F. Baillon, F. Espitalier, C. Cogné, R. Peczalski, and O. Louisnard, Crystallization and Freezing Processes Assisted by Power Ultrasound, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01725450

F. R. Gilmore, The growth or collapse of a spherical bubble in a viscous compressible liquid, p.1952

J. B. Keller and M. Miksis, Bubble oscillations of large amplitude, J. Acoust. Soc. Am, vol.68, issue.2, pp.628-633, 1980.

A. Prosperetti and Y. Hao, Modelling of spherical gas bubble oscillations and sonoluminescence, Philos. Trans. R. Soc. London, vol.357, pp.203-223, 1999.

M. S. Plesset and A. Prosperetti, Bubble dynamics and cavitation, Ann. Rev. Fluid Mech, vol.9, pp.145-185, 1977.

R. Toegel, B. Gompf, and R. Pech, Does water vapor prevent upscaling sonoluminescence?, Phys Rev. Lett, vol.85, issue.15, pp.3165-3168, 2000.

M. Saclier, R. Peczalski, and J. Andrieu, A theoretical model for ice primary nucleation induced by acoustic cavitation, Ultrason. Sonochem, vol.17, pp.98-105, 2010.

H. Kwak and J. Na, Hydrodynamic solutions for a sonoluminescing gas bubble, Phys. Rev. Lett, vol.77, pp.4454-4457, 1996.

K. Kim, B. Byun, and H. Kwak, Temperature and pressure fields due to collapsing bubble under ultrasound, Chem. Eng. J, vol.132, pp.125-135, 2007.

K. Yasui, Alternative model of single-bubble sonoluminescence, Phys. Rev, vol.56, issue.6, pp.6750-6760, 1997.

A. J. Szeri, B. D. Storey, A. Pearson, and J. R. Blake, Heat and mass transfer during the violent collapse of nonspherical bubbles, Phys. Fluids, vol.15, pp.2576-2586, 2003.

W. Kreider, L. A. Crum, M. R. Bailey, and O. A. Sapozhnikov, A reduced-order, singlebubble cavitation model with applications to therapeutic ultrasound, J. Acoust. Soc. Am, vol.130, issue.5, pp.3511-3530, 2011.

V. Q. Vuong, A. J. Szeri, and D. A. Young, Shock formation within sonoluminescence bubbles, Phys. Fluids, vol.11, issue.1, pp.10-17, 1999.

L. Yuan, H. Y. Cheng, M. C. Chu, and P. T. Leung, Physical parameters affecting sonoluminescence. A self-consistent hydrodynamic study, Phys. Rev, vol.57, issue.4, pp.4265-4280, 1998.

G. Hauke, D. Fuster, and C. Dopazo, Dynamics of a single cavitating and reacting bubble, Phys. Rev. E, vol.75, pp.1-14, 2007.

B. D. Storey and A. J. Szeri, A reduced model of cavitation physics for use in sonochemistry, Proc. R. Soc. A Math. Phys. Eng. Sci, vol.457, pp.1685-1700, 2001.

M. S. Plesset and S. A. Zwick, A nonsteady heat diffusion problem with spherical symmetry, J. Appl. Phys, vol.23, issue.1, pp.95-98, 1952.

B. E. Poling, J. M. Prausnitz, and J. P. O'connell, The properties of gases and liquids, 2001.

S. Ridah, Shock waves in water, J. Appl. Phys, vol.64, pp.152-158, 1986.

M. Choukroun and O. Grasset, Thermodynamic model for water and high-pressure ices up to 2.2 GPa and down to the metastable domain, J. Chem. Phys, vol.127, p.124506, 2007.
DOI : 10.1063/1.2768957

URL : https://hal.archives-ouvertes.fr/hal-00304418

E. Mezger, Loi de variation de la tension superficielle avec la température, Journal de physique, vol.10, pp.303-309, 1946.
DOI : 10.1051/jphysrad:01946007010030300

M. L. Huber, R. A. Perkins, A. Laesecke, D. G. Friend, J. V. Sengers et al., New international formulation for the viscosity of H20, J. Phys. Chem. Ref. Data, vol.38, issue.2, pp.101-125, 2009.
DOI : 10.1063/1.3088050

E. H. Abramson, Viscosity of water measured to pressure of 6 GPa and temperatures of 300 °C, Phys. Rev. E, vol.76, p.51203, 2007.

M. L. Ramires, C. A. Nieto-de-castro, Y. Nagasaka, A. Nagashima, M. J. Assael et al., Standard reference data for the thermal conductivity of water, J. Phys. Chem. Ref. Data, vol.24, pp.1377-1381, 1995.

B. D. Storey and A. J. Szeri, Water vapour, sonoluminescence and sonochemistry, Proc. R. Soc. London A Math. Phys. Eng. Sci, vol.456, pp.1685-1709, 2000.
DOI : 10.1098/rspa.2000.0582

C. Virone, H. J. Kramer, G. M. Van-rosmalen, A. H. Stoop, and T. W. Bakker, Primary nucleation induced by ultrasonic cavitation, J. Cryst. Growth, vol.294, issue.1, pp.9-15, 2006.
DOI : 10.1016/j.jcrysgro.2006.05.025