Joint distribution optimal transportation for domain adaptation

Abstract : This paper deals with the unsupervised domain adaptation problem, where one wants to estimate a prediction function f in a given target domain without any labeled sample by exploiting the knowledge available from a source domain where labels are known. Our work makes the following assumption: there exists a non-linear transformation between the joint feature/label space distributions of the two domain P s and P t that can be estimated with optimal transport. We propose a solution of this problem that allows to recover an estimated target P f t = (X, f (X)) by optimizing simultaneously the optimal coupling and f. We show that our method corresponds to the minimization of a bound on the target error, and provide an efficient algorithmic solution, for which convergence is proved. The versatility of our approach, both in terms of class of hypothesis or loss functions is demonstrated with real world classification and regression problems, for which we reach or surpass state-of-the-art results.
Type de document :
Communication dans un congrès
NIPS 2017, Dec 2017, Los Angeles, United States
Liste complète des métadonnées

Littérature citée [35 références]  Voir  Masquer  Télécharger
Contributeur : Nicolas Courty <>
Soumis le : vendredi 20 octobre 2017 - 17:16:00
Dernière modification le : jeudi 7 février 2019 - 17:31:50
Document(s) archivé(s) le : dimanche 21 janvier 2018 - 14:38:43


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01620589, version 1


Nicolas Courty, Rémi Flamary, Amaury Habrard, Alain Rakotomamonjy. Joint distribution optimal transportation for domain adaptation. NIPS 2017, Dec 2017, Los Angeles, United States. 〈hal-01620589〉



Consultations de la notice


Téléchargements de fichiers