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Compositional abstraction and safety synthesis
using overlapping symbolic models

Pierre-Jean Meyer, Antoine Girard, and Emmanuel Witrant

Abstract—In this paper, we develop a compositional approach
to abstraction and safety synthesis for a general class of discrete
time nonlinear systems. Our approach makes it possible to
define a symbolic abstraction by composing a set of symbolic
subsystems that are overlapping in the sense that they can share
some common state variables. We develop compositional safety
synthesis techniques using such overlapping symbolic subsystems.
Comparisons, in terms of conservativeness and of computational
complexity, between abstractions and controllers obtained from
different system decompositions are provided. Numerical exper-
iments show that the proposed approach for symbolic control
synthesis enables a significant complexity reduction with respect
to the centralized approach, while reducing the conservatism
with respect to compositional approaches using non-overlapping
subsystems.

I. INTRODUCTION

Symbolic control deals with the use of discrete synthesis
techniques for controlling complex continuous or hybrid sys-
tems [5], [26]. In such approaches, one relies on symbolic
abstractions of the orignal system; i.e. dynamical systems with
finitely many state and input values, each of which symbolizes
sets of states and inputs of the concrete system [2]. This
enables the use of discrete controller synthesis techniques,
such as supervisory control [9] or algorithmic game theory [7],
which allows us to address high-level specifications such as
safety, reachability or more general properties specified by
automata or temporal logic formula [4]. When the behaviors
of the concrete system and of its abstraction are related
by some formal inclusion relationship (such as alternating
simulation [26] or feedback refinement relations [25]), the
discrete controller of the abstraction can be refined to control
the concrete system, with guarantees of correctness.

Several approaches exist for computing symbolic abstrac-
tions for a wide range of dynamical systems (see e.g. [27],
[21], [31], [30], [10], [25]), based on partitions or discretiza-
tions of the state and input spaces. The numbers of symbolic
states and inputs are then typically exponential in the dimen-
sion of the concrete state and input spaces, respectively. This
limits the application of these approaches to low-dimensional
systems. Several works have been done for improving the
scalability of symbolic control. In [17], [29], an approach,
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which does not require state space discretization, has been pre-
sented for computing symbolic abstractions of incrementally
stable systems. In [20], [13], algorithms combining discrete
controller synthesis with on-the-fly computation of symbolic
abstractions have been developed. Compositional approaches
have also been explored in several papers [28], [24], [19],
[8], [15], [11], [23], [22]. In such approaches, a system with a
control specification is decomposed into subsystems with local
control specifications. Then, for each subsystem, a symbolic
abstraction can be computed and a local controller is syn-
thesized while assuming that the other subsystems meet their
local specifications. This approach, called assume-guarantee
reasoning [14], enables the use of symbolic control techniques
for higher dimensional systems.

In this paper, we develop a novel compositional approach
for symbolic control synthesis for a general class of discrete
time nonlinear systems. Our approach clearly differs from
the previously mentioned works (and particularly from our
previous work [19]) by the possibility for subsystems to share
common state variables through the definition for each sub-
system of locally modeled but uncontrolled variables, which
are accessible to the local controller. Hence, this makes it
possible for local controllers to share information on some
of the states of the system. In this setting, we develop compo-
sitional approaches for computing symbolic abstractions and
synthesizing controllers that maintain the state of the system
in some specified safe set.

The paper is organized as follows. Section II introduces
the class of systems, safety controllers and the abstraction
framework considered in the paper. Section III presents a com-
positional approach for computing abstractions from symbolic
subsystems with overlapping sets of states. Compositional
controller synthesis is addressed in Section IV. Section V
provides results to compare abstractions and controllers ob-
tained from different system decompositions, and a discussion
on the computational complexity of the approach. Numerical
experiments are then reported in Section VI.

II. PRELIMINARIES

A. System description

We consider a class of discrete time nonlinear control
systems modeled by the difference inclusion:

x(t+ 1) ∈ F (x(t), u(t)), t ∈ N (1)

where N = {0, 1, 2, . . . }, x(t) ∈ Rn, u(t) ∈ U ⊆ Rp denote
the state and the control input, respectively, and the set-valued
map F : Rn×U → 2R

n

. System (1) is discrete time; however,
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it encompasses sampled versions of continuous time systems,
possibly subject to disturbances (see e.g. [19], [25]).

Throughout the paper, we assume, for simplicity, that for all
x ∈ Rn, u ∈ U , F (x, u) 6= ∅. For a subset of states X ′ ⊆ Rn
and inputs U ′ ⊆ U we denote

F (X ′,U ′) =
⋃

x∈X ′,u∈U ′
F (x, u).

Exact computation of F (X ′,U ′) may not always be possible,
especially when (1) corresponds to the sampled dynamics of a
continuous time system. Therefore, we will assume throughout
the paper that we are able to compute, for all sets of states
X ′ ⊆ Rn and of inputs U ′ ⊆ U , a set F (X ′,U ′) verifying

F (X ′,U ′) ⊆ F (X ′,U ′). (2)

Several methods exist for computing such over-approximations
for linear [12], [16], [18] and nonlinear [6], [1], [10], [25]
systems.

B. Transition systems and safety controllers

A transition system is defined as a triple S = (X,U, δ)
consisting of:
• a set of states X;
• a set of inputs U ;
• a transition map δ : X × U → 2X .

A transition x′ ∈ δ(x, u) means that S can evolve from state
x to state x′ under input u. U(x) denotes the set of enabled
inputs at state x: i.e. u ∈ U(x) if and only if δ(x, u) 6= ∅.
A trajectory of S is a finite or infinite sequence of transitions
(x0, u0, x1, u1, . . . ) such that xt+1 ∈ δ(xt, ut), for t ∈ N

In the following, we consider a safety synthesis problem
for transition system S: let X ⊆ X be a subset of safe states,
a safety controller for system S and safe set X is a map
C : X → 2U such that:
• for all x ∈ X , C(x) ⊆ U(x);
• its domain dom(C) = {x ∈ X| C(x) 6= ∅} ⊆ X ;
• for all x ∈ dom(C) and u ∈ C(x), δ(x, u) ⊆ dom(C).

Essentially, a safety controller makes it possible to generate
infinite trajectories of S, (x0, u0, x1, u1, . . . ) such that xt ∈
X , for all t ∈ N as follows: x0 ∈ dom(C), ut ∈ C(xt) and
xt+1 ∈ δ(xt, ut), for all t ∈ N. It is known (see e.g. [26])
that there exists a maximal safety controller C∗ for system S
and safe sate X such that for all safety controllers C, for all
x ∈ X , it holds C(x) ⊆ C∗(x).

C. Feedback refinement relations

Complex transition systems motivate the use of abstractions,
since finding a control strategy for an abstraction is generally
simpler than for the original system. However, to derive a
controller for the original system from that of the abstraction,
the systems must satisfy a formal behavioral relationship such
as alternating simulation [26]. In this paper, we will rely on
the notion of feedback refinement relations [25], which form
a special case of alternating simulation relations:

Definition 1 (Feedback refinement). Given two transition sys-
tems Sa = (Xa, Ua, δa) and Sb = (Xb, Ub, δb), with Ub ⊆ Ua,

a map H : Xa → Xb defines a feedback refinement relation
from Sa to Sb if for all (xa, xb) ∈ Xa×Xb with xb = H(xa):
• Ub(xb) ⊆ Ua(xa);
• for all u ∈ Ub(xb), H(δa(xa, u)) ⊆ δb(xb, u).

We denote Sa �FR Sb.

In the previous definition, Sa represents a complex concrete
system while Sb is a simpler abstraction. From Definition 1,
it follows that all abstract inputs u of Sb can also be used in
Sa such that all concrete transitions in Sa are matched by an
abstract transition in Sb. As a result, controllers synthesized
using the abstraction Sb can be interfaced with the map H
to obtain a controller for the concrete system Sa (see [25]).
In particular, if Cb : Xb → 2Ub is a safety controller for
transition system Sb and safe set Xb ⊆ Xb, then Ca : Xa →
2Ua , given by Ca(xa) = Cb(H(xa)) for all xa ∈ Xa, is a
safety controller for transition system Sa and safe set Xa =
H−1(Xb) ⊆ Xa.

III. COMPOSITIONAL ABSTRACTION

System (1) can be described as a transition system S =
(X,U, δ) where, X = Rn, U = U and δ = F ; let X ⊆ Rn
be a subset of states of interest. In this section, we present a
compositional approach for computing symbolic abstractions
of transition system S.

In order to allow for system decomposition, we will make
the following assumption on the structure of the state and input
sets X and U :

Assumption 1. The following equalities hold:

X = X1 × · · · × Xn̄, with Xi ⊆ Rni , i ∈ I = {1, . . . , n̄};
U = U1 × · · · × Up̄, with Uj ⊆ Rpj , j ∈ J = {1, . . . , p̄}.
States x ∈ Rn and inputs u ∈ Rp can thus be seen as vectors

of elementary components: x = (x1, . . . , xn̄) with xi ∈ Rni
for i ∈ I , and u = (u1, . . . , up̄) with uj ∈ Rpj for j ∈ J .

For i ∈ I , let Pi be a finite partition of the set Xi, then let
P be the finite partition of the safe set X obtained from the
partitions Pi as follows:

P = {s1 × · · · × sn̄| si ∈ Pi, i ∈ I} .
Similarly, for j ∈ J , let Vj be a finite subset of Uj , then let
V be the finite subset of U given by the Cartesian product of
the sets Vj :

V = V1 × · · · × Vp̄.

A. System decomposition

Let m ∈ N, with 1 ≤ m ≤ min(n̄, p̄), let Σ = {1, . . . ,m},
the symbolic abstraction of S is obtained by composition of
m symbolic subsystems Sσ , σ ∈ Σ.

In the following, we use two types of indices:
• Latin letters i ∈ I , j ∈ J , refer to xi and uj the

components of the state and input x and u of system
S.

• Greek letters σ ∈ Σ refer to Sσ the σ-th symbolic
subsystem, sσ and uσ denote the state and input of system
Sσ respectively.
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We will use πi : Rn → Rni and πj : Rp → Rpj to denote
the projections over components xi and uj , with i ∈ I , j ∈ J ,
respectively. For X ′ ⊆ Rn and U ′ ⊆ Rp, we denote X ′i =
πi(X ′) and U ′j = πj(U ′). Similarly, for subset of indices I ′ ⊆
I , J ′ ⊆ J , πI′ : Rn →∏

i∈I′ Rni and πJ′ : Rp →∏
j∈J′ Rpj

denote the projections over the set of components {xi| i ∈ I ′}
and {uj | j ∈ J ′}, respectively; we use the notation xI′ =
πI′(x), X ′I′ = πI′(X ′), uJ′ = πJ′(u) and U ′J′ = πJ′(U ′).

For σ ∈ Σ, subsystem Sσ can be described using the
following sets of indices:

• Icσ ⊆ I , with Icσ 6= ∅, denotes the state components to be
controlled in Sσ , (Ic1 , . . . , I

c
m) is a partition of the state

indices I;
• Iσ ⊆ I , with Icσ ⊆ Iσ , denotes the state components

modeled in Sσ;
• Ioσ ⊆ I , with Ioσ = Iσ\Icσ , denotes the state components

that are modeled but not controlled in Sσ;
• Iuσ ⊆ I , with Iuσ = I\Iσ , denotes the remaining state

components that are unmodeled in Sσ;
• Jσ ⊆ J , with Jσ 6= ∅, denotes the control input

components modeled in Sσ , (J1, . . . , Jm) is a partition
of the control input indices J ;

• Juσ ⊆ J with Juσ = J\Jσ , denotes the remaining control
input components that are unmodeled in Sσ .

It is important to note that the subsystems may share com-
mon modeled state components (i.e. the sets of indices Iσ may
overlap), though the sets of controlled state components Icσ and
modeled control input components Jσ are necessarily disjoints.
Intuitively, Sσ will be used to control state components Icσ
using input components Jσ; other state components Ioσ ∪ Iuσ
will be controlled in other subsystems using input components
Juσ . Though state components Ioσ will be controlled in other
subsystems, they are modeled in Sσ and thus information on
their dynamics is available for the control of Sσ .

Let us remark that the sets of indices Ioσ and Iuσ may
possibly be empty if Iσ = Icσ and Iσ = I , respectively. If
m = 1, there is only one subsystem and we encompass the
usual centralized abstraction approach (see e.g. [26], [31], [10],
[25]).

Remark 1. In theory, the choice of the sets of indices can be
made arbitrarily. However, if the considered system has some
structure, i.e. if it consists of interconnected components, a
natural decomposition is to associate to each component C one
subsystem Sσ where: the controlled states Icσ and the modeled
control input Jσ are the states and control inputs of C and
the modeled but uncontrolled states Ioσ are the states of other
components that have the strongest interactions with C.

B. Symbolic subsystems

Let σ ∈ Σ, the symbolic subsystem Sσ is an abstraction of
S, which models only state and input components xIσ and uJσ
respectively. Formally, subsystem Sσ is defined as a transition
system Sσ = (Xσ, Uσ, δσ) where:

• the set of states Xσ is a finite partition of πIσ (Rn), given
by Xσ = X0

σ ∪ {Outσ} where Outσ = πIσ (Rn) \ XIσ

and

X0
σ =

{∏
i∈Iσ

si

∣∣∣ si ∈ Pi, i ∈ Iσ}
is a finite partition of XIσ ;

• the set of inputs Uσ is a finite subset of UJσ given by

Uσ =
∏
j∈Jσ

Vj .

To define the transition relation of Sσ , let us first define the
following map: given sσ ∈ X0

σ and uσ ∈ Uσ , we define the
set Φσ(sσ, uσ) ⊆ Rn as follows:

Φσ(sσ, uσ) = F (X ∩ π−1
Iσ

(sσ),U ∩ π−1
Jσ

({uσ})). (3)

The set Φσ(sσ, uσ) is therefore an over-approximation of
successors of states x ∈ X with πIσ (x) ∈ sσ , for control
inputs u ∈ U with πJσ (u) = uσ . Then, we define the transition
relation of Sσ as follows:
• for all sσ ∈ X0

σ, uσ ∈ Uσ, s′σ ∈ X0
σ ,

s′σ ∈ δσ(sσ, uσ) ⇐⇒ s′σ ∩ πIσ (Φσ(sσ, uσ)) 6= ∅; (4)

• for all sσ ∈ X0
σ, uσ ∈ Uσ ,

Outσ ∈ δσ(sσ, uσ) ⇐⇒
{
πIσ (Φσ(sσ, uσ)) ∩ XIσ = ∅
or πIcσ (Φσ(sσ, uσ)) * XIcσ .

(5)

Remark 2. The first condition in (5) holds if and only if there
does not exist any transition defined by (4), because X0

σ is
a partition of XIσ . As a consequence, it follows that for all
sσ ∈ X0

σ, uσ ∈ Uσ , δσ(sσ, uσ) 6= ∅ and thus Uσ(sσ) = Uσ .

Remark 3. According to (5), a transition to Outσ exists if
πIσ (Φσ(sσ, uσ)) is entirely outside XIσ (first condition and
Figure 1.a); or if πIcσ (Φσ(sσ, uσ)) is not contained in XIcσ
(second condition and Figure 1.b). It should be noted that in
the case where the reachable set πIcσ (Φσ(sσ, uσ)) is contained
in XIcσ but πIoσ (Φσ(sσ, uσ)) is not contained in XIoσ as in
Figure 1.c, no transition is created towards Outσ . Finally, if
Iσ = Icσ , (5) becomes equivalent to

Outσ ∈ δσ(sσ, uσ) ⇐⇒ πIσ (Φσ(sσ, uσ)) * XIσ ,

Case a

Case c

XIσ

Outσ

XIσ

Outσ

πIσ(Φσ(sσ, uσ))

xIcσ

xIoσ

Case b

XIσ

Outσ πIσ(Φσ(sσ, uσ))

πIσ(Φσ(sσ, uσ))

Fig. 1. Illustration of (5): a transition towards Outσ is created in cases a
and b, but not in case c.
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which is the condition used in [19], for compositional ab-
stractions where the set of modeled state components Iσ do
not overlap (i.e. Iσ = Icσ , for all σ ∈ Σ).

C. Composition

In this section, we show how the previous subsystems Sσ ,
with σ ∈ Σ, can be composed in order to define a symbolic
abstraction Sc of the original system S. The main result of the
section is Theorem 3, which shows that there exists a feedback
refinement relation from S to Sc.

The composition of the subsystems Sσ , σ ∈ Σ, is given by
the transition system Sc = (Xc, Uc, δc) where:
• the set of states Xc is a finite partition of Rn, given by
Xc = X0

c ∪ {Out} where Out = Rn \ X and X0
c = P

is a finite partition of X ;
• the set of inputs Uc = V is a finite subset of U .
Let us remark that by definition of X0

c and X0
σ , we have

that for all s ∈ X0
c , its projection sIσ ∈ X0

σ . Similarly, for all
u ∈ Uc, its projection uJσ ∈ Uσ . The transition relation of Sc
can therefore be defined as follows:
• for all s ∈ X0

c , u ∈ Uc, s′ ∈ X0
c ,

s′ ∈ δc(s, u)⇐⇒ ∀σ ∈ Σ, s′Iσ ∈ δσ(sIσ , uJσ ); (6)

• for all s ∈ X0
c , u ∈ Uc,

Out ∈ δc(s, u)⇐⇒ ∃σ ∈ Σ, Outσ ∈ δσ(sIσ , uJσ ).
(7)

Remark 4. Because the sets of modeled state components Iσ
are allowed to overlap, the transition relation of Sc cannot
simply be obtained as the Cartesian product of the transition
relations of the subsystems Sσ , as in [19]. Indeed, for s ∈
X0
c , u ∈ Uc, it is possible that for all σ ∈ Σ, there exists

s′σ ∈ X0
σ , such that s′σ ∈ δσ(sIσ , uJσ ). However, a transition

to X0
c will exist in Sc if and only if there exists s′ ∈ X0

c such
that s′Iσ = s′σ , for all σ ∈ Σ.

In view of the previous remark, it is legitimate to ask if the
composition of the subsystems can lead to couples of states
and inputs (s, u) ∈ X0

c×Uc without a successor. The following
proposition shows that this is not the case:

Proposition 2. Under Assumption 1, for all s ∈ X0
c we have

Uc(s) = Uc, i.e. δc(s, u) 6= ∅, for all u ∈ Uc.
Proof. Let s ∈ X0

c and u ∈ Uc. Then for all σ ∈ Σ, sIσ ∈
X0
σ , uJσ ∈ Uσ and by construction, δσ(sIσ , uJσ ) 6= ∅ (see

Remark 2). If there exists a subsystem Sσ such that Outσ ∈
δσ(sIσ , uJσ ), then by definition of Sc we have Out ∈ δc(s, u).
Otherwise, we have that Outσ /∈ δσ(sIσ , uJσ ) for all σ ∈ Σ,
which from the second condition of (5) implies that

∀σ ∈ Σ, πIcσ (Φσ(sIσ , uJσ )) ⊆ XIcσ . (8)

Remarking that s ⊆ X∩π−1
Iσ

(sIσ ) and {u} ⊆ U∩π−1
Jσ

({uJσ}),
the following inclusion follows from (2) and (3):

F (s, {u}) ⊆ F (X ∩ π−1
Iσ

(sIσ ),U ∩ π−1
Jσ

({uJσ}))
⊆ Φσ(sIσ , uJσ ). (9)

Therefore, from (8) and (9) it follows

∀σ ∈ Σ, πIcσ (F (s, {u})) ⊆ XIcσ .

This, together with Assumption 1 and the fact that
(Ic1 , . . . , I

c
m) is a partition of I , implies that F (s, {u}) ⊆ X .

Since X0
c is a partition of X , there exists s′ ∈ X0

c such that
s′∩F (s, {u}) 6= ∅. Then, (9) gives s′∩Φσ(sIσ , uJσ ) 6= ∅, for
all σ ∈ Σ. Thus, for all σ ∈ Σ, s′Iσ ∩ πIσ (Φσ(sIσ , uJσ )) 6= ∅.
It follows from (4) that s′Iσ ∈ δσ(sIσ , uJσ ) for all σ ∈ Σ,
which gives, by (6), s′ ∈ δc(s, u).

We can now state the main result of the section:

Theorem 3. Let the map H : X → Xc be given by H(x) = s
if and only if x ∈ s. Then, under Assumption 1, H defines a
feedback refinement relation from S to Sc: S �FR Sc.

Proof. Let s ∈ X0
c , x ∈ s, u ∈ Uc(s) = Uc ⊆ U = U(x),

x′ ∈ δ(x, u) = F (x, u) and s′ = H(x′). Since x ∈ s, we have
x′ ∈ F (s, {u}). Then, let us consider the two possible cases:
• x′ ∈ X – We have by (9), x′ ∈ Φσ(sIσ , uJσ ), for all
σ ∈ Σ. Since x′ ∈ X , then s′ ∈ X0

c , it follows from x′ ∈
s′ that s′ ∩ Φσ(sIσ , uJσ ) 6= ∅, for all σ ∈ Σ. Then, for
all σ ∈ Σ, s′Iσ ∈ X0

σ and s′Iσ ∩ πIσ (Φσ(sIσ , uJσ )) 6= ∅.
From (4), s′Iσ ∈ δσ(sIσ , uJσ ), for all σ ∈ Σ and by (6)
we have s′ ∈ δc(s, u).

• x′ /∈ X – Then, F (s, {u}) 6⊆ X . Then, from As-
sumption 1 and the fact that (Ic1 , . . . , I

c
m) is a par-

tition of I , it follows that there exists σ ∈ Σ
such that πIcσ (F (s, {u})) 6⊆ XIcσ . From (9), we have
πIcσ (Φσ(sIσ , uJσ )) 6⊆ XIcσ . Then, from (5), Outσ ∈
δσ(sIσ , uJσ ), and from (7), Out ∈ δc(s, u). Since x′ /∈
X , s′ = Out.

The case s = Out trivially satisfies Definition 1 since
Uc(Out) = ∅ by definition of Sc.

Note that the composed abstraction Sc is only created in this
section to prove the feedback refinement relationship but one
should avoid computing it in practice since it would defeat the
purpose of the compositional approach. We end the section by
stating an instrumental result, which will be used in Section V
when comparing abstractions obtained from different system
decompositions.

Lemma 4. Under Assumption 1, for all s ∈ X0
c and u ∈ Uc,

Out ∈ δc(s, u) if and only if there exists σ ∈ Σ such that
πIcσ (Φσ(sIσ , uJσ )) 6⊆ XIcσ .

Proof. Sufficiency is straightforward from (5) and (7). As
for necessity, if Out ∈ δc(s, u), then there exists a sub-
system σ such that Outσ ∈ δσ(sIσ , uJσ ). From (5), ei-
ther πIcσ (Φσ(sIσ , uJσ )) 6⊆ XIcσ (in which case the property
holds), or πIcσ (Φσ(sIσ , uJσ )) ⊆ XIcσ and πIσ (Φσ(sIσ , uJσ ))∩
XIσ = ∅. Then, by Assumption 1 and since Ioσ = Iσ \
Icσ , it follows that πIoσ (Φσ(sIσ , uJσ )) ∩ XIoσ = ∅. Then,
by (9), πIoσ (F (s, {u})) ∩ XIoσ = ∅. Thus, it follows that
πIoσ (F (s, {u})) * XIoσ . From Assumption 1, there exists
i ∈ Ioσ , such that πi(F (s, {u})) * Xi. Then, let σ′ ∈ Σ such
that i ∈ Icσ′ , then πIc

σ′
(F (s, {u})) * XIc

σ′
. By (9), it follows

that πIc
σ′

(Φσ(sIσ′ , uJσ′ )) * XIcσ′ and the property holds.
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IV. COMPOSITIONAL SAFETY SYNTHESIS

In this section, we consider the problem of synthesizing
a safety controller for transition system S and safe set X .
Because of the feedback refinement relation from S to Sc,
this can be done by solving the safety synthesis problem for
transition system Sc and safe set X0

c . We propose a composi-
tional approach, which works on the symbolic subsystems Sσ
and does not require computing the composed abstraction Sc.

For σ ∈ Σ, let C∗σ : Xσ → 2Uσ be the maximal safety
controller for transition system Sσ and safe set X0

σ . Since Sσ
has only finitely many states and inputs, C∗σ can be computed
in finite time using a fixed point algorithm [26]. Now, let the
controller Cc : Xc → 2Uc be defined by Cc(Out) = ∅ and

∀s ∈ X0
c , Cc(s) = {u ∈ Uc| uJσ ∈ C∗σ(sIσ ),∀σ ∈ Σ}. (10)

Theorem 5. Under Assumption 1, Cc is a safety controller
for transition system Sc and safe set X0

c .

Proof. From Proposition 2 and since Cc(Out) = ∅, it is clear
that for all s ∈ Xc, we have Cc(s) ⊆ Uc(s). Cc(Out) = ∅
also gives dom(Cc) ⊆ X0

c . Then, let s ∈ dom(Cc) ⊆ X0
c ,

u ∈ Cc(s) and s′ ∈ δc(s, u). If s′ /∈ X0
c , then s′ = Out and

from (7), there exists σ ∈ Σ, such that Outσ ∈ δσ(sIσ , uJσ ),
which contradicts the fact that uJσ ∈ C∗σ(sIσ ) with C∗σ safety
controller for transition system Sσ and safe set X0

σ . Hence,
we necessarily have s′ ∈ X0

c , and from (6), it follows that
s′Iσ ∈ δσ(sIσ , uJσ ), for all σ ∈ Σ. Moreover, uJσ ∈ C∗σ(sIσ )
gives that s′Iσ ∈ dom(C∗σ). Then for all σ ∈ Σ, let u′σ ∈
C∗σ(s′Iσ ). Since (J1, . . . , Jm) is a partition of J , there exists
u′ ∈ Uc such that u′Jσ = u′σ for all σ ∈ Σ. Then, by (10),
u′ ∈ Cc(s′) and thus s′ ∈ dom(Cc). It follows that Cc is a
safety controller for transition system Sc and safe set X0

c .

Remark 5. Since the sets of modeled state components Iσ may
overlap, it is in principle possible that dom(Cc) = ∅ while
dom(C∗σ) 6= ∅, for all σ ∈ Σ. The reason is that an element of
dom(Cc) is obtained from states in dom(C∗σ), which coincide
on their common modeled states, as shown in (10).

A. Particular case: non-overlapping state sets

Though C∗σ is a maximal safety controller for all σ ∈ Σ,
the safety controller Cc is generally not maximal. Maximality
can be obtained when the set of modeled states Iσ , σ ∈ Σ do
not overlap (or equivalently when for all σ ∈ Σ, Icσ = Iσ). In
that case, the following result holds:

Proposition 6. Under Assumption 1, let Icσ = Iσ , for all σ ∈
Σ. Then, Cc is the maximal safety controller for transition
system Sc and safe set X0

c .

Proof. Let C ′c : Xc → 2Uc be a safety controller for transition
system Sc and safe set X0

c . For σ ∈ Σ, let the controllers
C ′σ : Xσ → 2Uσ be defined by C ′σ(Outσ) = ∅ and for all
sσ ∈ X0

σ ,

C ′σ(sσ) = {uσ ∈ πJσ (C ′c(s))| s ∈ X0
c , sIσ = sσ}. (11)

Let us show that C ′σ is a safety controller for system Sσ and
safe set X0

σ . Following Remark 2, and since C ′σ(Outσ) = ∅,
it is clear that for all sσ ∈ Xσ , we have C ′σ(sσ) ⊆ Uσ(sσ).

C ′σ(Outσ) = ∅ also gives dom(C ′σ) ⊆ X0
σ . Then, let sσ ∈

dom(C ′σ), uσ ∈ C ′σ(sσ) and s′σ ∈ δσ(sσ, uσ), let us prove
that s′σ ∈ dom(C ′σ). By (11), there exists s ∈ dom(C ′c) and
u ∈ C ′c(s) such that sIσ = sσ and uJσ = uσ . Since C ′c is
a safety controller, δc(s, u) ⊆ dom(C ′c) ⊆ X0

c . Moreover,
since the sets Iσ are not overlapping, it follows from (6) that
there exists s′ ∈ δc(s, u) such that s′Iσ = s′σ . Then, s′ ∈
dom(C ′c) and (11) give that s′σ ∈ dom(C ′σ). Hence C ′σ is a
safety controller for system Sσ and safe set X0

σ . Then, by
maximality of C∗σ , it follows that for all sσ ∈ X0

σ , C ′σ(sσ) ⊆
C∗σ(sσ). Finally, let s ∈ dom(C ′c) and u ∈ C ′c(s), then by
(11), uJσ ∈ C ′σ(sIσ ) ⊆ C∗σ(sIσ ) for all σ ∈ Σ. By (10),
u ∈ Cc(s), which shows the maximality of Cc.

V. COMPARISONS

In this section, we provide theoretical comparisons between
abstractions and controllers given by the previous approach
using two different system decompositions.

In addition to the set of state and input indices defined
in Section III-A, let us consider partitions (Îc1 , . . . , Î

c
m̂) and

(Ĵ1, . . . , Ĵm̂) of the state and input indices and subsets of
state indices (Î1, . . . , Îm̂) with Îcσ̂ ⊆ Îσ̂ , for all σ̂ ∈ Σ̂ =
{1, . . . , m̂}. We define the same objects as before (i.e. sub-
systems, abstraction, controllers, etc.) for this system decom-
position and denote them with hatted notations. We make the
following assumption on the two system decompositions under
consideration.

Assumption 2. There exists a surjective map γ : Σ̂→ Σ such
that, for all σ̂ ∈ Σ̂ and σ = γ(σ̂) ∈ Σ,

Îcσ̂ ⊆ Icσ, Îσ̂ ⊆ Iσ, Ĵσ̂ ⊆ Jσ.
From the previous assumption, and since (Îc1 , . . . , Î

c
m̂) and

(Ĵ1, . . . , Ĵm̂) are partitions of the state and input indices, we
have that

∀σ ∈ Σ,
⋃

σ̂∈γ−1(σ)

Îcσ̂ = Icσ and
⋃

σ̂∈γ−1(σ)

Ĵσ̂ = Jσ. (12)

In addition, we will make the following mild assumption
on the over-approximations of the reachable sets:

Assumption 3. For all X ′′ ⊆ X ′ ⊆ Rn, U ′′ ⊆ U ′ ⊆ U , the
following inclusion holds

F (X ′′,U ′′) ⊆ F (X ′,U ′).
This assumption can be shown to be satisfied by most

existing techniques for over-approximating the reachable set,
and in particular by those mentioned in Section II-A. In
addition, under Assumptions 2 and 3, it follows from (3), that
for all σ̂ ∈ Σ̂ and σ = γ(σ̂) ∈ Σ,

∀s ∈ P, u ∈ V, Φσ(sIσ , uJσ ) ⊆ Φ̂σ̂(sÎσ̂ , uĴσ̂ ). (13)

A. Abstractions

We start by comparing the compositional abstractions Sc
and Ŝc resulting from the two different decompositions:

Theorem 7. Under Assumptions 1, 2 and 3, the identity map
is a feedback refinement relation from Sc to Ŝc: Sc �FR Ŝc.
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Proof. Let us first remark that X0
c = X̂0

c , Xc = X̂c and
Uc = Ûc. Then, from Proposition 2, for all s ∈ X0

c = X̂0
c ,

Uc(s) = Uc = Ûc = Ûc(s). Since Ûc(Out) = ∅, Definition 1
holds if δc(s, u) ⊆ δ̂c(s, u), for all s ∈ X0

c , u ∈ Uc.
Hence, let s ∈ X0

c , u ∈ Uc and s′ ∈ δc(s, u), then let us
consider the two possible cases:
• s′ ∈ X0

c – We have by (6) and (4) that

∀σ ∈ Σ, s′Iσ ∩ πIσ (Φσ(sIσ , uJσ )) 6= ∅.

Then, from (13), follows that

∀σ̂ ∈ Σ̂ and σ = γ(σ̂), s′Iσ ∩ πIσ (Φ̂σ̂(sÎσ̂ , uĴσ̂ )) 6= ∅.

By Assumption 2, Îσ̂ ⊆ Iσ , for all σ̂ ∈ Σ̂ and σ = γ(σ̂).
Thus it follows that

∀σ̂ ∈ Σ̂, s′
Îσ̂
∩ πÎσ̂ (Φ̂σ̂(sÎσ̂ , uĴσ̂ )) 6= ∅.

Then, from (4) and (6), we have s′ ∈ δ̂c(s, u).
• s′ = Out – From Lemma 4, we know that there

exists σ ∈ Σ, such that πIcσ (Φσ(sIσ , uJσ )) * XIcσ .
Then, from Assumption 1, there exists i ∈ Icσ such that
πi(Φσ(sIσ , uJσ )) * Xi. From (12), there exists σ̂ ∈ Σ̂,
such that σ = γ(σ̂) and i ∈ Îcσ̂ . From (13), it follows that
πi(Φ̂σ̂(sÎσ̂ , uĴσ̂ )) * Xi and πÎcσ̂

(Φ̂σ̂(sÎσ̂ , uĴσ̂ )) * XÎcσ̂ .

Then, from (5) and (7), we have Out ∈ δ̂c(s, u).

Note that the conditions in the previous Theorem are only
sufficient conditions, since depending on the dynamics of
the system, a feedback refinement relation could also exist
between two unrelated decompositions (in terms of index set
inclusion).

Remark 6. Theorem 7 gives an indication on how one should
modify the sets of indices to reduce the conservatism of the
compositional symbolic abstraction. Firstly, one can keep the
same number of subsystems and the same controlled states Icσ
and modeled control input Jσ , while considering additional
modeled but uncontrolled states in Ioσ . Secondly, one can
merge two or more subsystems by merging their controlled
states, modeled control inputs and modeled but uncontrolled
states.

B. Controllers

We now compare the controllers obtained by the approach
described in Section IV. The comparison of controllers is more
delicate than the comparison of abstractions and we shall need
the additional assumption that the sets of indices Iσ do not
overlap (note that the sets Îσ̂ may still overlap).

Corollary 8. Under Assumptions 1, 2 and 3, let Icσ = Iσ , for
all σ ∈ Σ. Then, for all s ∈ Xc, Ĉc(s) ⊆ Cc(s).

Proof. From Theorem 5, Ĉc is a safety controller for system
Ŝc and safe set X̂c. From Theorem 7, it follows that Ĉc is also
a safety controller for system Sc and safe set Xc. Then, by
Proposition 6, the maximality of Cc gives us for all s ∈ Xc,
Ĉc(s) ⊆ Cc(s).

Let us remark that the assumption that the sets of indices
Iσ do not overlap is instrumental in the proof since it uses
Proposition 6. The question whether similar results hold in
the absence of such assumption is an open question, which is
left as future research.

C. Complexity

In this section, we discuss the computational complexity of
the approach and show the advantage of using a compositional
approach rather than a centralized one. Let |.| denote the
cardinality of a set.

The computation of symbolic subsystem Sσ requires a
number of reachable set approximations equal to

∏
i∈Iσ |Pi|×∏

j∈Jσ |Vj |, each creating up to (1 +
∏
i∈Iσ |Pi|) successors.

This results in an overall time and space complexity C1 of
computing all symbolic subsystems Sσ , σ ∈ Σ:

C1 = O
(∑
σ∈Σ

( ∏
i∈Iσ

|Pi|2 ×
∏
j∈Jσ

|Vj |
))
.

The computation of the safety controller Cσ by a fixed point
algorithm requires a number of iteration which is bounded
by the number of states in the safe set X0

σ:
∏
i∈Iσ |Pi|. The

complexity order of computing an iteration can be bounded by
the number of transitions in Sσ . This results in an overall time
and space complexity C2 of computing all safety controllers
Cσ , σ ∈ Σ:

C2 = O
(∑
σ∈Σ

( ∏
i∈Iσ

|Pi|3 ×
∏
j∈Jσ

|Vj |
))
.

To illustrate the advantage of using a compositional ap-
proach, let us consider two extremal cases in the particular
case where the number of state and input component are
equal I = J . The centralized case corresponds to Σ = {1},
with I1 = J1 = I . In that case the complexity of the
overall approach is of order O

(∏
i∈I |Pi|3 × |Vi|

)
. The

fully decentralized case corresponds to Σ = I = J , with
Iσ = Jσ = {σ} for all σ ∈ Σ. In that case the complexity
of the overall approach is of order O

(∑
i∈I |Pi|3 × |Vi|

)
.

Hence, one can see that while the complexity of the centralized
approach is exponential in the number of state and input
components |I|, it becomes linear with the fully decentralized
approach. Intermediate decompositions enable to balance the
computational complexity and the conservativeness of the
approach, in view of the discussions in Sections V-A and V-B.

VI. NUMERICAL ILLUSTRATION

In this section, we illustrate the results of this paper on the
temperature regulation in a circular building of n ≥ 3 rooms,
each equipped with a heater. For each room i ∈ {1, . . . , n}, the
variations of the temperature Ti are described by the discrete-
time model adapted from [22]:

T+
i = Ti+α(Ti+1 +Ti−1−2Ti)+β(Te−Ti)+γ(Th−Ti)ui,

where Ti+1 and Ti−1 are the temperature of the neighbor
rooms (with T0 = Tn and Tn+1 = T1), Te = −1 ◦C is
the outside temperature, Th = 50 ◦C is the heater temper-
ature, ui ∈ [0, 0.6] is the control input for room i and the
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λT λu |P| = λ4T |dom(C1
c )| |dom(C2

c )| |dom(C3
c )|

5 3 625 525 0 0
5 4 625 525 0 0
10 3 10000 8900 8710 0
10 4 10000 8900 8710 0
20 3 160000 145180 143480 0
20 4 160000 145180 143480 0

TABLE I
NUMBER OF ELEMENTS IN THE DOMAINS OF THE SAFETY CONTROLLERS

FOR THE SAFE SET X = [17, 22]× [19, 22]× [20, 23]× [20, 22].

conduction factors are given by α = 0.45, β = 0.045 and
γ = 0.09. This model can be proved to be monotone as
defined in [3], which allows us to use efficient algorithms for
over-approximating the reachable sets [19], [10]. Moreover,
the over-approximation scheme satisfies Assumption 3.

The safe set X is given by a n-dimensional interval (speci-
fied later) which is uniformly partitioned into λT intervals per
component (for a total of λnT symbols in P) and the control
set U = [0, 0.6]n is uniformly discretized into λu values per
component (for a total of λnu values in V). We consider 3
possible system decompositions, which provides us with 3
different abstractions:
• S1

c , the centralized case (i.e. m = 1), with a single
subsystem containing all states and controls, with I1

1 =
Ic11 = J1

1 = {1, . . . , n};
• S2

c , a general case from Section III with m = n
subsystems, Ic2σ = J2

σ = {σ} and I2
σ = {σ− 1, σ, σ+ 1}

for all σ ∈ Σ = {1, . . . ,m};
• S3

c , a case with m = n subsystems and non-overlapping
state sets as in Section IV-A, with I3

σ = Ic3σ = J3
σ = {σ}

for all σ ∈ Σ.
Both S2

c and S3
c have one subsystem per room, but subsystems

of S3
c only focus on the state and control of the considered

room, while subsystems of S2
c also model (but do not control)

the temperatures of both neighbor rooms.
Since Assumption 2 holds for both pairs (S1

c , S
2
c ) and

(S2
c , S

3
c ), Theorem 7 immediately gives the feedback refine-

ments S1
c �FR S2

c �FR S3
c . Corollary 8 also holds for the

pair (S1
c , S

2
c ) since Ic11 = I1

1 , but it is not guaranteed to
hold for the pair (S2

c , S
3
c ) since Ic2σ 6= I2

σ . In the following,
we report numerical results in two different conditions. The
numerical implementation has been done using Matlab on a
laptop with a 2.6 GHz CPU and 8 GB of RAM.

Case 1: n = 4, X = [17, 22]× [19, 22]× [20, 23]× [20, 22].
The abstractions and syntheses are generated in the 6 cases

corresponding to state partitions with λT ∈ {5, 10, 20} and
input discretizations with λu ∈ {3, 4}. Table I reports the
cardinalities |P| = λ4

T of the state partition P , and |dom(Cc)|
of the domain of the safety controllers for each abstraction
S1
c , S2

c and S3
c . Table II reports the computation times (in

seconds) required to create the abstractions and synthesize
safety controllers on all subsystems of S1

c , S2
c and S3

c .
We check numerically that Theorem 7 and Corollary 8 hold.

In particular, in these conditions, the safety inclusion C3
c (s) ⊆

C2
c (s) for all s ∈ P trivially holds due to dom(C3

c ) = ∅,
although Corollary 8 could not provide theoretical guarantees
in this case.

λT λu S1
c S2

c S3
c

5 3 1.80 0.17 0.07
5 4 5.49 0.20 0.07
10 3 64 0.46 0.06
10 4 210 0.56 0.06
20 3 6044 2.87 0.09
20 4 18339 3.84 0.44

TABLE II
COMPUTATION TIMES (IN SECONDS) FOR THE SAFE SET
X = [17, 22]× [19, 22]× [20, 23]× [20, 22].

Two main conclusions on the proposed compositional ap-
proach can be obtained from Tables I and II. Firstly, while
the compositional case without state overlap (as in S3

c , Sec-
tion IV-A and [19]) fails to synthesize safety controllers, the
general case allowing state overlaps (as in S2

c and Section III)
provides significantly better safety results for a relatively small
addition to the computation time. Secondly, the compositional
approach with state overlaps S2

c requires a negligible compu-
tation time compared to the large computational cost of the
centralized approach S1

c (e.g. in the last row of Table II, we
need less than 4 seconds for S2

c and more than 5 hours for
S1
c ), while still obtaining similar safety results as long as the

state partition P is not too coarse.
In addition to having more information in each subsystem

of S2
c compared to those in the non-overlapping case S3

c , the
better safety results in S2

c can also be explained by the shapes
that can be taken by the domain of the safety controllers with
each approach. On the one hand, the safety domain dom(C3

c )
in the non-overlapping case S3

c can only take the form of a
hyper-rectangle in R4 since it is obtained by the Cartesian
product of the one-dimensional safety domains dom(C3

σ) of
its subsystems. On the other hand, the general case with state
overlaps S2

c is more permissive since its subsystems S2
σ have a

three-dimensional state space, thus allowing more complicated
shapes of their safety domains dom(C2

σ) as displayed in
Figure 2 for subsystem σ = 4. S2

c thus has more chances
finding a safety domain compatible with the considered system
dynamics and control objective.

Fig. 2. Visualization of the domain dom(C2
σ) of the safety controller for

subsystem σ = 4 of S2
c . Each axis is associated with one component of the

RGB color model to facilitate the visualization of depth.
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Case 2: n = 20, X = [19, 21]20, λT = 10, λu = 5.
A second example is proposed to demonstrate the scalability

of the compositional approach in a 20-room building. Note that
the safe set X = [19, 21]20 is only chosen homogeneous in all
rooms for convenience of notation, and the proposed approach
is still applicable for other safe sets. Since this case is clearly
out of reach from the centralized approach of S1

c , we focus
on the compositional abstractions S2

c and S3
c with and without

state overlaps, respectively.
For the non-overlapping case of S3

c , the total computation
time is 0.12 second and the resulting safety controller is empty
(dom(C3

c ) = ∅). For the case with state overlaps of S2
c ,

the total computation time is 3.04 seconds and the resulting
safety controller covers the whole safe set X (dom(C2

c ) =
P). Therefore, in addition to the scalability of both these
compositional approaches, this simulation also confirms the
conclusions of the previous example that the method with state
overlaps provides significantly better safety results at a reduced
computational cost. We also obtain similarly low computation
times while not having to rely on the homogeneity of the
specifications as it is the case in [22].

VII. CONCLUSION

In this paper, we presented a new compositional approach
for symbolic controller synthesis. The dynamics are decom-
posed into subsystems that give a partial description of the
global model. It is remarkable that the sets of states of
subsystems can overlap. Symbolic abstractions can be com-
puted for each subsystem, and a local safety controller can
be synthesized such that the composition of the obtained
controllers is proved to realize the global safety specification.
Numerical experiments demonstrate the significant complexity
reduction compared to centralized approaches and the advan-
tages obtained from the introduction of state overlaps in the
subsystems.

Future work will focus on extending the approach to other
types of specifications such as reachability or more general
properties specified by automata or temporal logic formula.
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