N

N

Finite difference method for numerical computation of
discontinuous solutions of the equations of fluid
dynamics
Sergei K. Godunov, I. Bohachevsky

» To cite this version:

Sergei K. Godunov, I. Bohachevsky. Finite difference method for numerical computation of discontinu-
ous solutions of the equations of fluid dynamics. Matematiceskij sbornik, 1959, 47(89) (3), pp.271-306.
hal-01620642

HAL Id: hal-01620642
https://hal.science/hal-01620642
Submitted on 25 Jul 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01620642
https://hal.archives-ouvertes.fr
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Finite Difference Method for Numerical Computation of Discontinuous

Solutions of the Equations of Fluid Dynamics

1959 v. 47 (89) No.3 p. 271
S. K. Godunov

Translated by 1. Bohachevsky

Introduction

The method of characteristics used for numerical computatio-n of solutions
of fluid dynamical equations is characterized by a large degree of nonstandard-
nesa and therefore is not suitable for antomatic computation on electronic
computing machines, especially for problems with a large number of shock

waves and contact discontinuities,

In 1950 v. Neumann and Richtmyer (1) proposed to use, for the solution
of fluid dynamics equations, difference equations into which viscosity was
introduced artificially; this has the effect of smearing out the shock wave over
several mesh points. Then it was proposed to proceed with the computations

across the shock waves in the ordinary manner.

In 1954 Lax (2) published the '‘triangle' scheme suitable for computation
across the shock waves, A deficiency of this scheme is that it does not allow
computation with arbitrarily fine time steps {(as com.pared with the space steps
divided by the sound speed) because it then’transforms any initial data into

linear functions. In addition this scheme smears out contact discontinuities.

The purpose of this paper is to choose a scheme which is in some sense
best and which still allows computation across the shock waves. This choice
is rnade for linear equations and then by analogy the scheme is applied to the

general equations of fluid dynamics,

Following this scheme we carried out a large number of computations
on Soviet electronic computers. For a check, some of these computations
were compared with the computations carried out by the method of character-

istics. The agreement of results was fully satisfactory.



I have found out through the courtesy of N. N. Yanenko that he has also

investigated a scheme for the golution of equations of fluid dynamics which

is closely related to the scheme proposed in this paper.

Chapter 1 Finite Difference Schemes for Linear Equations

§ 1. A new requirement on difference schemes

To solve the differential equations of mathematical physics one
often uses the method of finite differences. It is natural to require of the solution
obtained by an approximate method that its qualitative behavior should be similar
to the behavior of the exact solution of the differential equation. Such a require-

ment, however, is not always satisfied.

For example, consider the heat equation

Y )

at  2r*

If initially the temperature « is a monotonic function of x then, clearly, it
will remain such for all later times. When solving this equation by a finite
difference scheme, even though it be stable and sufficiently accurate, it may
happen that the temperature « which is monotonic initially will develop a

maximum or a minimum at some later time.

As an'example consider the scheme:

Ayt ] r net ” ae? [ n o _ ” n
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where «;, is the value of temperature ¢ at the point whose coordinates
are Y=mh, ¢ = 7 . This scheme is stable for all positive / = Z‘//Iz 5

Prescribe the following initial conditions:

ul = 0 Ffor m >0,

o
o = ! For m g 0.



After the first time step we obtain for the quantity H,/,, an infinite system

-of equations which when solved yields:

-m
' - Y2re+7
t(f,,:/‘ &t (L _+) for m €0,

2r+r7/+ 127
L - (}1&7’— fer;?)”' -
Zﬁ+7+i2r+

for m > 0.

For /m tending to + o0, tends to 0 , and for » tending to

U
-0o, 4, tends to 1. Itis not difficult to show by an analysis of the above
solution that its monotonicity will be always violated for 7 > 3/2 .

It is natural that for 7 ) 3/2 this scheme should not be considered
as a satisfactory one. However it must be noted that the effects connected with
nonmonotonicity will appear only in the solution of problems with sharply varying
initial conditions. Smooth solutions will be computed by this scheme with

sufficient accuracy with a sufficiently fine mesh.

Analogous facts obtain also for difference schemes devised to

solve the equation

It is well known that the solution of this equation has the form of a stationary
wave® a.=u_(7,ﬂ.‘). and if « was monotonic for =0 it will remain so

afterwards.

Let us examine examples of difference schemes for this

equation and verify whether they preserve monotonicity of solution.

l. The '"triangle' scheme of first-order accuracy:

3
A ''stationary' waves is defined as one which is stationary in a

coordinate system moving with the wave velocity,
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U m =5 57 (¢, - «.,).

It cleaf'ly can be rewritten as follows:

1+ 7r 7=

0, . —_— U
u 2 uf‘r- 2 -1

where 7 =C/4 (the stability condition for this scheme: 7 /) . Consider the

initial conditions for ¢ =0 in the form of a step function:
Uy =0 for £ £ 0,
H.lé =] for é ) ’1

and compute & for T =T . We obtain

u*=0for b < -1,

n
5 7+ ,
2
W < Irr
2

ubk =7 for A 2.

Since for 7'g/, Irr § / . we conclude that the monotonicity in this case

2
is not violated.

-4
Here and in the following we shall denote «, = u.{to, Xo), (L":a(t‘of () 74»>,

Uy =ult,, %, +h), U. =U(t,, X-5) etc.; T and A = time and space steps

respectively,



An arbitrary monotonic function on the mesh of size A can
be represented as 2 sum of step functions each of which changes its value only
in one mesh interval and such step functions are either increasing or
decreasing. Using this fact we may conclude that the '"triangle' scheme

transforms an arbitrary monotonic function into another monotonic function.

2. The scheme ''tripod’" of second order accuracy:
P pe
0 .l &
U=ty * 5 (“f"“-r) *2 (CL; 2up * “")‘
This scheme is stable for 7 ¢/ . I again we take the step function
up =1 for £ 3 1

for initial data at T =0 then from this scheme we obtainat 7 =T
d‘é:La 7%". é ( -/J

r s+ re
e —
2

u©l =

7 -re
w=7+

b 4

r

uk=1 for £ 2.
Since 7 > 7% for 7 </ , then «”>/ and the monotonicity is violated.

Note that the scheme of second order accuracy expressing
the value «° intermsof «,, &y, &_, is unique; i.e., among these
schemes there are none which wculd transform every monotonic function

into other monotonic ones.

§ 2. Criterion to verify the monotonicity condition

We begin by noting that difference schemes can be either

explicit or implicit.



An explicit scheme expresses the value of & at the desired
point only in terms of known values of « at the preceding time interval.

For a linear equation with constant coefficients such a scheme has the form

ut = Z’J Cn-g Ly

Here the sum can be either finite or infinite. In the latter case the difference
scheme will be defined not for all mesh func;ious {“m} but only for those

which do not increase very rapidly with the increase of 7 ; the allowable
rate of growth is determined by the rate at which the coefficients ¢j decrease:

It is necessary that the sum Z Cr-4 o should converge.

Animplicit schemeis a system of equations for the determination

of the unknowns «” , i.e., it has the form
Zd'm-,é,“m e Zlbﬁ—é, Uy -

We assume that the left hand sum is finite.

An example of an implicit.-scheme is the difference scheme for
the heat equation examined at the beginning of Section 1 of this chapter.

Implicit schemes are of value to us only because they determine ut uniquely.

We shall seek {(L"’} in the class of sequences bounded for
Iﬂ' ~— 00 . In this class uniquenesvs holds obviously for all schemes for which

the difference equations

Z Lpm-4 Zm =0

do not have a nontrivial bounded solution. As is well known the general

solution of these difference equations has the form

= . &; -/ ) -2
Z”’ .:Z @‘}if m il A‘)i‘,_fm ¢ Feua A"’,Q{ -()é(-f))/l:”l



where A/ are the roots with multiplicity #; of the equation

Za,j /\.‘;' 0

From the examination of the expression for the general solution it is clear

that in order to ensure uniqueness it is necessary and sufficient that the
equation

Z:a.j/\.j- 0

not have roots of modulus one. In the following we shall assume that all

difference schemes with which we will deal satisfy this condition.

It is not difficult to show that each such difference scheme can
be solved for u"’ and written in the form

Ut - Zacn—é “ns

\d thus converted into an explicit scheme. Therefore, even though in this
and the following paragraph we will consider only explicit schemes, the

results obtained can be applied directly to implicit schemes.

We shall not consider schemes which connect more than
two layers.

We shall now give a simple criterion allowing one to verify

easily whether an arbitrary difference scheme transforms monotonic functions
into monotonic ones or not.

In order that the difference scheme «*%= Z,C,,-‘ U, should
transform all monotonic functions into monotonic ones with the same sense of
growth it is necessary and sufficient that all C, be nonnegative.

Proof: Suppose Cno O  and {a,,} monotonic., For the sake of definiteness

assume that {a,,} increases, i.e., thatall &, -«,_, are nonnegative.



Then

(L'é— x’é”- ZC,,,_“_ U, -Z,C,,_,g,/&’n = Z'Cn-t“n "Zrcn—-é Up-y =

= ch-;é (“rl - CL”_,),

ie., ut-ut'y 0 . In this way the sufficiency of the condition is

established.

We now prove the necessity. Suppose for example, C',,,a <0

Let
Uy = ! for £ » mp,,
ulé =0 7‘0" é < /)70 '-/-

Then «’-w'= Cmp < 0 , which is not possible because of the hypothesis
that the scheme transforms monotonic sequences into monotonic ones with the

same direction of growth. Thus the necessity is demonstrated.

It is not difficult to show thatif all Cm » 0  and ) ¢, =/,

then the difference scheme is necessarily stable, Indeed
maz |u#| Z,,c,,_,gl . mczz]u,,’.

But because of our assumptions 7”2z |e,,,| !/ ; therefore Zla""( Z,Iu,”|

and this means that the scheme is stable.

The condition Z Cpmp =7/ appears to be quite natural for

the schemes devised to solve, for example, the following equations:

du. 2du du 2w

ot Fxr ot 2z@

and means that the solution of these equations « = const. is also a solution

of the difference equations.



As an application of the monotonicity criterion listed above
we shall now give the derivation of a most accurate scheme of first order
accuracy for the equation 3&(/3? 'aa/ax » which expresses the value «°
in terms of «,, &,/,¢( ., and satisfies the monotonicity condition (as we

remarked at the end of Section 1, there are no such second order schemes).

It is easily verified that the general form of a first order

scheme -- connecting only the above listed points -- is the following:

u’=u, +-2£/(1,—a_,)+ Rlu, -2uy+ ) =

r 2
For #£= /’2/2 this scheme is of second order accuracy and for an arbitrary
2 :
# its last term is (ﬁ - %) bzazg'.
In this way the problem is reduced to the determination of #£

which differs least from f'z/z and such that all coefficients of the scheme

Uy -(g + é)z, r(1-24-)u, +(.€- 21)“"

are nonnegative (this last requirement is necessary in order that the scheme
satisfy the monotonicity condition), Clearly itis necessary to take £ = 2.

Then the scheme becomes

r

’ -,
Ulnir, + Z—(a,-a_,)+ Z(“/ —2upt ) =ruy +(1-1)u,.

As one can easily check, the stability condition for this scheme is 7 € /It

is of interest to note another way of obtaining this formula. If from the point

(to +7, 0} at which we seek «? we drawa straight line which is the

characteristic of the equation ou (8t = u/3%, then it will intersect the initial

layer t =%, at the point (t,‘o ,/'/7) which lies (for » </ )

between points (Z,, 0) and (&,,h) atwhich the values of ¢, and
Uy are given. The value of & at this point is obviously «°  since

« remains constant along the characteristic,



Consequently we will obtain our scheme if we compute & at the point (t,,, rhl
by a linear interpolation between the values &, and «, at the points

(to, 0) and (L’a 5 /?) and then transfer this value along the characteristic
to the point (fo +7,0).

§ 3. Among schemes of second order accuracy for the equation

du/3¢ = 8« /2Z there is none which satisfied the monotonicity

condition

In Section 1 we remarked that for the equation 0u/at‘-&¢/2:lthere
are no difference schemes of second order accuracy expressing &’ in terms
of Uy, Uy, Uy and transforming monotonic functions into monotonic
ones. Now we shall generalize this statement and prove that for this equation
with 7=2/4 # 0,1,2,... in general there are no explicit or implicit schemes
of second order accuracy connecting an arbitrary number of points at two
successive time steps and transforming monotonic functions into other monotonic

ones., ,)

As we noted at the beginning of Section 2 it is sufficient without

loss of generality to consider only schemes of the form

ut =2 e, 4 &

¢

We shall say that this scheme is of second order accuracy if it is exact for
initial data that are a polynominal of second degree, i.e., if for such initial
conditions the result of computation according to the scheme agrees with the

solution of the differential equation at the point considered. Prescribe

Then at integer points

W, = (0, nh) -//)-?/)2-2{.

10



The solution of equation ou It = Ju /d% with these initial conditions is

- (- 2= £

Suppose now we wish to compute the value «® = & (T, /o/)) by the difference
scheme. Since we assume that the scheme has second order accuracy we
should obtain the exact value of the differential equation because the initial

function is a second degree polynomial; i.e., we obtain
1\ 7

p = -— ens | em e
U (P + 7 2) <

Using the difference scheme we arrive at the equation

por- g5 Lafpif-4]

H this scheme satisfied the monotonicity condition then all ¢p-p would be
nonnegative and since (n- f/z)‘ -//4) 0 we would obtain that for all 27
(pf- r=12)%= //4) 0. Actually it is not so. Indeedif £ > -7 > £—/,

where £ isan integer, then

_//,‘{ =(/;(. A *—{)— —_;/- < 0.

This contradiction proves the original statement.

g 4. Construction of the best scheme for a system of two equations

We shall now investigate the system of equations

ou 0" Dv _ Yu

ar «.‘7/ : ;/_f- Y4 (1)
(Coefficients A and B will be assumed constant.) Multiplying the second
equation by A  and adding it to the first we obtain
bl 4 Awl) A (A Ju

FAH —.
ar A W7 o4

11



Choosing A = +7'4 we obtain

((L*/‘b") . B 3(a+’/-§-zv)’
a(a-g,/;w) a(a /_-V)

=-/48

Each of the above equations has a general solution in the form of a stationary

wave.

@(xv‘%t‘),

U - /?v-,{(;--/ﬂ_ét).

Obviously if « + ,’A?B v or «-yA/Bv-  were monotonic initially then

they would remain so for all later times. It is natural therefore to impose on

u +

s
A

the difference scheme for equations (1) the requirement that it preserve this

monotonicity.

It is not difficult to verify that any linear difference scheme
for the system (1) expressing the values «° , 2#° in terms of Uyy Y7y Uo,
Yo, Uy Yy will have the form

U = Uy + %’;—(&; %, )t Ky, -2, + voy) + Luy-24, *U.g),

(2)
M=, + gg (g =u_,)+ My -2v5+72,) + N U, -2uy+ a_,).

We shall not consider schemes which use for the computation of «° , #?°
‘values of & and ?” at the initial time in more than three points because in
solving problems with boundary values such schemes require considerable
modification near the boundary; this is awkward when standard machine

computations are used,

12



Multiplying the second of equations (2) by s 714/8 and adding

the result to the first we obtain
L)< ot f20) £ S22 (ct[20) - (a2 [20)
+ JL = — + = + - e A
(a,_/g—av) a.{ Bzra_ 25 | (41 8”, @t Bv-_’ +
L+MiN/§iK{7E y y:
+7 - A
+ ; @/;2 z(u/;,,)oq-

o o) TR ()
_ > (Q;/g:v')o + (‘4?7,{;”)—/]

In these formulae consider first the upper sign. Suppose initially
W+ YA/B v =0 everywhere and « - W‘y’-/ .everywhere except at one
point where « -'//T/E v 4 7 . Obviously if £ -M-r-NﬁE -K{A/8 #0 then
the values of « +-f,4/_5 1~ will be different from zero at three points and
therefore the monotonicity of « + m ¥  will be violated.

From this we conclude that necessarily

A 8
L-M +zv/;-/<f7=0

Choosing in (3} the lower sign and carrying out analogous considerations we

obtain that, also necessarily,

A B
LAM-N]— - = =0,
I3~ %17
Introducing the notation

A /B
L+M+ N 8+K 4— 9>
[ A /:‘3

equations (3) assume the form:

13



o ) e fBr ) 22 e )
/uf)]w[(wp) z/u,‘/’v)
+(¢+/— )_,] (3a)
e fge) - fe-f) - <2 - Fo)-
_@./gd’},«@[(u-ng),—z(x-@v))+
+/a_,/§,,)_,]. |

As we have shown at the beginning of this section &« £ A/B v satisfies

(oo ) 2l

In the same way in which we chose the most accurate scheme for the equation

the equation

oufpt = du/3y (see § 2), which transforms monotonic functions into monotonic

ones, we can convince ourselves that for « # /4/8 2~ the most accurate
z /A8 .
2A !

scheme satisfying the monotonicity condition will be one with g=
for «—1A/8 7, one with & = 2’27;/’_3- . By substituting these expressions

for ¢ and @ in (3a) and adding the equations we obtain the expression for
u° ; by subtracting one second from the first and multiplying the difference
by 18/A we get the expression for °

zA T M8
£l = O'E(Vf -r)+ 2/ ("‘f 2“0"’“-!)1
(4)
T8 4A8
V’a: O+Z Uy -,)+ t'e}) (’Z/; -22}57"3“_'.;)-

14



§ 5. Physical interpretation of the constructed scheme

We shall now give a physical interpretation for the difference

scheme (4). Consider the equations of fluid dynam{cs in Lagrangian coordinates:
ot ox
(5)

—_— - —_— = 0
7 % %
Here = velocity, o = pressure, 2~ = specific volume.

In the case when p (¥-) is a linear function
A
p(7) = -5 (r-%)+p (6)

(This may be assumed for the case of acoustic waves.) System (5) is identical

with (1).

ou _ 407

at ax

ar o W
ot Tax’

for which the scheme (4) was constructed. Using the equation of state (6) this

scheme can be rewritten as follows

© ey, - 28 ("f‘LPo _JA “"'“0)_(%*#!._ A, U—u,
e 4 2 B "2 2 & 2 ’

#o=%*i§_[{ar+ao _ ;o,-pa)_(aof-a-,_ 2o _P.’)J'
h 2 2 4= 2 7 JA
8 “ VB

Introducing the notation:

Fost 1 Pay A U pyyy Um
P, e ol - {7 / ,
“3314/ 5 ”’N an.u-/ - /Jm <7)
Unn.‘f = B y
2 2 94—
o

15



this scheme assurnes the form:

ﬂ(’=£€o-%§ (P‘z "l‘?_i)!
- (8)
Z’a-%‘f"—};—' ((/* "(/_‘i).l

It turns out that the quantities Pi and Us’ have a definite
physical meaning. Let us imagine that in the interval between the points 3F
and 4 (i.e. between the points 't’—'%ﬁ and ¢=-23- h  the values of &

and p are initially constant and equal «,, , ; between points 3 and

S 3' they are also constant and equal &,, 0, . Since the point ,—': is
a point of contact for two regions occupied by a gas with, in general, different
velocities and pressures, the so-called resolution of the discontinuity will
take place at this point. Namely, sound waves will spread to the right and
left of the point % with the velocity %tz = + 148 (this is the equation of
characteristics for the system (1)), In front of these waves « and p will
remain constant and equal to &, , £y before the right-travelling wave and
to Uy, P before the left-travelling wave. (Obviously such a state will be
preserved only until the waves generated by the resolution of discontinuity at
the point 1 collide with those waves generated at the points 33 and - 3 ).

1

Between the waves spreading from the point £ the values of & and 2 will

be constants which can te computed using relations satisfied on a sound wave.

Consider the first of bur equations

du wpv) _

From which it follows that for an arbitrary contour
P udz - Bo)dt =o.

It is not difficult to obtain as a consequence of this integral identity that the

discontinuities in « and ® must satisfy the condition

(w)dx - 8 (pldt =0.

16



On the wave propagating to the right, % = JA8 and we obtain

@) |4 - (p) -0,

4
and on the wave propagating to the left, Z—z—' =~ {A8 and

¢
(«) /—Z}-a‘- (p) =0.

Denoting the values of & and ® between the propagating waves by ¢ anpd

P respectively we arrive at the system of equations

(v -4y g‘ (P"’f) =9
-4 {5 #(P-r4) =

Solving it we find

- -
S A

We observe that ¢ and A agree with Uz and Pf "
determined from (7) and entering into our difference scheme (8). In this way
we see that Ui/ and @ are the values of velocity and pressure obtained

as a result of the resolution of the discontinuity in the region between propagating

waves and consequently also at the point Ef from which the waves emanated.

It is of interest to note that the obtained values Ui' and /%
will remain constant until the boundary considered is reached by the waves
generated from the resolution of the discontinuities on the neighboring
boundaries, i.e., at the points -;’ and 3 . For the system considered the
disturbances propagate with the sound velocity. ﬁB_ . Therefore if during
the time interval T the values (/5 and f"{ are to remain constant it is
necessary to have T < /7/7/14_5 . Fortunately this inequality agrees with the

stability condition for the scheme (4).

17



Clearly, after the time interval T the values of & and 2~
between the points 5’ and - -zi will no longer be constant. Let us denote
their mean values by «° and 7 . For their computation we shall use
the law of conservation of momentumn which yields the first of equations (8)

and the conservation of volumne which gives the second one.

The physical interpretation of the difference scheme (4) will
serve as a basis for the construction of a computation scheme for the general

system of equations of fluid mechanics.

Cﬁapter I An Approximate Scheme for the Computation of Generalized

Solutions of the Equations of Fluid Mechanics

&1, Formulation of the problem

Our aim will be to construct the difference scheme for plane
{non-axisymmetric) one-dimensional unsteady equations of fluid mechanics

(in Lagrangian form)

3\

ou op (s &)
¢ " 8 52 0,

v _ 5 94 _
a¢t Baz 9 >
(1)

“3
Ay P

As is well known this systern of equations does not always have a smooth
solution even for smooth initial data. Therefore one also must consider

generalized solutions with discontinuities -- shock waves.

After S. L. Sobolev, we shall call the system of functions
{4,725 £ )a generalized solution of the system (1) if for each infinitely differ-
ential function y(‘t,t) which differs from zero only on a2 finite subdomain of
the domain & on which the functions &, 2; £ are defined, the following

equalities are satisfied:

18



( ay 2y
— _— d bl /2
/f a_at ,:-Bp/y',f)a Adzdt =0

/] j —Bu o Jc{zdt 0,
o) 2 s e

If functions «, 7%, £& are p1emﬂe continuous then these requirements are

equivalent to the fact that around an arbitrary contour

b udx -Bpat -0,
gSrdz +Bz1aft =0,

¢(E+ )dz - 8pudt =0,

[N

(2)

/s
and this is the usual formulation of the conservation laws. From the conserva-
tion laws it is easy to establish, as is done in every course of gas dynamics,

the relations across the discontinuities {shock waves):

[N

[wa - 80] = 0,
[wv +8u] = o, r (3)

ofer 2)-on] o0,

Here w = ﬁ is the velocity of the shock wave and [ ] means the jump

of the quantity (the difference of its values on the right and left of the wave).

We must note that in order to ensure uniqueness itis necessary
to exclude rarefaction shock waves; for this it is sufficient to require that

around any contour the following integral inequality is satisfied:

gﬁydzzo

where S is the entropy determined by the known methods of thermodynamics

as a certain function of 2 and 2~ .

19



We propose to construct for system (1) an approximate scheme
with the property that as the size of steps diminishes the solution obtained by

this scheme will converge to the generalized solution of the system.

We shall construct the difference scheme in such a way that
for the linear case of sound waves it will coincide with the scheme considered
in the previous chapter which transforms monotonic waves into other monotonic
ones. The application of schemes which do not possess this property does not
appear to be intelligent since the effect of nonmonotonicity appears precisely
in regions where the solution varies sharply which are the shock waves. In
attempts to compute shock waves using schemes which do not satisfy the
monotonicity condition one obtains for them '"humped" profiles and the humps
pulsate from one time step to the next (see, for example, the graph in

Application 1).
Sometimes instead of (1) one has to consider the following

system of equations of fluid dynamics:

bu  p o0t
gt * 8 Jz

2}

(1a)

(Such equations describe, for example, the flow of water in shallow channels. )

The reader will have no difficulty in transferring all our con-
siderations to this simpler case. Let us state only that as the uniqueness
condition, the law of increase of entropy Jdz 0, in this case should

be replaced by the law of dissipation of energy
we
98 = —f;:d-.w dr - Bpudt ) 0.

§ 2. The description of the computational scheme

We will now describe the proposed scheme.

Let us imagine that the gas whose behavior we wish to compute
is divided into a sequence of layers by points with integer labels 0, 1, 2, 3,
4,... and the layers themselves are numbered by 'half integers" 3', E -:_ ‘o
2
We shall assume that the quantities «, 25 E,p = plvy£)  are initially

constant inside each layer. At the boundary » between the two adjacent

20



! 4 . . .
layers ”, -2 and /77 7 the discontinuity is resolved, in consequence

of which at the point /7 the pressure and velocity become /4, and Y
{unlike § 5 of Chapter I, points at which the discontinuity is resolved are

now labeled by integerg and layers between them by half integers).

The rules for computation of © and ¢ are derived in any
course of gas dynamics (see e.g. (3)). We shall list the formulae for /A,

and {), inaform convenient for us in Section 4 below.

After the valuesof /3, and {, are determined at all
integer points we determine the values which &,?5 £  will assume when the

time interval T has elapsed by formulae analogous to (8) of Chapter L

z z8

@3 - “mst =G (Pm+r = Fn);
L T8

?m*.l -ﬂ;’}+f +)}— (Um*’ -am),

8
= i Oam-ff Unet - % Um)- (4)

Here 4 denotes the mesh size of the scheme, i.e., the difference in

Lagrangian coordinates for any two adjacent integer points.

As in Chapter I we must note that after the time interval T
has elapsed the valuee"between two eu‘ccessive integer points will no longer
be constant and the computed values a,"’*f, ko P Em*f represent
only averages over the layer which replace their true distribution with a
certain accuracy that is characteristic of the approximate method described

above.

§ 3. If with the diminishing mesh size the difference solution con-

verges, then it converges to the generalized solution of the

differential equation

Now assuming that as the mesh size decreases, &, ¢ £

computed by the difference scheme (4) converge to certain piecemeal smooth
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limit functions, we shall show that for these limit functions the conservation

laws (2) are satisfied, i.e., these limit functions are generalized solutions
- ‘
of (1) or (la).
Let us consider simple rectlinear contours of the form
represented in Figure 1. On this figure, crosses denote the half-integer

points located inside the layers and circles, integer points.

From (4} it follows that

"e AF ’41 '4!
hla-bZa-BZPr+BZPr. (5a)
A, A3 A Ay

If as the mesh size decreases the mesh functions «, % £, B¢
converge to some limit functions defined in the plane (these limit functions
we shall denote by the same letters as the corresponding mesh functions),
then from the difference conservation law {5a) it follows that for the limit

functions around an arbitrary rectlinear contour,
ggadn&%t =0. (S)

From the fact that (5) is satisfied for an arbitrary rectlinear contour it

follows that (5) is satisfied for any contour.

From the formulae for # and ¢ derived in the following
section it follows that if in the regions where the solution of the differential
equation is smooth the mesh functions, «, z5 £ converge to these solutions,
then in these regions the limit functions for # and p coincide. Using this
and the fact that the discontinuity lines cannot influence the values of the

integrals, we arrive from (5) at the equation

¢aa.’z + Bpdt =0.

We shall prove in § 4 that for the limit functions the law of increase of
entropy (if the system considered is (1)) or of dissipation of energy (if the
system considered is (la)) hold.
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Analogously one can demonstrate that the remaining two equations (2) are

satisfied.

4{l I'4z
) |
| |
0 X ? X 0 X O| X
} |
o] X |O X 0} X ? X
| |
(0] IO X o] X 6 X
X g Ae

© x O X o0 X o0 X
Figure |

In this way we have proved the statement formulated in the

title of this section.

§ 4. Formulae for computating the resolution of a diacontiﬁuity’

We shall now describe the derivation of formulae for 2 and

U ; for simplicity we limit ourselves to the case of a gas with the equation

of state

£ =

/
(y-1) PY:

Suppose that to the right of the point O the gas has specific volume 7, |,
F;

internal energy (per unit mass) E—é and velocity &
2

The pressure in this gas is given by

(J~/)E%
7); - e
v
Z
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Suppose the state of the gas to the left of O is defined by the values

(& ~1)E- 4

Wh Bl Gl P S "
2 o« e < !

|

We assume to begin with that the pressure 5 which obtains after the

resolution of the discontinuity is greater than # - and rs In this case

shock waves will propagate to the right and left of point O

As we have already noted (see formulae {3) of § 1 of this chapter),

on the shock wave the following conditions are satisfied:

[wu-8p] =0,
(wv+ Bu] =0,

[w/é' 7 é‘i)-Bpa} = 0.

wl
Introducing the definitions -z%"- = bo, Tz =~-a, ( we = velocity of the
wave propagating to the right, gz = velocity of the wave propagating to the

left) we can rewrite these relations as

% [] +[p] = 0,

2o [~ (i1 ¢

.éo |:€ ) %i],,_ [/,“] =0r 3 on the left wave (6)
Lle)-[0
T ARPI
60[54- %z]-[pu.]= 0

/
As is well known, in the region between the two waves & and p will be

on the right wave (7)

constant and equal to U and P -- the values on the contact discontinuity
originating at the point @ . The values of the specific volume will be
constants between the contact discontinuity and the waves but these constants
will be different to the right and left of this discontinuity. We shall denote by

Y, the specific volume between the contact discontinuity.and the right
shock wave and by 2 the specific volume between the contact discontinuity and
the left shock wave.
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The first of equations (6) and {7) can be rewritten in the

following way:

ba“'.!‘ A o%"%:

F I ]
Qo .t +p L = a,Uy+ 13-

Agsuming &, and bo known, ([, and /£ can be determined from

the above system:

60,0_2,_ tappL + 2,5, ("'—é'“ﬁ)

B = ’
a, U ¢ + byt + - o
AEY It Pt~ F
b = .
@, + by

On the other hand, if we knew /&  then for the determination of 2, we
could use the equation obtained from the first two relations (6) after the
velocity is eliminated between them:

o = P-4

L= YT >,
ol -5

The value ?,, can be eliminatedTrom this formula with the aid of the
Hugoniot curve obtained from (6) by the method described in any course on

gas dynamics (see e.g. (3))

Yoy (x-1)FA +(}+7),sz_

v, (B +(r-0p s
z 2

After this expression for %4, is substituted into the formula for @, we

obtain

(r+1)R +(r-1Np .

Qo: .
27

NI'\
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Completely analogously we can derive

@G0B+ (r-1)py

b, =
2y
Fi

To determine /3  we can now use the following iteration
process: beginning with an arbitrary f, we determine 2, and éa
and then compute the new value for /A . Substituting it into the formulae for
‘@, and 4, we find /A, again, and so on until the process converges.

After this we determine ¢,

So far we have considered only the case when simultaneously
P ) Py and A3 ) 2y , i.e., when no rarefaction wave occurs in the
resolution of the discontinuity. It turns out that when such waves occur the
process of resolution can be computed in the same manner only changing the

formulae for 2, and éo .

Imagine, for example, that £ < p{ , that a rarefaction
wave propagates to the right. As is well known, across a rarefaction wave

the following relations hold:

2c_tf_ 260/:
“g =7 Sl T
p?f Vg = 8;7/0)’4 ’

where C = {Jp?” = sound speed, and (o, and @, = the values of ¢
and 2¥ to the right of the contact discontinuity, The first of the above

equalities can be rewritten in the following way:

y-/ ¥ it
2 (Pz—' _P") 4y m 1 _F‘,’) —
¢ = Con £ TPy cg —¢, 0 ~Fp 3
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Denoting

we obtain the relation completely analogous to the one obtaining across the

shock wave.

If in the formula for ba , £ 18 expressed in terms of 2
and 7~ and 7%, is eliminated with the aid of the Poisson adiabat (the

second of our equalities holding across the rarefaction wave(, the following

obtains:
5
J-7 J'ﬁ_é 7 - ;_/-
=
by = A A
2 ot - 2
s 3 ( :".éc)

In the case when the rarefaction wave propagates to the left we should have

set

A
i

7
()"
R;

In this way we arrive at the result that in order to determine 1% we must

solve by iterations the following system:

q(;f—ﬂ/g(‘"’)#- (J-/)p_z,_ ( )
-
] 27/:!,- for /Z 2 P___ZL ,
g = (¢-7)
- Lo | (8)
o ('{-!)z Y71 for ’Do{‘ S y
\ /__(0 )"'2-}' 2
o

27



G0 B v (r-1) py
z for P71,
zv, ) > /”-;
2
b, = ¢ p, Y
° J - ¥ . a}ﬂé / - 0/
. & for P ("")<
ce-1) \¥* 0 %
P
| * z
éoﬁ'-/)ﬁ_-: > & ( ," * avg f)b 6= ,)(“ f ""“I)
P(")= ?ﬂoa((‘-f))= s °
0 aa(‘-,)?“ bﬂ - )

After the iterations have converged and we have determined the final values

oy @ays6, wefind {/, from the formula
2 W, -
vi.y * boty t P4 Py

b= a, + b,

for

Detailed investigation of the convergence of the iterations

() .
P “= @ (P - y shows that this process converges if in the resolution of
the discontinuity the resulting rarefaction wave is not of excessive strength

In order to make it convergent in all cases, it is necessary to carry it out
with somewhat modified formulae. e. g

d,(c-f) ('( U+¢ﬂo(¢ '9)
oé(" L

%&?=

where

- y-1 /I-z;.
2" - ! if this expression

!y
3y ___2 p z 21) exceeds
-y

otherwise

, B 8((-/) .
(..‘/ - P{ + pl
F "z
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We omit the investigation of this convergence because it follows standard
methods for investigating the convergence of iteration processes of the type

AR F(z M) which reduce to computation and investigation of the complicated

expressions for the dgrivatives.

From formulae (8) it is seen that if & and # converge with
diminishing mesh size to bounded continuous functions. Then ¢ and P
converge to the same limits. We have already used this fact to prove that the

limit functions are generalized solutions of the equations of fluid dynamics.

In Chapter I we derived formulae (7) for the resolution of a

discontinuity using sound waves. They agree with the expression of this

do=bo=./§'

In the computation with sound waves the time steps had to be limited by the

paragraph if we let

stability condition

h
e
AB B Jx
It seems natural to us to use in the present nonlinear case the following bound

on the time step

h
B mavx (a,,, b,,,)

<

It is true the above defined 7° only approximately equals the time necessary
for the waves obtained {rom the resolution at one integer point to reach the
adjacent one and change the values of ¢ and /A obtained there after the
resolution of the discontinuity. However, a large number of different com-
putations using this condition shows convincingly that with such a bound on

T the computation is stable. In addition, this condition coincides with
the one given above for the linear scheme when weak (sound) waves are being

computed.
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Let us add that if we wished to know the true distribution of
quantities 4, ¥ £ at the end of time interval 7 after the resolution

of the discontinuity we could obtain it by solving the elementary problem of
gas dynamics inside aach layer. (It is only necessary that Z should not

exceed the time necessary for the wave from one integer point to reach the

adjacent one.)

An especially simple case and the one which always admits
closed-form solution is the case when T is smaller than the time necessary

for the waves emitted from the two adjacent points to collide.

As is known from elementary gas dynamics the entropy S
which obtains inside the layer after the time interval T will be for all
larger than the initial value: Slz) > S (if we examine the layer numbered % ).
Recalling that

S= ¢, tn Frr'a cv[&m£+(;-!)mz/~],

and using the following simple inequalities:

f &M z(x)d= / zfz (z)dz

Z¢
12 - .;L/ é '&1’ zz - Z,

z'z 2 ga
udz «?dz
e

L A—
'.L’a‘?:., N zz' z’

follows from convexity of the curve fo z

follows from concavity of the curve &%

we conclude that

Sf S;/&t’z)ffz(c’y[ /?/Er’z)d.’z-f()' 1) Lo /'zr'r’z)a’zJ

0

<oy [ /(m £z --/ﬁ/aa,’z) # (r-1) L ~fzw(z)dz
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h

b ho P
/ e L L X/
Now we note that 7[ (E-ﬁ- 2 dz Z /,dez ’ ,‘)[V(Z)dz

are the mean values £,2, which in computing by our scheme we assign to
/ 4
the "point" -zf durixeg the time interval 7' and denote by f_: " 2&'”
2 z
In this way we arrive at the inequality

‘g’;*’ = (5,”"’, z/;”") =0y [M E;”-f- (r-7) dn t;""’]) -5': . (9)
b z

Applying the reasoning analogous to that used in 3 in the proof of the integral
conservation laws we can show, using the fact that at each mesh point the
inequality of the type (9) holds, that as the mesh size tends to zero the limit

solution satisfies for every closed contour the integral inequality
Psdz 5 0

{condition guaranteeing uniqueness).

Using similar arguments we can show that for the system (la)

also, the corresponding uniqueness condition is satisfied.

§ 5. Computation of Euler coordinates

Usually after solving the system (1)

du 3;:(2-':5)-0

¢ i 2z
v u
at -8 3z -0|
u2\2
9/5”*2— pu
+8 =0
at 2%

one still has to solve the equation for the Euler coordinates of the gas particles

ar

— =W,
27
We propose to determine £ at integer points by the formula
m _
PN = g F Tl
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It is of interest to note that from the preceding formula and (4) it follows
that if initially

8
7,”;* i 7-,— (rm*f - r’”)’ (10)

g
F

then this equation will be satisfied for all later times. It means that the

volurne of the gas layer can be determined from the knowledge of its boundaries,

Equation (10} can be used to determine Z* in place of the second
of formulae (4). When computations are carried out on an electronic computer

it is more convenient to use formula (10) because it decreases the number of

quantities to be stored at each step.

§ 6. Some results of numerical cornputations

In Application II we list the results of computation of a steady-
state travelling shock wave carried out using formulae (4) and (8). It is seen
from the curves that if the computation is begun from a step function which
satisfies the shock conditions at the point O , then after several time steps
the profile of each quantity settles down to a steady-state shape which propagates
in time with the velocity equal to the velocity of the shock wave with the same
jumps in pressures and velocities. Only near the point O there remains a
bump in the curve of 2 . This is e’xplained by the fact that in the process of
reaching the steady state the scheme "erred" in entropy, which is conserved
in the smooth region behind the front of the wave. In the smooth region the
scheme is sufficiently accurate to show this conservation of entropy. After
the steady state is reached the pressure behind the front of the wave equalizes
and since pf/‘" is not correct there this leads to the appearance of the bump

on the curve of 2V .

Analogous entropy traces remain also after the computation of
other unsteady processes, for example the process of formation of a shock
wave during the impact of a moving gas onto a rigid wall (see Application III).
These entropy traces usually cover two or three mesh points and therefore do

not influence the results of computation for a sufficiently small mesh size.

32



§ 7. A certain effect obtained in the computation of contact

discontinuities

All coxx‘siderations which we adduced in arriving at our scheme
were obtained by considering the case of constant x-steps and with the
assumption that the entire computational process occurs in an infinite gas;
however, the numerical scheme obtained has such a clear physical meaning
that it is difficult to resist the desire to apply it also at the boundaries between
two media -- contact discontinuities. For this it is sufficient to include the
contact discontinuity among the number of integer points and in computing @
and 4 at this point use for @ , constants characterizing the gag located
to the left of the separation line and for b , constants referring to the gas

located to the right.

The results of our computations show that the application of
the scheme so constructed on the contact discontinuity is allowable, but,

as is not difficult to verify, it leads to a decrease in accuracy.

In this paragraph we wish to describe one effect which is a
consequence of the decrease in accuracy and which was observed during an
analysis of computations near contact discontinuities. This effect appeared
in the computation of smooth solutions, it bears no relation to the shock waves
and therefore it is natural to attempt to explain it starting with the assumption
that our system of equations can be.approximated by a linear system. Com-
putations based on such a linearized system of equations yielded the magnitude
of the effect, which agreed with the one observed in computation of gas

dynamical problems.

Suppose processes in a certain gas are described by the system

27 u (11)

33



The equation of state of a gas in case of small variations in pressure admits

the following linearized representation:
P =Fo~ E’ (#-25).

Using this equation of state the system (11) can be rewritten

/}
/)C d/
d,o ’ o
Y
Let the contact discontinuity be at ¥=0 , i.e., let the coefficients be different

for Z >0 thanfor <0 . Set

4o | Ar For x>0,
A_ for x <0,

g = B, for % D 0.
B. for <0,

The system of equations

_ﬁ.:
at+8 0,
for ¥ >0
op
af+A*ax =0
9p
22, =0,
ac = vy
for ¥ < O
—3 A_-—--o
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with the continuity conditionon & and p at 2z =0 admits the

following solution

o
“-Tz/-ﬁt + J,

f-
for 2 > 0,
ng—z -&t + %
* (12)
a,--:'—x - 8¢t + 2,
for 2 <0,

p:—‘gz-xé +

which at ¢ =0 satisfies the following initial conditions:

a
=-—2+d
7 A, r,
for ¢ >0,
;br-«‘;i-z-#rc
* (13)
«=2x+2,
for = < 0.
poi
?b=*§"£'f'7z‘

We shall investigate what the solution of the difference
equations is for the same initial data. It is more interesting because any
smooth solution of our system near the point =0 , ¢=¢, can be

represented in the form
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U a2t - Gl-t,) + 7+ 0 [x‘f(t-—to)‘],
.f

A
for z >0,
p-f;‘r —a(t-ty)+ X+ 0 [-'x.‘+(z‘—f,)‘]
@ z
U= —21-B(t-t)+Y+0 [ﬁ‘* (¢-¢) ],
for x < 0.

p= -'g-_- z-x(t-t,)+ n+0 [¢'+ (t—t,)‘]

Therefore the behavior of the difference solution near ¥ =0  will
characterize the behavior near the contact discontinuity of the quantities obtained

as the result of numerican computation of any smooth solution of our system.

We begin by giving the explicit expressions for the difference
scheme for the pfesent case (we have explained at the beginning of this
paragraph how to obtain these formulae). We will assume that the step h
equal to the difference of 2% coordinates of the two neighboring integer
points, may be different in regions to the right and left of %=0
Némely. for >0 h=h, andfor <0 h=4_ . The computation

forrnulae are:
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u Ac,,,_‘i
;"m-é Py 4 Ay m+ 4 -{.’
Pn= ' - ) 2
2 * \ for m ) 0,
um_?i:' + “ﬂlfi ;om'l"z{ - -.fm-r
U= —= =
: ¢ 81" /
i r =U,,_ 1
s i B “mr32 e
fn = 2 i
\ for m < 0,
-“m-;_! * L d _ Pt -Pm-s'
U, =" —t 75
| : i 8- > (14)
,/ foo s * lae 10 (ot —g)
r 7 p_ /_ /; o~
8, ¢ 8- 84
F 7/'—
B, 8-
)/’4" / u; # B B
8- e ,
0 A.‘J.
]3+ }
T8, B
i =g =3 (e = ) o for m > 0,
zA
P =ty g (Umes Um) J
TE. £,
Qm*. = “m""‘f - A (va‘-f ”‘)} > form< 0.
A
Pm'ti" = p FL T "% (am-u [/m)




For our difference equations one can find a solution which,

jike (12), is a linear functionof % and €

X <0

in each of the regions x >0

and has in these regions gradients identical with (12). Namely,

d
an
4 turns out that such solution will be
o ! Bhs
U===2-8¢+ +d,
A 2 ?A g
/; T b for z >0,
7 &hs
=—2 -t ¢+ = =t f
P E 2 1i; 8. J
. (15)
a ! Sh-
=—z_ —--.—--—-f- J‘
u v L¢ + > '7a 5 F
> for z < 0.
Y ! ah.
p=z-att - ——1t 8
8- 2 A-& )

We leave to the reader the completely elementary verification of this fact.

To compute by these formulae s

nth, time step it is necessary to let

and f”’*l'
t=he, 2 =(mr+E)h

for an arbitrary, e.g.

If we begin the computation by our scheme from the initial

conditions (13) then experimental computations show that near the contact

discontinuity the solution of the difference equations (15) tends to a steady

state with certain Jd and & obtained in the process.

-
If we compute the values of «

=0

x

and # by formulae (15) at

we will see that these quantities assume at this point different values

to the left and right; differences between them are:

_ he __h.
[«] = £ .4 = A_B-).
/?-p- /)

‘! — -
[#]- 2= 746, 17.6.
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d, when solving the difference equations the values of « and 2 are
’,puled only at half-integer points ( - 2 h,-gh, £h,, -:,’:h,, A

o’ cherefore on the contact discontinuity we do not find any real discontinuities

pre““" and velocity.
"“apolated to the pom‘t %= 0 we obtain exactly the values computed at

If, however, the pressure and velocity are linearly

¢» 0 by formulae (15).

From what we have said so far it follows that the values of
'reuures and velocities extrapolated from the right and left will in general differ
on the contact discontinuity and the differences between them will be determined

grom the formulae

A
Lg extrap — 44, extrap. = (y{—* A 5_)
(16)

Ah-
frsextrap.” PLextrap. = ({ *Ef fA- 8. )

This disagreement of velocities and pressures on the contact

discontinuity is especially noticeable on the graphs of & and ®» and

obviously characterizes the inaccuracy of our scheme. Indeed, if our scheme
were exact for the linear functions it would compute solution (12) exactly and

we would not observe any discrepancies in & and 2 .

T " L4
In order to counteract this effect we should as one can see

from (16) choose the steps A such that as closely as possible

he o _h-
/A, 8., JA-8-

We have already explained that /)/ﬂ?— represents the
largest allowable time step which does not violate the stability of the difference
scheme. Thus we should attempt to choose the space steps in such a way that
the largest time steps consistent with the stability requirement are if possible

equal or approximately equal for the gases on both sides of the contact
discontinuity.
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It is not possible to satisfy this condition exactly for nonlinear
problems of gas dynamics because the speed of sound which determines the time

step is different at different stages*of the problem.

If in computations we succeeded in choosing the steps in
different regions in such a way that the above condition was not strongly
violated, the effect befng studied on the interior boundaries was almost absent
which signified an increase in accuracy. The greater accuracy in those cases

was also noted by comparison with the method of characteristics.

§ 8. The stability of our difference scheme on the contact discontinuities

In the preceeding paragraph we have given formulae by which one
can compute solutions to our equations near a contact discontinuity, Now we
shall investigate the stability of these formulae. This investigation will be

carried out on the difference scheme for the linear system.

ou ap
_+B_-0'
at ax
77 +A 72 0

with coefficients A4 and B which are constant in each of the regions z >0
or < 0 (in the preceding paragraph we studied the computational phenomenon

described there by considering just such a system).

After A. F. Filippov (see (4)) by stability we will mean uniformly
continuous dependence (with decreasing mesh size) of solutions to the difference

equations on their right hand sides and on the initial data.

In order to prove stability it suffices to define for the solutions
of difference equations a norm which in the limit as the mesh size tends to

zero goes over into a certain norm for the solutions of differential equations

such that

"ani

| < @]

-3
We have determined in § 4 of Chapter II that the admissible time step in

the solution of gasdynamical problems is 7"« A/Bm (@m, b,,). For the smooth

solutions considered in this section and sufficiently small /4 , a,, and b,

equal the convected velocity of sound.
40



By Z” we understand here an infinitely dimensional vector
defined by the values of the solution ((mez ’ ,‘ﬂ,:*f) to the difference

equations for the nth time step. .

We shall assume that the time step is chosen by the stability

conditions inside of each region. As we noted earlier this implies that the

following inequalities are satisfied

We introduce the notation

!

Pf:‘*z F’I‘;’J--;-
+ - ; ‘%ﬂ+; -'6a”*1 ";7?3::‘
B B

From (14) of the preceeding paragraph one can conclude without difficulty that

Qe {

+
Nl

the following equalities are satisfied

’“’-(f ry)g ,+r+g,;_§ for m ) 1,

E
?Mf_(f_,.).f'::*_ff 8¢ R
T T R

= O righ, gt r gy For Mt
Smog = 1-1)Sh g #1050, for m ) 0,

27/'4" "_4.-_ - é’.
.s""" [/ r)sh +n

EE FW

for m < -2.

Sﬂf/ - ”
(7- f‘.)s” ;+ﬁ€”"‘

Nl
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All subsequent considerations will be carried out with the assumption that

A By > AA. EB- . We leave to the reader the entirely analogous

1,44 B8, < -M.. /8.

considerations in the case when

Set
g% .= . for all 1,
mrg m+3
=& - A
Smfz' glﬂvﬂ—£ for m 2 0,
4y, [£-
_ B B
: {__1_ 7%/' m < 0.
//h A
B, B.-
/
From the expressions for g’,f:*_{ and ,’:,:,; analogous formulae
E
g - i
for ,::_z( and 5,;;*; follow. We list them below
= nt! - s
y '(f'&)ng,*é CY 2 for m 2 7,
A. As A_
- 2 8_, g— - B——
7 N f..-ro 57 ¢+ N e M. o * O 34
?i ( f)f{zg + f——""‘;"_*. A_ _if_ * /4* B A ;”
8+ 8_ 8* 8-
Ssnef  _ - - =n _
f’mv‘é (f r-) gm+ . * i’m—l for m < 7,
carl = = TN T
5;’”; (1-1,) S + 1 s£+; for m > 0,

+rn8" 5  for mg -2.
F]
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Since the sum of the absolute values of the coefficients of g and 3 in
the right hand side of each of these equations equals unity (recall that £,

and £ - are less than /) then

§n¢/

m+ %

§7 ,

’
mtz

s NS
?mqsi' 4

) ,

This inequality proves stability if we choose for the norm

).

Thus established stability of the difference scheme for the linear

- N
) < ma¥ (|3

maz
m

g-’n n
me ¥ m+i

F 3

’

2= 7

system may serve as some kind of a justification for its application in the case
of 2 nonlinear system. In addition, let us state once more that in all the
numerous computations, using our scheme, carried out with consideration of

our bound on the time step, the computations were always stable.

Application I

Below {(Figure 2) is the graph of pressure in the steady-state

shock wave for the system

2u  2pW) _
a¢ " %

tr  Pu

At Jx ?
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Figure 2

computed with the scheme of second order accuracy
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where

Application I

Computation for the steady-state shock wave for the gas with

J = 5/3 . Numbers near curves (Figures 3, 4, 5) indicate the layer number,
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Figure 6
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Application III

The impact of an absolutely cold gas { & =« 5/3 ) moving into

a wall. At the initial moment we prescribed > =/, p«0 for x >0
For % = (0 we specified the boundary condition =0 which was taken into

account in computations of resolutions of discontinuities at this point,
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Figure 7

On the curves (Figures 6, 7) now the right travelling shock wave

forms.
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