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Modal analysis of a continuous gyroscopic second-order system with
nonlinear constraints

M.R. Brake **, J.A. WickertP

2 Applied Mechanics Development Department, Sandia National Laboratories, Albuquerque, NM 87185, USA!
 Department of Mechanical Engineering, lowa State University, Ames, IA 50011, USA

A method for the modal analysis of continuous gyroscopic systems with nonlinear constraints is developed. This method assumes that
the nonlinear constraint can be expressed as a piecewise linear force-deflection profile located at an arbitrary position within the
domain. Using this assumption, the mode shapes and natural frequencies are first found for each state, then a mapping method based on
the inner product of the mode shapes is developed to map the displacement of the system between the in-contact and out-of-contact
states. To illustrate this method, a model for the vibration of a traveling string in contact with a piecewise-linear constraint is developed
as an analog of the interaction between magnetic tape and a guide in data storage systems. Five design parameters of the guide are
considered: flange clearance, flange stiffness, symmetry of the force-deflection profile in terms of flange stiffness and offset, and the
guide’s position along the length of the string. There are critical bifurcation thresholds, below which the system exhibits no chaotic
behavior and is dominated by period one, symmetric behavior, and above which the system contains asymmetric, higher periodic
motion with windows of chaotic behavior. These bifurcation thresholds are particularly pronounced for the transport speed, flange
clearance, symmetry of the force deflection profile, and guide position. The stability of the system is sensitive to the system’s velocity,
and, compared to stationary systems, more mode shapes are needed to accurately model the dynamics of the system.

1. Introduction

Gyroscopic systems are classified as systems that vibrate about a state of mean rotation or translation, and the
Lagrangian of these systems contains terms that are linear in the generalized velocities. Linear and nonlinear constraints in
gyroscopic systems include transverse cracks in rotating shafts [1], clearances of fluid conveying pipes [2], and axially
moving webs that have rigid or compliant guides [3]. In the absence of these constraints, exact, closed form solutions for
the vibration of gyroscopic systems are available through Laplace transform methods [4] and modal analysis and Green’s
function methods [5]. Similar solution methods are developed for gyroscopic systems with linear constraints by dividing
the system into two contiguous regions divided at the point of the linear constraint [6-8].
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Piecewise-linear and nonlinear non-gyroscopic systems are typically analyzed using a Poincaré mapping method where
the state of the system before contact is mapped to the state of the system after contact [9-11]. Similarly, an algebraic
mapping method can be used for continuous systems with an amplitude constraint modeled as a piecewise-linear spring
[12], with the solution between state changes found via modal analysis [12,13]. Nonlinear systems with a sufficiently large
parameter space may be designed to eliminate certain instabilities, such as jump phenomena in the bifurcation diagrams
[14,15].

Gyroscopic systems have higher characteristic bifurcation thresholds, and thus larger stable regimes, than non-
gyroscopic systems [1]. The stability of gyroscopic systems is further influenced by the stiffness of the nonlinearity: in
systems with very stiff constraints, the range of period doubling bifurcations is significantly smaller than in systems with
less stiff constraints [16]. Existing solutions for gyroscopic systems with nonlinear constraints do not include exact, closed
form or asymptotic approximation approaches such as modal analysis, and instead rely on time-consuming numerical
methods. Below the characteristic bifurcation threshold, analytical estimates of the nonlinear modes’ periods are available
through a complex normal mode approach [1], and for systems with cubic nonlinearities, solutions are obtainable by a
differential quadrature method [17,18].

In the present study, a model is developed for a traveling string in contact with a piecewise-linear guide in Section 2 as
an analog to the dynamics of magnetic tape in contact with a nonlinear guide in order to illustrate the proposed solution
method. The vibration of magnetic tape is an application related to the broader problem area encompassing the mechanics
of axially moving materials [19] and web transport systems [20,21]. Vibration models that are typically applied to represent
magnetic tape include traveling strings [22] and traveling tensioned beams [23]. The displacement of the string is solved
via modal analysis in Section 2.1, and in Section 2.2 a mapping method is developed to map the state of the system across
contact with the guide’s flanges. In Section 3, parameter studies are conducted on the guide’s stiffness, clearance,
symmetry, and position. The response of the system shows that critical bifurcation thresholds exist, above which the
system exhibits asymmetric motion, bifurcations, and chaotic behavior.

2. Vibration model

In the system of Fig. 1(a), a string of length L, tension P, and mass per unit of length p travels between two pinned guides
with transport speed V. At the string’s left boundary (X = 0), the pinned guide has prescribed lateral displacement
W(0,T) = Asin(Q2T) at time T with excitation frequency Q. A nonlinear guide is located at X = L;, and the displacement
W(X,T) of the string is divided into three states: the string is in contact with the lower flange of the guide j = —1, the string
is not in contact with either flange j = 0, and the string is in contact with the top flange j = 1. The guide has arbitrary
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Fig. 1. (a) Schematic of the system with boundary excitation and a nonlinear guide located at X = L; with (b) an arbitrary force-deflection constitutive
relationship.



clearance Dj, stiffness Kj, and preload F;
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illustratively shown in Fig. 1(b). By defining the dimensionless quantities

v /Pt B P K E
U_V\/;, =T\ o= k=1, [=3.

a=%, €1=LL—1, W=¥, X:)f(’ djzf, (2)
the non-dimensional equation of motion in the j th state is [5]
Wt 4+ 20Wxe + (V2 — DWW + kwd(x — €1) = (f; + k;jd)S(x — ¢1), (3)
where J denotes the Dirac delta function, with boundary and initial conditions
w(0,t) = asin(wt), w(l,t)=0, 4)
w(x,0) = Zo(x), Wx(x,0) = so(x), (5)

and a comma subscript denotes partial differentiation.

2.1. Modal analysis

The general solution method is to consider the modal analysis of the various states of the system separately, and then to
develop a state-to-state mapping based on the orthogonality of the mode shapes. For the present system, two cases are
considered in the modal analysis: the string is not in contact with either flange j = 0 and has displacement wy, and the
string is in contact with either the top or bottom flange j#0. The modal coordinates are of a piecewise nature, with
separate solutions when the string is in contact with either flange and when the string is out of contact with both flanges.
When the string is in contact with either flange, it is conceptually divided into two contiguous regions Ry = x € (0, ¢1) and
R, = x € (€1, 1) with displacement w; over R; and w, over R,. Taking a control volume about x = ¢, a force balance yields

(1 — V) (Wax(£1, ) — Wix(t1, 1) — kj(wy (61, 8) — dp) + f; = O, (6)
and continuity requires
Wa(£1,t) — wq(4y,6) =0. (7)
Defining the equivalent offset of the spring due to the preload
—fi/ki j=1
y;j=40 :j=0 (8)
fa/ka:j=-1,

and matching the displacement at the boundaries and the difference between d; and y; at x = ¢;, the superposition that
results in homogeneous boundary conditions is found as

Wn(x,t) = up(x, t) + <asin(a)t) + (% — Ul Z al asin(a)t))x + <— % + %asin(wt)) xz), 9)
with m = 0,1, 2. The equation of motion becomes
Uit + 2V + (V2 — Dt = fy, (10)
with boundary conditions
up(0,t) =0, up(1,t) =0, (11)

u(0,1) =0,
Up(£1,t) — U (64,6 =0,
(1 — V) (Ua (€1, 1) — Uy (L1, £) — kit (€4, 1) = O,

uy(1,t) =0, (12)



and forcing function

) . . ) .
fi= (Ul %xz _p2lta, + <w2 - 2{)—l]’|(v2 - 1)>>asin(wt) —2vaw <Mx - M) cos(wt)

4O 4O 0
FOYE TP At (13)
(1 —-6)
Assuming the separable solution
Un(x,t) = Pt (x), (14)

where i =+~-1 and wj, is the n th natural frequency in state j with corresponding mode shape ¢, the eigenvalue
problem

W = Dy + 12005 Pjiny — 0% Pjon = 0.
¢00n(0) = 0’ ¢]1n(0) = Oa
®i1n(€1) — Pjon(t1) = 0,

(1 = V) (P (1) = Dj1n (1)) = Kipjin(t1) = O,

$oon(1) =0, ¢jp,(1)=0 (15)
has solution
Bimn = 1€ + cp€77%, (16)
which leads to the dispersion relation
v +izulzj#n1m - u?jzjml =0,
P2 =i e, (17)
Application of the boundary conditions for j = 0 yields the natural frequencies for vibration out of contact with the flanges
won = nr(1 — v?), (18)
and the mode shapes
Doon(X) = con€¥sin(nmx) (19)

are the eigenfunctions of the classical moving string [5]. It follows from applying the boundary conditions for the in-
contact system that the mode shapes in state j for the first ¢;;, and second ¢;,, spans are

. @lv@, /(A=1?) Wjn
Pjin = %jne O/ sm(1 —aX)s

bjan = aj,,eww;n/<1—v2><sm <] 3 x> - tan<1 _";}2>cos<1 0 x)) (20)

To compactly represent the in-contact mode shapes and displacements (j#0)

Ditn X €Ry U :xeR;
¢jn:{ U=

Ppn X €Ry Uy : X eRy.

Similarly, the out-of-contact mode shapes are rewritten as ¢, = ¢qg,. Application of the boundary conditions yields the
equation for the natural frequencies when the string is in contact with the guide [6]

. n(1 =6\ . inl . ;
kjsin (60],11(_ 2 1)> sm(lwf’ ;2> + WjpSIn (1 631’;}2> =0. (21)

Defining the mass, gyroscopic, and stiffness operators that act over x € [R, R3]
M = Je,

0
G= Zl}a—xo,

aZ
Kj = (Uz — 1)@0, (22)



the equation of motion is cast in matrix operator form [5]
Ajuj, + Bju; = q;,

M 0 G K
Ai=lo k| B=|x ol
Uuj; fi
(3} -

;“jn d)jn

l/’jn:{ (zbjn } (24)

with mode shapes

and response
+N
uy= > HaOPe, (25)
n=+1,+2,..

where N is the number of mode shapes taken and 7;, are the modal coefficients for the n th mode of the j th state. Modal
damping is introduced following the procedure of [24] by using 4;, = wj,(—{ + i), where { is the modal damping coefficient.
In order to represent the response in a compact manner [25]

Aion =Zins Wi =V (26)

forn=1,2,...,N, with the complex conjugate denoted by an over-bar. Defining the inner product for two arbitrary vectors
b; and b, as

1
(byby> = / blb, dx, (27)
0

the mode shapes are normalized with respect to A; such that

forn,m= +1, +2,..., +N. Using the superposition (9), the initial conditions (5) become

) . d_ v
Z0 — asin(wt@(? - UEha, + 1) + 14%(% -1
1

4O (1 —4)
ujO(X’ to) = m Ul +4 B (29)
So — amcos(wty) (7 X2 — XA l)
1 1
and the modal coefficients are calculated through

t
Mjn(t) = €m0 + / e/n=9gi() dr, (30)

Jto

1 S—
i = /0 (Ao}, dx, (31)
1 S—

Gjn(t) = /0 /¥, dx. (32)

2.2. State-to-state mapping

Mappings between the modal coordinates are needed for each set of states in the system. In the present system, there
are three different state-to-state mappings: from no contact to flange contact (j =0 to +1), from flange contact to no
contact (j = +1 to 0), and from contact with one flange to contact with the other flange (j = +1 to ¥1,d_; = d; = 0). The
string vibrates in the j = O state until it contacts the flange associated with state j

ug(£q,t) = dj — asin(wt)(1 — ¢y), (33)

which corresponds to the gap between the string and the flange vanishing. The string continues to vibrates in state j#0
until it loses contact

uj(t1,t) =y;. (34)

By contrast with the transition to contact, the transition out of contact can be determined by calculating the time at which
the normal force between the string and the flange vanishes.



For to >0, the initial conditions zo and sg (29) are expressed in terms of the mode shapes and superpositions from the
previous state. Defining i as the previous state, the state-to-state mapping follows from the orthogonality of the mode

shapes

with constant terms

and time dependent terms

1 = Tn(to) + 'Y (to)g] + I's (to)gh + I' (to)gh.

i nj1(0)

Nj-1 Ni_1(6)
n=2 M ¢, M= ’7}’2'“) ,

li-n Ni_n(®
(A ¥ > e (AN Y1 >
TV = : CAWYim, Yin >
AW YN AYinYi N>
Jo @i dx
Jo by dx

g = fg¢>_j2dx ,
Jo $i-w dx

1 _
(} Z(x2 — X1y dx

11 —
f01 E(xz —X) 16 dx

| 1 —
2 ‘ g a(x2 — XAy dx

1 [
f(} Z(x2 —X)j_ng;_y dx

di (1)
' $i_1(61)
g1 dpn) ¢

$i_n(l1)

(asin(wto) - (ii:zi)%(vz ~-1):j=0

r'i(te) = (df i asin(wt@)%(vz —1):i=0and 0

1-6
Yi—=Yi s .
2= = _v* -1 :i#0 and j#0,
aa-em® P d

awcos(wty) :j=0
I'Sity) = { —awcos(wtp) :i=0 and j#0
0 :i#0 and j#0,

(35)

(36)

(37)

(38)

(39)

(41)

(42)



0
r(to) =
ki —

:j=0
ki(asin(wto)(1 — £1) — (dj—y)):i=0 and j+#0
:i#0 and j=0.

(43)

The mapping (35) transforms the previous set of modal coordinates #;(t) in state i at the transition time t, to the initial
modal coordinates #; in the new state taking into consideration the change in the superposition function. The mapping
consists of constant matrices T¥ that are based on the inner products of the mode shapes, and constant vectors g’l g’z, and
g, and time dependent coefficients I'Y(ty), I'(ty), and F'“’(to) that are based on the superposition functions. In the
symmetric case, T¥ reduces to the identity matrix for i, 0. In simulation, the constant matrices and vectors (37)-(40) are
calculated once and the displacement between state changes is given in an asymptotic expansion from the modal analysis.
At the instant that a flange is engaged or disengaged, the time dependent terms (41)-(43) are calculated and Eq. (35) maps
the modal coordinates from the previous state to the next state.

Table 1

Baseline parameters for the system of Fig. 1(a).

Variable

Baseline value

Excitation amplitude, a

7.7 %1074

Clearance of the lower flange, d_;
Clearance of the upper flange, d;
Preload of the lower flange, f_4
Preload of the upper flange, f;
Stiffness of the lower flange, k_;
Stiffness of the upper flange, k;

19x107*
19x107*

Position of the guide, ¢;
Number of modes, N
Transport speed, v

Modal damping coefficient, {
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Fig. 2. Convergence of the frequency response for (a) N =5, (b)

N =10, and (c) N

= 100.



3. Frequency response

The frequency response function is taken as the magnitude of the velocity of the string at x = ¢£; when it impacts a
flange. The stable response is calculated after the vibration has reached a steady-state. While this method is well suited to
finding the stable branches of the response, another approach, such as an asymptotic method [26], is needed to capture the
unstable branches of the response. The properties of the string and guide are representative of magnetic tape systems and
are listed in Table 1. While the nonlinear guide located at the midspan in the system of Fig. 1(a) is symmetric in terms of the
physical layout, the response at certain frequencies is asymmetric (meaning that the magnitude of impact against the
upper and lower flanges is different), similar to other piecewise-linear systems with deadbands in displacement [27]. There
are often multiple coexisting stable solutions, which can be found via appropriate initial conditions. The two stable
responses occur simultaneously, one on contact with the upper flange and the other on contact with the lower flange.
Proper selection of the initial conditions determines which solution will occur on a flange. In the following parameter
studies, all stable solutions of the frequency response are plotted together. The response of the system described by the

(a)

(b)
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Displacement, x10™*

Fig. 3. Phase projections for the parameters of Table 1 showing (a) asymmetric 1-1 motion (w = 0.445), (b) symmetric 1-1 motion (w = 0.87245),
(c) symmetric 1-3 motion (w = 0.87248), (d) symmetric 3-2 motion (w = 0.924), and (e) symmetric 1-2 motion (w = 0.94).
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Fig. 4. Magnitude of the string’s frequency response as a function of modal damping for (a) { = 0.02, (b) { = 0.04, and (c) { = 0.06.

parameters in Table 1 is symmetric (the magnitudes of the impacts against the upper and lower flanges are equal) at most
frequencies, with exceptions near « = 0.37, 0.45, and 0.67 as shown in Fig. 2(b). Multiple points at a given frequency in the
response are indicative of the string impacting and rebounding from a flange multiple times per period of the excitation,
and a single point indicates that one impact per flange occurred per period of the excitation with an equal velocity at the
upper flange as at the lower flange. The response is described using a Y —Z; — Zy convention, in which the response
exhibits period Y motion with Z; impacts per period of the excitation cycle on the lower flange and Z, impacts on the upper
flange. For symmetric responses Z; = Zy = Z, the magnitudes of the velocity of the string at contact with the upper and
lower flanges are equal, and the response is concisely described with the notation Y — Z. For example, for the case shown in
Fig. 2(b), asymmetric 1-1-1 motion is observed (in which the magnitude of the velocity at impact against the upper flange
is different than against the lower flange) at w = 0.445 (Fig. 3(a)) with one impact for the upper flange and one impact for
the lower flange per period of the excitation repeating every period of the excitation, symmetric 1-1 motion with one
impact per flange per period of the excitation at o = 0.87245 (Fig. 3(b)), 1-3 motion at w = 0.87248 (Fig. 3(c)), 3-2 motion
at w = 0.9240 (Fig. 3(d)), and 1-2 motion at » = 0.94 (Fig. 3(e)). Contact with the flanges in each of these cases occurs at
w= +1.9 x 107%, as indicated by the sudden change in velocity in the phase projections.

The convergence of the frequency response is shown in Fig. 2 as the number of modes N is increased from 5 (Fig. 2(a)) to
100 (Fig. 2(c)). The response of the string does not significantly change for N> 10 (Fig. 2(b)). Unlike stationary strings or
beams, the traveling string of Fig. 1(a) cannot be accurately approximated up to the first natural frequency by only three to
five modes [28,29], as an unstable response is incorrectly predicted near w = 0.68 for N = 5. In Fig. 4, the modal damping is
varied from { = 0.02 (Fig. 4(a)) to 0.06 (Fig. 4(c)). As the modal damping is increased, the system’s response becomes more
symmetric, such that there is only one narrow window of asymmetric motion near « = 0.68 for { = 0.6 (Fig. 4(c)), though
the discontinuity in the frequency response persists near w ~ 0.925.

One method of classifying the stability of a nonlinear system is through the use of Lyapunov exponents, which measure
the rate of divergence/convergence of a system at a given state. Positive Lyapunov exponents indicate an aperiodic or
chaotic state while negative exponents are found in convergent states that exhibit periodic, steady-state behavior.
Lyapunov exponents are calculated based on the system’s Jacobian; however, for continuous systems with nonlinear
constraints that render the Jacobian to be state dependent, this method is unable to be applied [30]. Alternative methods
exist for calculating the Lyapunov exponents in systems with impacts that require the coupling of multiple similar systems
[31] or coefficient of restitution models [32]. In what follows, the finite-time Lyapunov exponent method of [33] is applied.
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Fig. 5. Finite-time Lyapunov exponents for (a) the baseline case, (b) v = 0.816, (c¢) d_; = d; = 3.87 x 107, and (d) £; = 0.75; in each case, only the
parameter indicated differs from the values list in Table 1.

This method involves the calculation of a Jacobian-like quantity based on the response of the system over a finite time
period with initial conditions that are varied for each modal coordinate by an amount several orders of magnitude below
the steady-state modal amplitudes. In all cases, the finite-time Lyapunov exponents are found to converge for a simulation
time of 50 periods of the excitation. For the baseline case (the system with parameters described by Table 1), the finite-time
Lyapunov exponents are shown as a function of excitation frequency in Fig. 5(a). For w = 0.45 (where the system
transitions from symmetric 1-1 motion to asymmetric 1-1-1 motion) and w € (0.87,0.89) (where the system exhibits a
chaotic response), the finite-time Lyapunov exponents are found to be positive. Points on the graph that appear as x’s along
the abscissa indicate that the finite-time Lyapunov exponent for that frequency tends towards —oo.

As the transport speed of the system is increased from v = 0.068 (Fig. 6(a)) to 0.816 (Fig. 6(d)), the response becomes
more asymmetric, as indicated by the multiple stable branches in the frequency response. For a low transport speed
(Fig. 6(a)), the response of the system is predominantly 1-1 motion. Increasing v by a factor of four (Fig. 6(b)) increases the
number of bifurcations and results in the asymmetric responses extending over a broader range of frequencies. At higher
transport speeds (Fig. 6(c), (d)), the system exhibits 2-1-1 and higher motion, including a potentially chaotic response near
w = 0.79, with windows of 1-1 motion (such as near « = 0.62) shown in Fig. 6(d). Thus, for v>0.272, a critical bifurcation
threshold is exceeded [1], increases above which result in the system becoming less stable and exhibiting higher periodic
and aperiodic motion. The finite-time Lyapunov exponent for v = 0.816 is shown in Fig. 5(b). Regions of positive finite-time
Lyapunov exponents are particularly prominent adjacent to the windows of 1-1 motion (for instance, for ®<0.56 and
®>0.64).
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The nonlinear guides are described by five parameters: clearance, stiffness, symmetry in terms of the flange stiffness
and offset, and position. Two cases of flange clearance are considered: positive clearances and negative clearances, which
result in preloads. Similar to other systems with piecewise-linear constraints [34], the system’s response is dominated by
the nonlinearity of the guide. Several types of critical thresholds exist as the system transitions from the case where the
clearance of the flanges exceeds the displacement of the string at x = ¢; (d_; = d; >4 x 10™%) to a nonlinear guide
(0<d_; =d; <4 x 107%) to a linear spring (d_; = d; = 0). The higher critical threshold occurs for the clearance where the
string just grazes the flanges. At d_; = d; = 3.8 x 10~ (Fig. 7(a)), the string grazes the flanges at low frequencies, indicated
by the approximately zero velocity magnitude for w<0.2, and grazing bifurcations occur as the frequency is increased,
signified by the sudden jumps in the frequency response. As this threshold is approached from below, the width of any
stable bands in the response decreases and eventually becomes unstable, and the system exhibits asymmetric responses
with narrow windows of 1-1 motion, behavior that is also observed in stationary strings with a compliant amplitude
constraint [35]. The lower critical threshold is an asymmetric response threshold that occurs as the clearance is increased
from the linear spring case (Fig. 8(d)) to one-tenth of the baseline clearance (Fig. 8(c)). Near w = 0.85, the system’s
response is 1-1-1 motion. Further increases of the clearance reduces the frequency range of the asymmetric response
(Fig. 8(b)), and the response transitions from windows of asymmetric motion to windows of period doubling (Fig. 8(a)).
Increases in the clearance to the baseline clearance and above (Fig. 7(d)) results in windows in which the periodicity of the
system increases such that 4-1 and higher symmetric responses are observed. At twice the baseline clearance(Fig. 7(a)),
chaotic motion is observed over multiple ranges as is evident in the positive finite-time Lyapunov exponents (Fig. 5(c)) near

11
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(c)d_y=d; =285x10"% and (d)d_; =d; =1.93 x 1074,

w = 0.345, 0.5, 0.615, 0.69, 0.75, 0.8, and 0.85. Above w = 0.85, the finite-time Lyapunov exponents remain below zero for
the remainder of the frequencies studied, which corresponds to the symmetric 1-1 motion observed in (Fig. 7(a)).

As the clearance is decreased to zero (Fig. 8(d)), the system becomes linear, and the string exhibits only 1-1 motion over
the frequency range investigated. The first natural frequency of the string when it is in constant contact with the guide is
w = 5.55 due to the added stiffness to the system, significantly above the frequency range shown here. As the clearance is
further reduced to a negative value, the guide becomes preloaded. Preloads can cause instabilities in certain regions of the
parameter space, and as the preload is increased, the frequency range of any stable, period one response decreases and
eventually becomes unstable [36,37]; however, in this string model, the bending stiffness of the web is neglected and the
string is unable to displace against the preloaded flange. Consequently, the preload does not cause unstable behavior in the
frequency range studied. As the preload is increased from 0 to 1.43 x 1073 (y_; = —y; = 4.83 x 107>, the magnitude of
which is equivalent to 25 percent of the baseline clearance), the velocity magnitude at flange contact decreases to zero and
the response of the string is 1-1 motion. For preloads greater than 1.43 x 107>, the string is unable to displace the flange
for 0<w<1, and the guide effectively becomes a pinned boundary.

The effect of the stiffness of the flanges on the frequency response is reported in Fig. 9. For a low flange stiffness
k_1 = k1 = 0.3 (Fig. 9(a)), the system exhibits a 1-1 response for 0 <w < 1. Increasing the stiffness to k_; = k; = 3 (Fig. 9(b))
yields an asymmetric response with a periodicity greater than one near w = 0.73. However, further increases of the
stiffness above the baseline case (Fig. 9(c)) decreases the range of frequencies over which the asymmetric response is
observed until the asymmetric response vanishes (Fig. 9(e)). The multiple branches of the solution observed for k_; =
ki = 3000 (Fig. 9(e)) near w = 0.35,0.40, 0.58, and 0.76 are 2-1 motion. Unlike the critical bifurcation thresholds associated
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Fig. 8. Magnitude of the string’s frequency response as a function of the guide’s clearance for (a) d_; = d; = 9.67 x 107>, (b) d_; = d; = 4.83 x 107>,
(c)d_y=d; =193 x 107>, and (d) d_; = d; = 0.

with the clearance of the flanges, the system’s response does not exhibit more complicated behavior than 2-1 motion as
the stiffness is increased. Increasing the stiffness above k_; = k; = 3000 does not result in any appreciable change in the
frequency response, indicating that this is effectively a rigid flange that the string does not compress.

The symmetry of the system is characterized both by the force-deflection profile of the guide and by the position of the
guide along the length of the string. The effect of the asymmetry of the stiffness of the flanges on the frequency
response is shown in Fig. 10. In the limiting case of k_; = 0 (Fig. 10(a)), the system reduces to a one-sided constraint that
strictly exhibits 1-1 motion away from w = 0.65. Increasing the stiffness of the lower flange to k_; = 3 (Fig. 10(b))
yields 1-1-1 motion. For k_;>k;, the number of bifurcations increases as well as the range of frequencies
they are stable over, eventually resulting in 4-1-1 and higher asymmetric motions (Fig. 10(d)). Values of k_;>3000
(Fig. 10(e)) produce no discernable changes in the frequency response as the string no longer appreciably displaces the
lower flange.

The symmetry of the flange’s location, or offset of the flanges, while the distance between the flanges is held constant is
varied from the symmetric case (Fig. 11(e)) to the center of the guide being located 1.93 x 10~ from the string’s neutral
axis (Fig. 11(a)). At low frequencies, the string grazes against the upper flange when the flanges are offset 1.93 x 10~ from
the string’s neutral axis, and near w = 0.62 the upper flange is not engaged. The motion for this case is predominantly
1-1-1 motion, with windows of 1-2-1 motion and 1-1-0 motion. As the offset is reduced, the frequency range increases
over which the number of impacts per period of the excitation is different for the two flanges, and the number of impacts
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Fig. 9. Magnitude of the string’s frequency response as a function of the guide’s stiffness for (a) k_y = k; = 0.3, (b) k.1 =k; =3, (c) k_y = k; =30,
(d) k-1 = k; =300, and (e) k_; = k; = 3000.

per period increases as well. For the offset of 9.67 x 10> (Fig. 11(c)), 1-2—-4 motion is observed. As the offset is further
reduced to 4.83 x 10~° (Fig. 11(d)), the periodicity increases such that 4-2-4 motion is observed.

The position of the nonlinear guide along the string is varied in Fig. 12. When the guide is located near the excitation
(Fig. 12(a)), the response of the string is 1-1 motion except near w = 0.77. As the guide is moved towards the pinned
boundary, the magnitude of the velocity at flange contact decreases and the frequency range that the asymmetric
responses are stable over increases, particularly for ¢, >0.625 (Fig. 12(d)). For ¢; = 0.75, the string grazes the flanges at low
frequencies, similar to the case of d_; = d; = 3.8 x 10~ (Fig. 7(a)), and chaotic regions occur in the frequency response for
0.6<w<0.7 and for w>0.96, as is indicated by the positive finite-time Lyapunov exponents in Fig. 5(d).
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4. Summary

A method for performing modal analysis on gyroscopic systems with nonlinear constraints is developed. This method
assumes that the nonlinear constraint can be expressed as a piecewise linear force-deflection profile located at an arbitrary
position within the domain. The system is divided into two contiguous regions at the point of the nonlinear constraint, and
a superposition function is chosen such that homogeneous boundary conditions result. With the piecewise linear
assumption for the constraint, the mode shapes and natural frequencies are calculated in each state. A mapping method
based on the inner products of the mode shapes is developed to map the displacement of the system between the in-
contact and out-of-contact states. This method is illustrated with a model for the vibration of a traveling string in contact
with a piecewise-linear constraint as an analog of the interaction between magnetic tape and a guide in data storage
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systems. Five design parameters of the nonlinear constraint are considered in parameter studies: flange clearance, flange
stiffness, symmetry of the force-deflection profile in terms of stiffness and offset, and the guide’s position along the length
of the string. There are critical bifurcation thresholds, below which the system exhibits period one, symmetric behavior,
and above which the system contains asymmetric, higher periodic motion with windows of chaotic behavior. These
bifurcation thresholds are particularly pronounced for the transport speed, flange clearance, symmetry of the force
deflection profile, and guide position.

The results of this study are particularly useful for the tape drive industry. For the goals of the industry roadmap [38], in
which the tape transport speed is expected to significantly increase, new guide and path designs are needed to mitigate the
higher periodicity dynamics introduced by increasing the transport speed. Using the conclusions drawn from varying
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flange stiffnesses and symmetry, as well as the position of the guides with respect to disturbance sources, is one method to
better condition the lateral tape dynamics.
The primary contributions and conclusions of this investigation are:

1. The stability of the system is sensitive to the system’s velocity, and, compared to stationary systems, more mode shapes
are needed to accurately model the dynamics of the system.

2. When the flange stiffness is symmetric, the system exhibits period one symmetric behavior over most frequency ranges;
however, for asymmetric stiffness profiles the system’s stability decreases as one flange is increased in stiffness
compared to the other.
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3. Both asymmetric and period doubling bifurcation thresholds exist in the parameter space for the flange clearance. As
the clearance is reduced, period one asymmetric behavior dominates the response, and as the clearance is increased,
higher periodic symmetric behavior is predominant.

4. For systems with asymmetric flange clearances, the stability of the system is improved by increasing the asymmetry of
the clearances.

5. Varying the position of the nonlinear constraint along the domain results in behavior that is similar to varying the
clearance of the constraint. Moving the constraint closer to the excitation source results in symmetric period one
behavior, and moving it away from the excitation source results in higher periodic behavior and grazing bifurcations.
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