of 
growth it is  necessary and sufficient that all Cm be nonnegative. 

Proof: Suppose Cm > 0 and { Un} monotonic. For the sake of definitenes s  

assume that {u,} inc reases, i.e., that all u., -u.n-f are nonnegative. 
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Then 

tL�-u.�-1-Lc,_Itu, -Lcn-rf.t-t"IJ • Lc,_A:u., -·Lcn-l!l.l.n-1-

i.e., u.A.-u.A-t� 0 
established. 

. In this way the sufficiency of the condition is 

We now prove the necessity. Suppose for example, a, < 0 
0 

Let 

u � """ 0 fol' � < m0 - /. 

Then u�- u-1 = c, < 0 0 
, which is not possible because of the hypothesis 

that the scheme transforms monotonic sequences into monotonic one s with the 
same direction of growth . Thus the necessity is demonstrated. 

It is not difficult to show that if all 

then the difference scheme is necessarily stable. Indeed 

and ,Z c, -1, 

But because of our assumptions maz leml ( f ; therefore L:luml .( L',luJ 
and this means that the scheme is stable. 

The condition L em ""'I appears to be quite natural for 

the schemes devised to solve, for example, the following equations: 

and means that the solution of these equations U. = const. is also a solution 

of the difference equations. 
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As an application of the monotonicity criterion listed above 

we shall now give the derivation of a most accurate scheme of first order 

accuracy for the equation ou/Dt • Juj�-x ' which expresses the value (L0 
in terms of u..,, u1, "'--! and satisfies the monotonicity condition (as we 

remarked at the end of Section 1, there are no such second order schemes). 

It is easily verified that the general form of a first order 

scheme -- connecting only the above listed points -- is the following: 

U4 • 11.0 -r f (u1- "-t} + k (u., - 2u� + u_,) = 

• (-; f -k) lit -1- (f-Zit)�o +(A- ;J..�-t· 
For -k • r;:f2. this scheme is of second order a<;=curacy and for an arbitrary 

i its last term is { "Jf! - �.i:!) h 2 U.r.�·· 

In this way the problez:p is reduced to the determination of � 
which differs least from f'2/2 and such that all coefficients of the scheme 

are nonnegative {this last requirement is necessary in order that th� scheme 

satisfy the monotonicity condition). Clearly it is necessary to take ,t � r/2 . 

Then the scheme becomes 

,.. 

U.0•1.l,; +; (u1-u_1)+; (u1 -2ti.0+ tL1} =f'tt.1 +(t-r)u0• 

As one can easily check, the s tability condition for this scheme is /1 (I . It 

is of interest to note another way of obtaining this formula. If from the point 

(tc + 7:, 0) at which we seek tL0 we draw a straight line which is the 

characteristic of the equation �u./1Jt= 8u/O.X, then it will intersect the initial 

layer t = to at the point (to J rh) which lies (for ,. < f 
between points (to} o) and (to J h) at which the values of t.lo and 

(J 1 are given. The value of tl. at this point is obviously a" since 

u remains constant along the characteristic, 
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Consequently we will obtain our scheme if we compute IJ.. at the point (t4, rh) 
by a l inea r interpolation between the values U.o and "' at the points 

(to , o) and {to, h) and then transfer this value along the characteristic 

to the point (t0 f 7:, OJ. 

§ 3. Among schemes of second order accuracy for the equation 

ou./at • 8u./1,: there is none which satisfied the monotonicity 

condition 

In Section 1 we rema rked that for the equation �u./at•au/ltthere 

a.re no difference schemes of second order accuracy expressing a.• in terms 

of 1.L f, (,(,OJ f.t_1 and transforming monC'tonic functions into monotonic 

ones. Now we shall generalize this statement and prove that for this equation 

with f' •t:/h f 0, I. 2, • . .  in general there are no explicit or implicit schemes 

of second order accuracy connecting an arbitrary number of points at two 

successive time steps and transforming monotonic functions into other monotonic 

ones . 

As we noted at the be ginning of Section 

loss of generality to consider only schemes of the form 

, : 

2 it is sufficient without 

We shall say that this scheme is of second order accuracy if it is exact for 
.. 

initial data that are a polynorninal of second degree, i.e., if for such initial .·. 
conditions the result of computation according to the scheme agrees with the 
solution of the differential equation at the point c onside red . Prescribe 

Then at inte ger points 

t. I I u.1o z) = --- -- · 
� )2 

(t , h 2 4-

( 1)2. f U '1 • f./.. ( 0, II h) - t) - Z - 4- • 
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The solution of equation f)u./&t - ()u I a� with these initial conditions is 

/ ("! T t ')� I tL It, 't) - h - 2 - 4- • 

Suppose now we wish to compute the value u.P • tL (r:, ph) by the diffe renee 

scheme. Since we assume that the scheme has second order accuracy we 

should obtain the exact val�e of the differential equation because the initial 

function is a second degree polynomial; i.e., we obtain 

1 t)� I 
a�' • l P t- -r - 2 - 7 · 

Using the difference scheme we arrive at the equation 

If this scheme satisfied the monotonicity condition then all a,_p would be 

nonnegative and since ( n -1/2.)2 -I /4-) 0 we would obtain that for all f'1 
{p + f' -1/E)z-1/.f..? 0. Actually it is not so. Indeed if .t > -I' > L -1, 
where ./!, is an integer, then 

I / 1);: I . /(.I. = ( .{, / /' •· 7 - 4 ( 0 • 

This contradiction pro.ve s the original statement. 

0 4. Construction of the best scheme for a system of two equations 

We shall now investigate the system of equations 

tJu � 11' � ?I' ()u 
-.-= A --,- -H -. rd t_) I tJf · .1/ 

(Coefficie nts A and B will be assume d  constant.) Multiplying the second 

equation by A. and adding it to the first we obtain 

t i (I ( -( · ;) ;: ) 
ijf 

= 
,; {A-t�) 1_ A fJ da . 

(} 1- I) y 

11 
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Choosing we obtain 

Each of the above equations has a general solution in the form of a stationary 

wave. 

/,( + ffv-- Fr (1- + liB t), 

ll.- ff 11"' • F_ ('j,- fAB t). 

Obviously if lL + fA /B � or lL- -{A/8 V"' were monotonic initially then 

they would remain so for all later times. It is natural therefore to impose on 

the diffe renee scheme for equations (1) the requirement that it preserve this 

monotonici ty. 

It is not difficult to verify that any linear difference scheme 

for the system (1) expressing the values u" , t/"0 in terms of t.LrJ Vf, a.tJ, 
will have the form 

We shall not consider schemes which use for the computation of tl.0 , 'rrD 
·values of U and � at the initial time in more than three points because in 

solving problems with boundary values such schemes require considerable 

modification near the boundary; this is awkward when standard machine 

computations are used. 

l 2 
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Multiplying the second of equations (Z) by ± (A/B and adding 

the result to the first we obtain 

L+M±N (f±K ff 
+ 2 [{a±H7 -z(utlf�l + 

( 
ff 1 J L -M ± N {f + K ff �(. {f ). +\ll ± - v + tJ.. f - -v-

. 8 -f 2 8 ( 

- 2 tiL" rr v-J. :1- r� f If"" J_J 
(3) 

In these formulae consider first the upper sign. Suppose initially 

U..+ fA/8 11" •0 everywhere and u- fA/B V'•l everywhere except at one 
point where u. -/A/8 11" + I . Obvioully if L -M -r N fA/8 - lf..'fA/8 =f: 0 then 
the values of 1./., + tA/8 v-- will be different from zero at three points and 
therefore the monotonicity of t.J.. + /A/8 Zl" will be violated. 

From this we conclude that necessarily 

Choosing in (3) the lower sign and carrying out analogous considerations we 

obtain that, also necessarily, 

L+M-N{f- K ff •0. 

Introducing the notation 

L r M T Alii r K ff- g, 

L -M -tN (f- X ff =rJ, 

equations (3) assume the form: 
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{u + {-fv)o = {u +�v2 + ';:e[(�+ /4v�­
-(uff.-J,]+g[(HffvJ -z(U+{[�). + 

+(a+/1vl,]. 
(�-!Jv/-f-/Jv-l- �:: [(�-�v),­
-(u,_ff �' J + G fu- /iv),- 2 (u- {-! vl + 

+{u-ffvL]. 
As we have shown at the beginning of this section 

the equation 

U + /A/B 'V' satisfies 

(3a) 

In the same way in which we chose the most accurate scheme for the equation 

bu/8t- aujar- ( see § 2), which transforms monotonic functions into monotonic 

ones, we can convince ourselves that for a. of -/A/8 11-' the most accurate 
scheme sati sfying the monotonicity condition will be one with !] • ·r j{B 
for u- tA/8 1.1'. one with B -· t"/{8 . By substituting these expressions 

for g and G in (3a) and adding the equations we obtain the expression for 
U..0 ; by subtracting one second from the first and multiplying the difference 

by {B/A we get the expression for 7/"0 : 

o t'A ( ) u =(.1 - - V:: -tt: + 
0 2h 1 _, 

o t:B ( ) 1Y .. vo + 2h " '  -(.{_, + 

14 
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§' 5. Physical interpretation of the constructed scheme 

We shall now give a physical interpretation for the difference -
scheme (4). Consider the equations of fluid dynamics in Lagrangian coordinates: 

a''- f 8 ofJ(v) • o �t DZ • 

811' _ 8 au • o. 
at a� 

Here a = velocity, p =pressure, '11-' = specific volume. 

In the case when p (zr) is a linear function 

(5) 

(This may be assumed for the case of acoustic waves. ) System (5) is identical 

with (1). 
au _ A 071' , 
at 'I% 

;I 'II' � u.. - •B - , » t a-r. 
(1) 

for which the scheme (4) was constructed. Using the equation of state (6) this 

scheme can be rewritten as follows 

u o �a. _ �8 [(-Pt; p, _ ({ "' ;"•) _ {-�'• :1'-L _ j � . u,; "-t )] , 
1't - ,b0 _) -("-o + U. -I _ Po - P-t)ll· 
2{f) 2 zf[J 

Introducing the notation: 
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thi s scheme a s sumes the fo rm : 

It turns out that the quantities and tJ, have a definite ::i 
physical meaning. Let us imagine that in the interval between the points i 
and � (i.e. between the points �= i h and '% = � h the value s of U.. 
and p are initially constant and equal u., , p, between points f and 

- f they are also constant and equal U.0, Po Since the point i is 

(8 ) 

a point of contact for two regions occupied by a gas with, in general, different 

velocities and pressures, the so-called resolution of the discontinuity will 

take place at this point. Namely. sound waves will spread to the right and 

left of the point i with the velocity :1 .., ± fAS (this is the equation of 

characteristics !or the system (1 )) . In front of these waves u. and p will 

remain constant and equal to u.,1 , Pt before the right-travelling wave and 

to Uo, Po before the l eft- travelling wave . (Obv iously such a state will be 

preserved only until the waves gene rated by the resolution of discontinuity at 

the point J collide with those waves generated at the points � and . - � ). 

Between the waves spreading from the point f the values of u. and p will 

be constants which can be computed using relations satisfied on a s ound wave. 

Consider the first of bur equa tiona · 

From which it follows that for an arbitrary contour 

¢ udz - Bp(r)dt -=0. 

It is not difficult to obtain as a consequence of thi s integral identity that the 

discontinui tie s in u. a.nd p must satisfy the condition 

(u)dr- 8 (p}dt =0. 
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On the wave propagating to the right, ;; = fAB and we obtain 

(u.) fl- (p)- o, 

and on the wave propagating to the left, :: = - (AB and 

(u.) if+ (p) •0. 

Denoting the values of U and p between the propagating waves by tl and 

P respectively we arrive at the system of equation s  

(v- a1) {-f- (P-;Dt) - o, 

( u - u �) {f + ( P -P-i) • 0 • 

Solving it we find 

p = "Pt +I'D 
2 

u., + Uo IJ= ---
z. 

- /A. u.,- uD ' 
18 2 
l't- Po 
z{f 

We observe that V and P agree with Vi and � 
dete rmined from (7) and entering into our difference scheme (8). In this way 
we s ee that l1 and If are the valu�s of velocity and pressure obtained 
as a result of the resolution of the discontinuity in the region between propagating 

waves and consequently al so at the point i from which the waves emanated. 

It is of interest to note that the obtained values {It and If 
will remain constant until the boundary considered is reached by the waves 

generated from the resolution of the discontinuities on the neighboring 

boundaries, i.e., at the points -; and ! . For the system considered the 
disturbances propagate with the sound velocity. iAB . Therefore if during 

the time inte rval 1: the values lli and f1 are to remain constant it is 

necessary to have t" < h/fAB . Fortunately this inequality agrees with the 

stability condition for the scheme (4). 
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Clearly, after the time interval 't' the values of t.i. and 7r' 

be tween the points � and - ; will no longer be constant. Let us denote 

their mean values by u.<' and 71' "  • For their computation we shall use 

the law of conservaticrp of momentwn which yields the first of equations (8) 

and the conservation of volwne which gives the second one. 

The physical interpretation of the difference scheme (4} will 

serve as a basis for the construction of a computation scheme for the general 

system of equations of fluid mechanics. 

Chapter ll An Approximate Scheme for the Computation of Generalized 

Solutions of the Equations of Fluid Mechanics 

§ 1. Formulation of the problem 

Our aim will be to construct the difference scheme for plane 

(non-axisymmetric) one-dimensional unsteady equations of fluid mechanics 

(in Lagrangian form) 

()«. f- B a p (?1; E) .., 0 at 8% ' 

�v--- B -au _, 0 
at � � ' 

a(£ +f) iJp� 
�t + B --;;-- • o. 

As is well known this system of equations does not always have a smooth 

solution even for smooth initial d ata. Therefore one also must consider 

generalized solutions with discontinuities -- shock wa ves . 
A fter S. L. Sobolev, we shall call the system of functions 

(1) 

( V., 'Zt'; E ) a generalized solution of the system (1) if for each infinitely differ­

ential function "1 (x, t.) which differs from zero only on a finite subdomain of 

the domain 6 on which the functions tt, � E are defined, the following 

equalities are satisfied: 
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if[�<:: rBp(v;E)::]drdt•O, 
G 

Jj [v� -B�t ::Jdzdt•O, 

u [(E r ;) :r + Bp(v,£) • u. ::] tirdt• 0 . 

...))�'� If functions a, "21; E are pie�e continuous then these requirements are 

equivalent to the fact that around an arbitrary contour 

¢ u.d� -Bpdt -o, 

¢ rdz + Butft • o, 

¢ (£+: )tiz-Bptdt -o, 

(2) 

and this is the usual formulation of the conservation laws. From the conserva-

tion laws it is easy to establ is h , as is done in every course of gas dynamics, 

the relations ac ross the discontinuities (shock waves): 

(w-u.- Bp J • 0, 
[ ttrV" -1-Bu] • o, (3) 

[ fU{E+ �'1-epu] = o. 

Here w- = :: is the velocity of the shock wave and [ ] means the jump 

of the quantity ( the difference of its values on the right and left of the wave) .  

We must note that in order to ensure uniqueness it i s  necessar y  

to exclude rarefaction shock waves; for this i t  is sufficient to require that 

around any contour the following integral inequality is satisfied: 

where J is the entropy determined by the known methods of thermodynamics 

as a certain function of p and 1/-' . 
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We propose to cons true t for system (1) an approximate scheme 

with the property that as the size of steps diminishe s the solution obtained by 
this scheme will c onverge to the generalized solution of the system. 

We shall construct the difference scheme in such a way that 

for the linear case oft sound waves it will coincide with the scheme considered 

in the previous chapter which transforms monotonic waves into other monotonic 
ones. The application of schemes wh ich do not possess this property doea not 

appear to be intelligent since the effect of non monotonicity appears precisely 
in re gions where the solution varies sharply which are the shock waves. In 
attempts to compute shock waves using schemes which do not satisf.y the 

monotonicity condition one obtains for them " humped1 1  profiles and the humps 

pulsate from one time step to the next (see, for example, the graph in 

Application 1 ) . 

Sometimes instead of ( 1) one has to consider the following 

system of equations of fluid dynamics: 

/}tr' �tl.. --a - =o ot (Jz 

(l a) 

(Such equations describe, for example, the flow of water in shallow channels.) 

The reader will have no diff iculty in transferring all our con­

siderations to th is si�pler case. Let us state only that as the uniquene s s 

c�ndition, the law of incre ase of entropy c}Stiz, .)01 in this case should 

be replaced by the law of dis sipation of energy 

§ 2. The desc r iption of the computational scl'-e_!!!! 

We will now de s cribe the proposed sche m e . 

Let us imagine that the gas whose behavior we wi sh to compu te 

is divided into a sequence of l aye rs by points with integer labels 0, 1, 2, 3, 
4, . . .  and the layers themselves are numbered by 'half integers" .! , �,!:...,. 2. 2. 2. 
We shall assume that the quantities t&,VJE,p = p{v;£) are initially 
constant inside each layer. At the boundary m between the two adjac ent 
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f f 
layers m- 2 a.nd m r 2 the discontinuity is resolved, in consequence 

of which at the point m the pressure and velocity become � and u, 
(unlike § 5 of Chapter I, points at which the discontinuity is resolved are 

now labeled by integer� and layers between them by hal! integers). 

The rules for computation of P and (/ a.re derived in any 

course of gas dynamics (see e. g. (3)). We shall list the formulae for !', 
and (/117 in a. form convenient for us in Section 4 below. 

After the values of fin are determined at all 

integer points we determine the values which a, z.) E will assume when the 

time interval t' has elapsed by formulae analogous to (8) of Chapter I: 

Here � denotes the mesh size of the scheme, i.e • •  the difference in 

Lagrangian coordinates for any two adjacent integer points. 

As in Chapter I we must note that after the time interval 'Z' t', 
has elapse d the values be tween two successive integer points will no longer 

_f I I 
be constant and the computed values (J,/I?+J., v"�'+"S1 £"''�-r. represent 
only ave ra ges over the layer which replace their true distribution with a 

certain accuracy that is characteristic of the approxima te method described 

above. 

§ 3. If with the diminishing mesh size the difference solution con­

verges, then it converges to the generalized solution of the 

dilfe rential equation 

Now as suming that as the mesh size decreases , u., v; E 
computed by the difference scheme (4) converge to certain piecemeal smooth 
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limit functions, we shall show that for these limit functions the conservation 

laws (2) are satisf ied, i . e . ,  these limit functions are generalized solutions 
* 

of (1 ) or ( 1 a ) . 
Let us 

t
consider simple rectlinear contours of the form 

represented in F igure 1. On this figure, crosses denote the half-integer 

points located inside the layers and circles, integer points. 

From (4) it follows that 

Az � Az A, 
h L (.(, - h l u. - 8 [ p� + 8 [ P�. 

A1 143 � A� 
If as the mesh size decreases the mesh functions u, Z1 E, P, (/ 

converge to some limit £unctions define d  in the plane (these limit £unctions 

we shall denote by the same letters as the corresponding mesh functions), 

then from the difference conservation law (Sa) it follows that for the limit 

functions around an arbitrary rectlinear contour, 

�adz+ BPdt -o. 

From the fact that (5) is satisfied for an arbitrary rectlinea r  contour it 

follows that (5) is satisfied for any contour. 

From the formulae f�r P and IJ de rived in the following 

section it follows that if in the re gions where the solution of the differential 

(Sa) 

(5) 

equation is smooth the mesh functions, u, v; E c onverge to these solutions, 

then in these regions the limit functions for P and /' coincide. Using this 

and the fact that the discontinuity l ines cannot influence the values of the 

integrals , we arrive from (5) at the equation 

We shall prove in S 4 that for the limit functions the law of inc rease of 
entropy (if the syst em considered is ( 1)) or of dissipation of energy (if the 
system considered is ( la)) hold. 
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Analogously one can demonstrate that the remaining two equations (2) are 

satisfied. 

0 

0 X 

0 X 

0 X 

0 X 

0 X 

0 X 0 X 0 

o- --x---o-- -x---o 
-1( 1 I A_, 

I I 
I I 

0 X 0 X 0 
I I 
' I ' 0 X 0 X 0 
I I I I 

Ab-- -X- --0-- -X--.- 0 
3 A+ 

0 X 0 X 0 

Figure 1 

X 

X 

X 

X 

X 

X 

In this way we have proved the statement formulated in the 

title of this section. 

§ 4. Formulae for computating the resolution of a discontinuity 

We shall now describe the derivation of formulae for P and 

U ; !or simplicity we limit ourselves to the case 
_
of a gas with the equation 

of state 

! 
£- ( ) pv. �-! 

Suppose that to the right of the point 0 the gas has specific volume 

internal energy (per unit mass) Ef and velocity Uf . � z 
The pressure in this gas is given by 

(1- 1) E1. 
iii 

p_, = ---­� 
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Suppo s e  the s ta te o f  the gas to the left of 0 is  defined by the value s  

W e  a s sume to be gin with tha t  the pr e s sur e Po whi ch obtains afte r the 

r e s o lution of the di s c ontinuity i s  g r ea te r  than .P- -J- and 1'-J: 
s ho c k  wave s will  pr opa ga te to the ri ght a nd left o£ point 0 . 

. In thi s c a s e  

A s  w e  have already noted ( s e e  fo rmulae ( 3 )  of § 1 o f  thi s  chapte r ) .  

on the sho c k  wave the following c ondi tions a r e s a ti sfied:  

[ m-u - Bp J - 0, 

( fU'V' t- BU. J - 0, 

[ tu-(E r ;•�-BJ>ll] = 0. 

tu.t b tUL Introducing the de fini tion s B = 0 ,  B = - tL0 ( � = velocity of the 

wave propa gating to the right, -w:t = veloc ity of the wave propagating to the 

left) we can rewrite the s e  r elations as 

a0 [u.] -r [p] = 0, 
ILo [v-) - [u.] = O. 

1%. [u �'] + [;u] =0  
b0 ( U ] - [p] -= 0, 
bo [v-] + (a.] �  0, 
h0 [E + �] - [P/4] = 0 

o n  the left wave (6)  

on th e  right wave (7)  

A s  i s  w e l l  known , in the r e gi on be twe e n  the two wave s U. and p will b e  

c on s ta nt a n d  e qual to  U and P - - the value s on the c ontact di s continuity 

o r i gi nating a t  the point 0 . The value s of the s pec ific volume will be 
c ons tants be tween the conta c t d i s c ontinuity and th e wave s but the s e  c ons tants 

will be diffe rent  to the r i ght and left of  th i s  d i s c o ntinuity . We s hall  denote by 

v.t, the s pe c ific volwne b e tw e e n  th e c onta c t  d i s c ontinui ty . and the right 

shock wave and by � the s pe c if i c  vol ume be twe e n th e c on ta c t  di s c ontinuity and 

the l e f t  shock wave . 
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The fi r s t  of equations ( 6 )  and ( 7 )  can be rewritten in the 

following way: 

A s s uming � and b� known, V:, and Po can be determined from 
the above system: 

Po =  
boP-f + a,pf + 1/.o ho {tt..- f - u..;J 

IZo + ho 
(J,,. tJ I + bo tl I + . #'l f - -i:J1 

v - r  i' r- "L r� 
� - ------------�----------a, + b0 

' 

On the other hand, if we knew Po then for the dete rmination of a() we 

could use the equation obtained from the firs t two relations (6 )  afte r the 

velocity is eliminated b e twee n them: 

a, = 0 

The value VO.t can be eliminated '!rom thi s formula with the aid of the 

Hugoniot curve obtained from ( 6 )  by the method de s c ribed in any cour se on 

gas dynamics ( s e e  e .  g .  ( 3 ) ) : 

(1 - I) Po  + (/ + f) P.. f 

(;r + 1) Pa -f ( )' - t) p_ .! 
2. 

Afte r thi s e xpre s s ion fo r 2-0..t i s  subs tituted into the formula for t:Z0 we 

obtain 

()'+ !)Po +- (/ - I) P_ L 
tt,o = :l 
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Com pl e tely analogou s ly we c an der ive 

To de te rmine Po we can now u s e  the following ite ration 

proc e s s :  be ginnin g with an a rbitra ry f'o we de te rmine a0 and 60 
and then compute the new va lue for  Po Substituting it into the formulae for 

·a0 and b0 we find Po a gain , and so on until the proc e s s  conve r ges . 

Afte r this we dete rmine t{, 
So far we have c ons ide red only the c a s e  when simultaneously 

fJa ) p_ t  and Po > P.; , i . e . , �hen no rarefac tion wave occurs in the 

resolution of the discontinuity . It turns out that when such waves occur the 

proce ss of resolution can be c omputed in the sam e  manne r only changing the 

formulae for t/,0 and b0 • 

Ima gine , for  e xample , that Po < p t , that a rarefaction 
% 

wave pr opagate s to the right.  As i s  well know n ,  a c r os s  a rarefaction wave 

the following relations hold : 

2 c ,  '!" 
f.t f  - - Uo 2 1 - 1  

P..1. v- r  - Po 1/(}� � 2 

whe re c - f.J'ptr = s ound s peed , 

2 t! ()/f. 

J'- 1 

' 

and (JQA, a nd �...t- = the value s of e 
and V' to the right of the c ontac t  di s c ontinuity . The fi r s t  of the above 

e qualities can be rewritte n in the f ollowing wa y: 
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Denoting 

b = 0 

l - 1  
-- ·  

1'..1 - Po 7 
' 

we obtain the relation comple tely analogous to the one obtaining across the 

shock wave . 

If in the formula for he • (J is expressed in terms of p 
and V"" and UO..t. is e liminated with the aid of the Poiss on adiabat (the 

s e cond of our equalities holding across the rarefaction wave ( .  the following 

obtains : 

l- 1 

2)' 

Po 1 - -
I'..! � 

In the cas e  when the rarefaction wave propagate s to the l eft we should have 

s et 

)' - f  
tl() = -

2 J'  

In this way we ar rive a t  the result tha t in orde r to de te rmine Po we must 

solve by iterations the following s y s tem: 

ao -

(/ t- t) {J(l-t) + (P - t)p_ !.. 

1 - f  

�-2J' f 
z. 

� 

A d-1) ! - 0 
P-i_ 

t' (i-')l::J t - 0 2)' 
P- .1... 

z 
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for 

for 

P, (i-t) A .t:J f 0 7 , _ _  

p Ji-1) < P. f 
() - -<l. 

2 
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b = 0 
!;, (f-1) 
0 I - -

f.! & 

(- (/-!)) ¥- 1 
Po 2¥ t -

/JJ. ;z 

Lo r D rc'- t) n 'o < P..t .. 

Afte r the ite ration s have conve r ge d  and we have de te rmined the final value s 

for Po , a0 , h0 we find Vo from the for�ula 

• 

De tailed inv e s tigation of the conve r genc e of the ite rations 

Po (l) :c (I (� (i- f� show.s tha t thi s  proc e s s  c onve rge s if in the resolution of 

the di s c ontinuity the r e sulting ra refac tion wave i s  not of exce s s ive s trength . 

In orde r to make it conve rge nt in all ca s e s ,  it i s  ne c e s sa ry to ca r ry it out 

wi th s omewhat modifie d  fo rmula e ,  e .  g. 

whe re 

. .  r 

a.,(i- f} .. )" - I 

34 

1 - z. , _, -----:----=-__;_---=- - I, 
z �1 � - z. ::,� ) ·i-t l I c - f  � 

0 
R. (i- 1) 

0 z. .  I = 
( - /J.!. + P- .1  z 6 

2 8  

i f  this expre s sion 
exceeds 0 

o the rwi s e  
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We omit the inves tigation of thi s  c onvergence be c au s e  it follows s tandard 

methods for investigating the c onvergence of ite ration p roce sses of the type 

Z i • f (l i-') whi c h  reduce to computation and inve s tigation of the complicated 

express ions for the d' rivative s .  

F rom formulae ( 8 )  i t  is seen that if  " and p conve r ge with 
diminishing mesh s i ze to bounded continuous functions . Then t/ and P 
conve rge to the same limits. We have already used this fac t to prove that the 

lim i t  functions are generalized s olutions of the equations of fluid dynamics . 

In Chapte r I we derived formulae ( 7 )  !or the resolution of a 

discontinuity usin g sound waves. They agree with the expression of this 

paragraph if we let 

In the computation with sound waves the time step s  had to be limited by the 

stability condition 

;, = 
a (f  

It s eems natural to us to use in the present nonlinear case the following bound 

on the time step 

It is true the above defined 1:' o nly approximately equals the time ne c e s s ary 

for the wave s obtained from the r esolution at one intege r p oint to reac h the 

adj ace nt one and c hange the values of (/ and P obtained there after the 

resolution of the disc ontinuity.  Howeve r ,  a large numbe r of different c om ­

putations using thi s  c onditi on shows c onvincingly tha t w ith such a bound on 

1: the compu tati on is stable . In a ddition,  thi s condition coincides with 

the one given above for the linear s c heme when weak ( s ound ) waves are being 

c om puted .  
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Le t us add that i £  we wi shed to know the true di s tribution of 

quanti ties  tt ,  t1-; E a t  the end of time inte rval 7: afte r the res olution 

of the disc ontinuity we c ould obtain i t  by s olving the elementa ry problem of 

ga s dynamics  inside e a c h  la ye r . (It i s  only n e c e s sary that  r should not 

exceed the time ne c e s s a r y  for the wave fr om one inte ge r point to reach the 
adj acent one . ) 

An e spec ially s imple case  and the one which always admits 

closed-form s olu tion is the c a s e  when t' is smaller  than the time necessary 

for the wave s  e m itted from the two adjac ent points to c ollide . 

A s  i s  known from el ementary gas dynamic s the entropy S 
which obtains inside the laye r afte r the time interval 1:' will be for all 

la rge r than the initial value : S (-,:) > � 11 (if we examine the laye r numbe red i ) .  
Re calling that 

2 

and using the following simple inequalitie s :  {'.tn. z (;c.}dz ['z (r.) dz 
" t  �, ' A_, ------ follow s from c onve xity of the curve 1-- z:. 

'%2 - -x.-1 -;:: M., Zz - "X-1 
.r,n, 

Zz - z., follows from c one a vi ty of the curve "'2 

we con c lude tha t 
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Now we note that : [(£ + �').r:z - ; [: tudJ: r : [v-(z)dz 
are the mean value s E, liJ whi c h  in computing by our scheme we a s s ign to 

I £"""' ,_,.f 
the "point" 2 dur�g the time inte rval 7: and denote by i ' � 
In thi s way we arrive at  the ine quality 

Applying the rea soning analogous to that used in 3 in . the proof of the inte gral 

conse rvation laws we can s how , ueing the fact that at each me sh point the 
inequality of the type ( 9 )  hold s ,  that as the me sh size tends to ze ro the limit 
aolution aatiafies for eve ry closed c ontour the inte gral inequality 

(c ondition guarante eing uniquene s s ) .  

U sing simila r arguments we can s how that for the system (la)  
ala o ,  the corre sponding uniquene s s condition is satisfied. 

S 5. Computation of Eul e r  coordinate s  

U sually afte r solving the system ( 1 )  

one s till has to solve the equation f o r  the E ul e r  coo rdina te s  of the ga s pa r ticle s 

(} r  = u .  
at 

We propose to de te rmine ..t a t  i nte ge r points by the fo rmula 
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It i s  of inte r e s t  to no te that f r om the p rec eding fo rmula and (4) i t  follow s  

tha t if initially 

r , .. hB fm�t - 1',) '  "' � 1 

then thi s  e quation will be s a ti sfied f o r  all late r tim e s .  It means that the 

( 1 0) 

volume of the ga s laye r can be de te rmined from the knowledge of its bounda rie s. 

Equa tion ( 1  0) c an be u sed to dete rmine 'V' in place of the s e c ond 

of .formulae (4) . When c omputations a re carried out on an electronic computer 

it is more convenient to u s e  formula ( 1  0 )  beca us e it dec rease s the number of 

quantities to be s tored a t  each s tep.  

g 6 . Some results of numerical computations 

In Application U we lis t  the re sults of computation of a s teady ­

state travelling shock wave ca r ried out using formulae (4 ) and (8 ) . It is seen 

from the curves tha t if the c omputa tion i s begun from a s tep function which 

satisfie s the shock conditions at the point 0 , then afte r several time steps 

the profile of each quantity settles down to a s teady-state shape which propagates 

in time wi th the veloc i ty equal to the velocity of the shock wave with the same 

jumps in pressures and velocitie s .  Only near the point 0 there remains a 

bump in the curve of 11-' • This i s  explained by the fac t  that in the process of 
r 

reaching the s teady s tate th e  s cheme "erred" in entropy ,  which i s  c ons erved 

in the smooth region behind the front of the wave . In the smooth region the 

scheme i s  suffic iently ac c urate to s how this conservation of entropy. After 

the steady s tate is re ached the pre s s ure behind the front of the wave equalizes 

and since ;nr¥ i s  not c o r re c t the r e  thi s  leads to the appea rance of the bump 

on the c u rve of � . 

Analogou s entropy tra c e s remain a l s o  afte r the compu ta tion of 

othe r uns teady pr oc e s s e s , f o r  example the p r o c e s s  of fo rmation of a shock 

wave dur ing the impa c t  of a moving gas onto a r i gid wall ( s e e  A pplication III) .  
The s e  entropy tra c e s u s ually c ove r tw o  o r  th r e e  me sh points  and the refore do 

not influe nce the r e sults of c om pu ta tion for a s ufficiently s mall me s h  s i ze . 
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§ 7 .  A c e rtain effec t  obtained in the computation of contac t 

di a c ontinuitie s 

All conside ra tiona which we adduced in arriving at our scheme � 
we re obtained by conside ring the c a s e  of c on s tant x - steps and with the 

a s sumption that the entire c omputational proce s s  occurs in an infinite gas ; 

howeve r ,  the numerical scheme obtained ha s such a clear physical meaning 

that it is difficult to re sist  the de sire to apply it also at the bounda rie s between 

two media - - c ontact dis continuitie s .  F o r  this it i s  sufficient to include the 

contac t dis continuity among the number of inte ge r points and in computing a.. 
and h at this point use for a. , constants chara c te ri zing the gaS' located 

to the left of the s eparation line and for b , constants refe rring to the gas 

located to the right. 

The results of our computations show that the application of 

the scheme so constructed on the contac t  dis continuity is allowable ,  but, 

a s  is not diffi cult to verify, it leads to a de c r ease in accuracy. 

In this  pa ragraph we wish to de scribe one effect  which is  a 

c onsequence of the dec rease in accuracy and which wa s obse rved during an 

analysis  of computations nea r conta c t  di s c ontinuitie s .  This effec t  appea re d  

in the computati on of smooth s olutions , it bea r s  n o  relation to the s hock wave s 

and therefore it is natural to attempt to explain it s tarting with the a s s umption 

tha t our system of equations can be - app r oximated by a linea r  system. Com ­

putations ba sed on such a linea rized sys tem of e quations yielded the magnitude 

of the effect,  whic h agre ed with the one obs e rved in c omputation of gas 

dynamical problem s .  

Suppo s e  proce s se s  in a c e rtain ga s a r e  de scribed by the sys tem 

tJu. + B ap 1"1 - v, a t  a� 

f) ?I"' - 8 au = 0. 9t �% 
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The equation of s tate of a. gas in c a se of small va riations in preu ure admi ts 
the following lineari zed repres entation: 

U si n g  thi s e quation of sta te the s y s tem ( 11 )  can be rewritten 

f}p t)U 
- +  .:1 - . o. i! { () � 

Let the contact di scontinuity be at y ..a Q  • i . e. , let the coefficients be different 

for X > 0 than for -:t < 0 . Set 

The system of equations 

A 1: { Af lot' % > 0 I 

A_ for z < 0, 

8 = { B.,. fer � > o .  
B_ for "Z < o, 

1JI.I. + 8 .!.E. J: 0, at - or 

3 4  
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with the continuity condition on U. and ;IJ at Z • 0 
following s olution 

ot!. 
(/., - - 1; - fit + ¥, 

admits the 

A� 
rof' X. > o, 

for -x, < 0, 

which at t • 0 sati s fie s the following initial c onditions :  

lof' -:t > o, 

for % < 0. 

W e  s ha l l  inve s tigate wha t the solution of the diffe r e nc e  

e quations i s f o r  the s am e  ini tial data . I t  i s  more inte r e s ting because a ny 

smooth s olution of o u r  s y s te m  ne a r  the point X =  0 t = t0 can be 

r ep r e s e nted in the form 
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.;(),. :t > o, 

fort -x < 0. 

The refo re the behavior of the differenc e solution nea r z. - o  will 

cha rac te ri ze the behavior  nea r the contact  dis c ontinuity of the quantitie s obtained 

as the result of numerican c omputation of any smooth solution of our system . 

We begin by giving the explic i t  exp r e ssions for the diffe rence 

s cheme for the present c a s e  (we have explained at the beginning of thi s 

paragraph how to obtain the se  formulae ) .  W e  will a s  surne that the step h 
e qual to the difference of X coordinates of the two ne ighboring integer 

points , may be diffe rent in re gions to the right and left of 1:: = 0 
N�mely , for Z > 0 h = h+ and for � < 0 h =11 - . The computation 

formulae a r e :  
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l�r1 - i 1 Pm+- -J.  pr; 
Pm = ----=--2--- - i B; . ______ . , 

2 

rm - z. rm + 2 -

2 

LJ t + -1'1 I �-
P, = -- - - ·  

______ , 
2. 8_ 2 

, 

� I - b f rm + - rm - -z. � 

+ !'.!. + -· ·-& f? 'E  
P. = of ·-

0 
If &+ & 8+ 

{f {f--t -
T 8_ 

u. m + {  ,. tL · 1 
T:B_ In P.. } m + .� - --;;:- ( 'm fl  - m ' 

fJ m + i • pj,� � - :�- (tJm+l  - t!,} 
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fot m )J 0, 

lo,. m < o .. 

fof' m > 0, 

lof' m < 0, 
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F or ou r diff e r e nc e  e qua tions one can find a s olution whi c h ,  

tiJce ( 1  Z ) ,  is a line a r  func tion of :t. and t i n  e a c h  o f  t h e  re gion s %' > 0 
d t < 0 and ha s i n  the s e  r e gions gradie nts i d e ntic a l  with (1  Z ) .  Name ly , 

Jl'l 
j t  turn s out tha t s uc h  s,oluti o n  will be 

fX. I -Bh-t.L = - X - ..8-t -;- - • + d', A_ 2 fA_ 8_ 

.,.B t I o�, h _  . f n fJ = -� - a,  + - ·  -;=::===- r7 B- Z fA- f3_ 

lor � > 0, 

lor z < 0 . 

W e  leave to the read e r  the c omple tely e lementa ry ve r ifi c a ti on of this fac t. 

( 1 5 ) 

( f 
To compute by the s e  formulae tL 111 r i" and '/m .,.l fo r a n  a rbi tra ry , e .  g .  
n th ,  time s tep i t  i s ne c e s sa ry t o  le t  t - h z: , ;r., = (m "f i)h 

lf we be gin the c om pu ta tion by our s chem e f r om the initial 

c onditions ( 1 3 )  then e xp e r ime ntal c omputations show that ne a r  the c ontact 

di s c onti nuity the s olution of the diffe r e n c e  e quations ( 1 5 ) tend s to a s teady 

s tate with ce rta in 0 a nd e obtained in th e  pro c e s s . 

1i we c ompute th e  valu� s of u. and I' by fo rmula e ( 1 5 ) at 

'X = 0 we will s e e  tha t the s e  quantitie s a s s um e  at thi s point diffe r e nt value s 

to the left  and right;  diffe r e nc e s  betwe e n  them a re :  
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d whe n solving the diffe rence e quations the valu e s  of u.. and � a re 
,. I 

�ted only a t half · inte ge r po ints ( - ! h. , - � h- , f h+ , f h+ , • • • ) . tJII"P 
th d'  

· · d t f' d 1 d'  t '  . .  therefore on e contact 1 1 c ontmu1ty we o no 1n any rea ucon mu1he e 

� e uure and velocity. IC, howeve r ,  the pres sur e  and velocity are line arly 
f' pr 
,_cr apolated to the poin\ � = 0 w e  obtain exactly the value s computed at 

,_ .. 0 by for mulae ( 1 5 ) .  
From what we have sa id so far i t  follows that the values of 

ressure s and velocit ies  extrapolated from the right and left will in gene ral diffe r , . 
on the contact discontinuity and the diffe rences be tween them will be dete rmined 

from the formulae 

( 1 6) 

This disagreement of velocities and pre s sure s on the contact 

dis continuity is e s pe c ially noti c eable on the graphs of "- and fJ and 

obviously characte rize s the inaccuracy of our s cheme . Indeed , if our scheme 

were exact fo r the linear functions  it would compute sol ution { 1 2.) e xa c tly and 

we would not obs e rve any discrepancie s in ct. and p . 
. . � · 

In ord e r to counte ract this effe c t  we should a s  one can see 

from ( 1 6 )  cho o s e  the s te p s  h s uch that as clo s ely a s  pos s ible 

W e  have al ready e xpla ine d  that h /i A /3 r e p re s ents the 

la r ge s t allowable time s te p  which doe s n o t  viola te the s ta bility of the diffe r e nc e  
s c he m e . Thus w e  s ho uld a tte m pt to c hoos e the s pa c e  s teps i n  such a way tha t 
th e l a r ge s t time s te p s  c on s i s tent w i th the s ta bili ty r e quirement  are if po s s ible 

e qua l or a pproximately e qual for the gas e s  on both s id e s  of the conta c t  

d i s c o ntinuity . 
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It  is not po s s ible to satisfy thi s c ondi tion e xa c tly for nonlinea r 

probl e m s  of gas dynamic s bec a u se the speed of s ound wh ic h dete rmines  the time' 
* 

s te p  is diffe rent a t  different s tage s of the problem . 

If in c omputa tions we s ucceeded in choos ing the s teps in 

diff e r e nt regions in such a way that the above condition was not strongly 

violated , the effect betng s tudied on the interior bo undaries was almost abs ent 

which s ignified an inc rea s e i n  ac curacy . The greater ac c u racy in those cas e s  

was a l s o  noted by c ompa ri s on with the method of cha ra c te r i s tic s .  

� 8 . The stabili ty of our difference scheme on the contact  discontinuiti e s  

In the preceeding paragraph we have given formulae �y which one 

can compute solutions to our equa tions nea r  a contact di s c ontinuity. Now we 
shall investigate the stability of these formulae. This inves tigation will be 

carried out on the difference s cheme for the linea r system. 

fJU + 8  !e. •0 gt ()� , 

'()p r A  �u ·0 ot �� 
with coefficients A and 8 which a re c on s tant in eac h  of the regions ;t. > 0 
or t ( 0 (in the p receding paragraph we studied the c omputational phenom enon 

de s c ribed there by cons idering j u s t  such a sys tem ) . 
After  A .  F .  Filippov (see (4) )  by s tability we will mean uniformly 

continuous dependence (with dec reasing mesh size) of s oluti ons to the diffe r ence 
equations on their right hand s i de s and on the ini tial da ta . 

In o rde r to p r o v e  s tability i t  s uffi c e s  to define fo r the solutions 

of difference e quations a n o r m  which in the limit a s  the me s h  s i ze tends to 

zero goe s ove r into a c ertain norm fo r the s oluti o n s  of d iffe rential equations 

s uch tha t 

W e  have dete r mined in § 4 of Chapte r II that the adm i s s ible time step in 
the soluti on of gasdynamical proble m s  i s  t: oc J, / 8/f1d.J:. (fl,.,.,1 b,) . For the s mooth 
s oluti ons c on s ide red in thi s s e c t i o n  and s uffi c i e nt ly s m all h , a111 , and bm 
equal the conve cted ve loc ity of s ound . 

40 



-
By 1.1. n we unde rstand he re an infinitely dimensional vector 

defined by the values of the so lution (�; +2 , P;.,.1 )  to the difference 

equations for the nth time step . .  

W e  shall a s s ume that the time step is chosen by the stability 

conditions inside of each re gion . As we noted earlier this implie s that the 

following inequalitie s are satisfied 

(. I' 

We introduce the notation 

From ( 1 4 ) of the pre c e eding paragraph one can conclude without difficulty that 

the following equalities are satisfied 

z (A;  
sn + t . (.t - r.) sn + � 18; 
- ·  - - '  -E {F {f + + -

84- B_ 

{E {F  . �, + I! Bf - 8: . s p , 
- -s 

.,. K + fll � 
. 1B: ra.: 

fof' tn ( - f, 

ror h1 � o, 

rz- rA:  
M �� - ra; II r:.. � 1 If- - � 

+ -

+ 8_ 
f/+ l ( 

s, 1 � 1 - r_) s "  , + f'_ S" � 
+� m + -z m + z 

for m � - 2 .  
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A ll s ub s e quent c on s ide rati ons will be c a r r i e d  out with the a s s umption tha t  

{ A'f/ B+ > fA-/ 8_ . We leave to the re ader the e n ti re ly a nalogou s 

cons ide ra ti ons in the ca s e  when /A+/ B+ < fA-/ B-
Set 

F rom the e xpre s s ions fo r 

for and 

S� , = $ k I m f �  m + -z 

lor att m ,  

for m � 0, 

* · sm i- ..J.. z 
lor m < 0. 

n + l and S m o�- i analogous formulae 

2 ,-;;c 1S::' 

fo llow . W e  li s t  them be low 

for m >  � 

u r;c--
1& - 18: 

If + -
+ 8 _  

for m <  - I} 

-lor m ?  0, 

- ,  s ( , 
z 

= (t - r ) 5" - m + !. 
& 

for 177 � - 2 . 
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Since the sum of the a b s olute value s of the coefficienta of j and 
the right hand side of each of the se e quations e quals  unity (recall that A,f' 

and A - are lea s than I ) then 

This ine quality prove s s tabil ity if we choo s e for the norm 

in 

Thus e stablished s tability of the difference scheme for the linea r 

sys te m  may s erve a s  some kind of a justification for its application in the case 

of a nonlinear sys tem . In addition , let us state once more that in all the 

numerous computations . using our s cheme , ca r ried out with consideration of 

our bound on the time s te p ,  the computations were always s table . 

Application I 

Below {Figure 2) is  the graph of pressu r e  in the steady-state 

s hock wave for the s y stem 

�a ap('v) = 0 
at -r a 1:  ' 

= o, 
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J.D 

u 

I I I I • I • 

Figure l 

computed with the s c heme of s e cond o rde r a c c ura c y  

whe re 

tip A = - - ·  
dtr 

Appl ic a ti on II 

Com puta tion fo r the s te ad y · s ta te s ho c k  wave for the gas with 

)" = 5/3 . Numbe r s  nea r c u rve s (F i gure s 3 , 4 ,  5 )  i nd i c a te the la yer number. 
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Figure 3 
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Fi gure 4 
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Figu r e  6 
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Applic a tion Ill 

The im pa c t  of an absolutely cold gas ( 1 • 5 /J ) moving into 

a wall.  At the ini tial moment we p resc ribed � = I, I' • 0 rof' � > () 
F o r  :t • 0 we speciijed the boundary c ondition tl •  0 whic h  waa taken into 

accou n t  in c om puta tions of r e s olutions of discontinuitie s at this point. 

II 
I 

Figure 7 ,. 

On the curve s (Figure s 6 ,  7 )  now the right t ravelling s hock wave 

forms. 

Rece ived 20 March 1 9 56 
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