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SYMBOLIC COMPUTATIONS OF FIRST INTEGRALS FOR

POLYNOMIAL VECTOR FIELDS

GUILLAUME CHÈZE AND THIERRY COMBOT

Abstract. In this article we show how to generalize to the Darbouxian, Li-
ouvillian and Riccati case the extactic curve introduced by J. Pereira. With
this approach, we get new algorithms for computing , if it exists, a rational,
Darbouxian, Liouvillian or Riccati first integral with bounded degree of a poly-
nomial planar vector field. We give probabilistic and deterministic algorithms.
The arithmetic complexity of our probabilistic algorithm is in Õ(Nω+1), where
N is the bound on the degree of a representation of the first integral and
ω ∈ [2; 3] is the exponent of linear algebra. This result improves previous
algorithms.

Introduction

In this article, we design an algorithm that given a planar polynomial vector
field with degree d

(S) :

{

ẋ = A(x, y),
ẏ = B(x, y),

A,B ∈ K[x, y], deg(A), degB ≤ d

and some bound N ∈ N, computes first integrals of (S) of “size” (for some appro-
priate definition) lower than N .
The field K is an effective field of characteristic zero, i.e, one can perform arithmetic
operations and test equality of two elements (typically, K = Q or Q(α), where α is
an algebraic number).

First integrals are non-constant functions F that are constant along the solutions
(

x(t), y(t)
)

of (S). This property can be rewritten as being solution of a partial
differential equation

(Eq) A(x, y)∂xF(x, y) +B(x, y)∂yF(x, y) = 0,

which can be also written D0(F) = 0 with D0 the derivation

D0 = A(x, y)∂x +B(x, y)∂y .

Let us remark that multiplying A,B by some arbitrary non zero polynomial does
not change the solutions of this equation. Thus in the rest of the article, we will
always consider A∧B = 1, thus excluding the case A = 0 or B = 0 as a trivial one.
Indeed, in this case F(x, y) = x or y is then a first integral.

We need to precise in which class of functions we are searching F . The most
simple class are rational first integrals, for which we can easily define the notion of
size by the degree of its numerator and denominator.
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However, larger class of functions can be used. The first method for computing
first integrals in a symbolic way can be credited to G. Darboux in 1878, see [Dar78].
Darboux’s method allows to compute what we call nowadays “Darbouxian” first
integral. This kind of functions generalizes rational functions because Darbouxian
functions are written with rational functions and logarithms. There exists even
more general functions than Darbouxian functions, for example we can consider
elementary or Liouvillian functions. There exists theoretical results about these
kinds of first integrals, see [PS83, Sin92], and also algorithms for computing these
first integrals, see [Man93, MM97, ADDdM05]. Roughly speaking, these algorithms
compute what we call nowadays Darboux polynomials and then combine them in
order to construct a first integral. The computation of Darboux polynomials is
a difficult problem. Indeed, computing a bound on the degree of the irreducible
Darboux polynomials of a derivation is still an open problem. This problem is
Poincaré’s problem. Thus in practice, algorithms ask the users a bound on the
“size” of the first integral they want to compute. The computation of irreducible
Darboux with degree smaller than N can be done in polynomial time, see [Chè11].
Unfortunately, it is a theoretical result, the exponent in the complexity is bigger
than 10. Moreover, the algorithm proposed in [ADDdM05] to compute Liouvillian
first integrals has an exponential time complexity in terms of the degree d of the
derivation. Indeed, the recombination step used to construct the first integral from
Darboux polynomials is of combinatorial nature.

In this paper we give an algorithm which computes a symbolic first integral:
rational, Darbouxian, Liouvillian and Riccati, with “size” bounded by N , with
Õ(Nω+1 + d2N2) arithmetic operations in K. We recall that ω ∈ [2; 3] is the

exponent of linear algebra over K and the soft-O notation Õ() indicates that poly-
logarithmic factors are neglected. Furthermore, in the following we suppose that
the bound N tends to infinity and d is fixed. We have mentioned the term d2N2

in order to give the dependance relatively to the degree d. In particular, it shows
that our algorithm is polynomial in d.
Our algorithm is thus more efficient than the existing ones.
Our strategy generalizes to the Darbouxian, Liouvillian and Riccati cases the algo-
rithm proposed in [BCCW16] for computing rational first integrals. Our method
avoids the computation of Darboux polynomials and then do not need a recombi-
nation step.

Now, we recall the definition of Darbouxian, Liouvillian first integrals and intro-
duce a new definition: Riccati first integrals.

Definition 1. A rational first integral of (S) is a first integral F ∈ K(x, y).
A Darbouxian first integral of (S) is a first integral F of (S) of the form

F(x, y) =

∫

G(x, y)dx + F (x, y)dy

where F,G ∈ K(x, y) and G(x, y)dx + F (x, y)dy is closed, or equivalently

F(x, y) =
P (x, y)

Q(x, y)
+
∑

i

lnHi(x, y)
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where P,Q,Hi ∈ K[x, y].
A Liouvillian first integral of (S) is a first integral F of (S) of the form

F(x, y) =

∫

R(x, y)B(x, y)dx −R(x, y)A(x, y)dy

where R(x, y) = exp
∫

G(x, y)dx + F (x, y)dy (called the integrating factor), F , G

belong to K(x, y), G(x, y)dx + F (x, y)dy and R(x, y)B(x, y)dx − R(x, y)A(x, y)dy
are closed.
A Riccati first integral of (S) is a first integral of the form F1/F2 where F1,F2 are

two independent solutions over K(x) of a second order differential equation

(EqR) ∂2yFi +G(x, y)∂yFi + F (x, y)Fi = 0

with F,G ∈ K(x, y).

The classical result of the equivalence of the two representations of a Darbouxian
first integral is proved in [Pic02, Chr99, DDdM02b], [Rup86, Satz 2], and in [Sch00,
Lemma 2 p. 205]. Singer [Sin92] proves that a vector field admitting a first integral
built by successive integrations, exponentiations and algebraic extensions of K(x, y)
(so a Liouvillian function), also admits a Liouvillian first integral of the form given
in Definition 1. Similarly, we will prove in Proposition 14 that a vector field admit-
ting a first integral built by successive integrations, exponentiations, algebraic and
Riccati extensions of K(x, y) (see Definition 13 in Section 1), also admits a Riccati
first integral of the form given by Definition 1.

A vector field admitting a first integral built by successive integrations and al-
gebraic extensions of K(x, y) does not always admits a Darbouxian first integral
of the form given in Definition 1. This is due to the possible appearance of alge-
braic extensions in the 1-form G(x, y)dx + F (x, y)dy. However, as we will prove
in Proposition 14, such vector field then admits what we call a k-Darbouxian first
integral

Definition 2. A k-Darbouxian first integral of (S) is a first integral F of (S) of
the form

F(x, y) =

∫

G(x, y)dx + F (x, y)dy

where k ∈ N∗, F k, Gk ∈ K(x, y) and G(x, y)dx + F (x, y)dy closed.

Putting k = 1 recovers the classical Darbouxian first integrals.
Using that F is a first integral and so D0(F) = 0, we have moreover

G(x, y)

B(x, y)
= −F (x, y)

A(x, y)
,

and this defines a hyperexponential function R(x, y). Now writing F(x, y) =
∫

R(x, y)B(x, y)dx − R(x, y)A(x, y)dy, we recognize the form of a Liouvillian first
integral. So k-Darbouxian functions define an intermediary class between Darboux-
ian and Liouvillian functions.

We will not consider elementary first integrals. In [PS83], Prelle and Singer have
proved that the study of elementary first integral can be reduced to the study of
Liouvillian first integral with an algebraic integrating factor. This meets our Def-
inition of k-Darbouxian first integral. However, elementary first integrals require
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the additional condition that the 1-form can be integrated in elementary terms,
and such integration problems will not be considered in this article.

Rational, k-Darbouxian and Liouvillian first integrals are particular cases of a
Riccati first integrals, by simply taking F1 as the first integral and F2 = 1. Indeed,
a rational, k-Darbouxian or Liouvillian first integral always satisfies a second or-
der differential equation in y. In equation (EqR), it is always possible to multiply
F1,F2 by a same hyperexponential function, leaving unchanged the quotient. This
allows to force the Wronskian to 1, which allows us to put G = 0.

This suggests to represent rational, Darbouxian and Liouvillian first integrals by
a differential equation in y of which they are solution.

• A rational first integral is a first integral solution of

(Rat) F − F (x, y) = 0 F ∈ K(x, y) \K.
• A k-Darbouxian first integral is a first integral solution of

(D) ∂yF − F (x, y) = 0, F k ∈ K(x, y) \ {0}.
• A Liouvillian first integral is a first integral solution of

(L) ∂2yF − F (x, y)∂yF = 0 F ∈ K(x, y).

• A Riccati first integral is a first integral quotient of two independent solu-
tions over K(x) of

(Ric) ∂2yF − F (x, y)F = 0, F ∈ K(x, y).

These four equations will be the four canonical equations representing respec-
tively each type of first integral. Once one of the above equation is found, it is
possible to recover the first integral by single variable integration and linear differ-
ential equation solving.

Each case is included in the next one, leading to a ranking on the classes of first
integrals

Rational < k-Darbouxian < Liouvillian < Riccati

Each type of equation can be represented by a single rational fraction, thus also
giving us a notion of “size”.

Definition 3. The degree of a rational, Darbouxian, Liouvillian, Riccati first in-
tegral is respectively the maximum of the degree of numerator and denominator of
F (or F k in the k-Darbouxian case) in the four above equations.

Our algorithm will give an output with coefficients in K. We will see that we
can always suppose F with coefficients in K. This does not change the degree of
F , see Corollaries 30, 35, 40. The main theorem of the article is the following:

Theorem 4. Let d be the maximum of deg(A) and deg(B). The problem of finding
symbolic (rational, k-Darbouxian, Liouvillian, Riccati) first integrals with degree

smaller than N can be solved in a probabilistic way with Õ(Nω+1+d2N2) arithmetic
operations in K, plus the factorization of a univariate polynomial with degree at
most N .
More precisely, there exists an algorithm with inputs A,B, k ∈ N∗, a bound N , and
parametrized by initial conditions z ∈ K3 such that the possible outputs are:
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• a differential equation of one of the forms (Rat), (D), (L), (Ric) leading to
a symbolic first integral,

• “None” meaning that there exists no symbolic first integral with degree
smaller than N ,

• “I don’t know”.

Furthermore, if z avoids the roots of a non-zero polynomial with degree O(N4) then
the algorithm returns an equation leading to a symbolic first integral or “None”.
Moreover, if (S) admits a symbolic first integral with degree smaller than N then
the output is a differential equation with minimal degree.

The parameter k is necessary for k-Darbouxian first integrals. An equation ad-
mitting a k ≥ 2-Darbouxian first integral also admits a Liouvillian first integral. So
for the (default) input k = 1, we detect Darbouxian first integrals, but the possible
k ≥ 2-Darbouxian first integral could stay unnoticed or seen as a Liouvillian first
integral. The reduction of such Liouvillian first integral to a k-Darbouxian first
integral comes down to an integration problem, i.e. testing if the integrating factor
is an algebraic function, which will not be considered in this article.

As we use the dense representation of polynomials and deg(F ) ≤ N , the size of
the output of our algorithm is in O(N2). Thus our algorithm has a sub-quadratic
complexity if we use linear algebra algorithms with ω < 3.

As the last possible output can only appear when z is a root of a non-zero poly-
nomial with degree O(N4) and as we are considering fields in characteristic zero,
we can say that for almost all z the algorithm detects symbolic first integrals.

Repeating the probabilistic algorithm in order to avoid bad values for z provides
a deterministic algorithm with a polynomial time complexity:

Corollary 5. The probabilistic algorithm can be turned into a deterministic one.
The deterministic algorithm uses at most Õ(d2Nω+9+d4N10) arithmetic operations
in K, plus the factorization of a univariate polynomial with degree at most N .

In practice the complexity of the deterministic algorithm is better, see Section 7.

The algorithm can even sometimes return equations of degree higher than N .
This situation can appear for example when we are looking for a Darbouxian first
integral with degree smaller than N and there exists a rational first integral of
degree 2N . We give such examples in the Section 7.
In these kinds of situations the degree of the first integral is bigger than N . This
means that the algorithm gives a minimal solution in terms of the degree of the
first integral and not in terms of its class. However, if the algorithm returns “None”
then the algorithm ensures that the equation (S) does not admit a first integral in
a lower class of degree ≤ N .

Strategy description and theoretical contributions. In this paper we gener-
alize the approach given in [BCCW16] for computing rational first integral. The
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main idea was to compute a solution y(x0, y0;x) as a power series in x with coeffi-
cients in K(x0, y0) of

(E) : ∂xy(x0, y0;x) =
B(x, y(x0, y0;x))

A(x, y(x0, y0;x))
, and y(x0, y0;x0) = y0,

and then find a polynomial F vanishing at this power series solution. If the power
series order is large enough, it is sufficient for recovering F . The determination of
F indeed comes down to a linear algebra problem. Furthermore, the polynomial F
as the following form: P (x, y)Q(x0, y0)−Q(x, y)P (x0, y0) where P/Q is a rational
first integral. Thus the computation of F gives a rational first integral.
In [BCCW16], in order to avoid computations in K(x0, y0), two solutions with
random intial conditions x⋆0, y

⋆
0 are used and give a probabilistic and then a deter-

ministic algorithm.

In this article, the new ingredient is the following: we consider derivatives of the
flow y(x0, y0;x) relatively to y0. We set

ȳ(x) = ∂y0
y(x0, y0;x), ¯̄y(x) = ∂2y0

y(x0, y0;x), ¯̄̄y(x) = ∂3y0
y(x0, y0;x).

With a direct computation we remark that the functions y(x), ȳ(x), ¯̄y(x), ¯̄̄y(x)
are solutions of some differential systems (S′):

(S′
3)
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(S′
0) ∂xy =

B

A

∂xȳ = ȳ∂y

(

B

A

)

∂x ¯̄y = ¯̄y∂y

(

B

A

)

+ ȳ2∂2y

(

B

A

)

∂x ¯̄̄y = ¯̄̄y∂y

(

B

A

)

+ 3¯̄yȳ∂2y

(

B

A

)

+ ȳ3∂3y

(

B

A

)

The system (S′) gives a method to compute the flow y(x0, y0;x) and finitely
many of its derivatives as series in x: we only have to solve (S′) using the Newton
method for initial condition x = x0, y = y0, ȳ = 1, ¯̄y = 0, ¯̄̄y = 0.
As in [BCCW16], in order to get efficient algorithms in practice we will consider
random intial conditions x⋆0, y

⋆
0 . This leads to probabilistic algorithms and then to

deterministic algorithms.

In the following we will sometimes omit the dependence relatively to x0, y0 in the
notations. We will write y(x) instead of y(x0, y0, x). Furthermore, we will also de-
note sometimes ¯̄y (respectively ¯̄̄y) by ȳ(2) (respectively ȳ(3)) in order to write state-
ments and algorithms in a short and uniform way in terms of ȳ(r), where r ∈ [[0; 3]].

Now, we introduce new variables ȳ, ¯̄y and ¯̄̄y and we define a polynomial derivation
Dr associated to the system (S′

r).
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Definition 6. The system (S′
1) is associated to the derivation D1 in K[x, y, ȳ]:

D1 = A2∂x +AB∂y + ȳA2∂y

(

B

A

)

∂ȳ.

The system (S′
2) is associated to the derivation D2 in K[x, y, ȳ, ¯̄y]:

D2 = A3∂x +A2B∂y + ȳA3∂y

(

B

A

)

∂ȳ +A3
(

¯̄y∂y

(

B

A

)

+ ȳ2∂2y

(

B

A

)

)

∂ ¯̄y.

The system (S′
3) is associated to the derivation D3 in K[x, y, ȳ, ¯̄y, ¯̄̄y]:

D3 = A4∂x + A3B∂y + ȳA4∂y

(

B

A

)

∂ȳ +A4
(

¯̄y∂y

(

B

A

)

+ ȳ2∂2y

(

B

A

)

)

∂ ¯̄y

+A4
(

¯̄̄y∂y

(

B

A

)

+ 3¯̄yȳ∂2y

(

B

A

)

+ ȳ3∂3y

(

B

A

)

)

∂ ¯̄̄y.

Let us now consider F a Darbouxian first integral of D0 such that ∂yF = F .
We have

F
(

x, y(x)
)

= F(x0, y0)

and thus the derivative relatively to y0 of this equation gives:

∂yF
(

x, y(x)
)

ȳ(x) = ∂y0
F(x0, y0)

with ȳ0 = 1 since y(x0, y0;x0) = y0. Therefore if F is a Darbouxian first integral
of D0 with ∂yF = F we get

F
(

x, y(x)
)

ȳ(x) = F (x0, y0),

where F ∈ K(x, y).

Now the computation of F comes down to solving this equation knowing y(x), ȳ(x)
as series. This situation is similar to the one studied for rational first integral. Let
us remark moreover that the rational function F (x, y)ȳ ∈ K(x, y, ȳ) is constant on
(

x, y(x), ȳ(x)
)

, where the initial condition is y(x0) = y0 and ȳ(x0) = 1. In Sec-
tion 1, we prove that F (x, y)ȳ is a rational first integral for (S′

1) and then the even
more general result:

Proposition 7. The system (S) admits a rational first integral associated to (Rat)
if and only if F (x, y) is a first integral of (S′

0).
The system (S) admits a Darbouxian first integral associated to (D) if and only if
ȳF (x, y) is a first integral of (S′

1).
The system (S) admits a Liouvillian first integral associated to (L) if and only if
ȳF (x, y) + ¯̄y/ȳ is a first integral of (S′

2).
The system (S) admits a Riccati first integral associated to (Ric) if and only if
4ȳ2F (x, y)− 2¯̄̄y/ȳ + 3¯̄y2/ȳ2 is a first integral of (S′

3).

Then the computation of symbolic first integrals is reduced to the computation
of a rational first integral with a given structure of a differential system (S′

r) . The
existence and the computation of these rationals first integrals can then be done
thanks to generalized extactic curves. More precisely, this can be done with linear
algebra only. For example, we get this kind of result, see Section 3:
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Theorem 8 (Liouvillian extactic curve Theorem).

Let ẼN
D2

be the matrix

ẼN
2,D2

=
(

Dk
2

(

xiyj ȳα(¯̄y)β
)

)

where 0 ≤ k ≤ 3(N + 1)(N + 2)/2, 0 ≤ i + j ≤ N , (α, β) ∈ {(1, 0); (2, 0); (0, 1)}.
We have det ẼN

D2
∈ K[x, y, ȳ, ¯̄y] and we set ẼN

D2
(x, y) = det ẼN

D2
(x, y, 1, 0).

(1) If ẼN
D2

(x, y) = 0 then the derivation D0 has a Liouvillian first integral with
degree smaller than N or a Darbouxian first integral with degree smaller
than 2N + 3d − 1 or a rational first integral with degree smaller than
4N + 8d− 3.

(2) If D0 has a rational or a Darbouxian or a Liouvillian first integral with

degree smaller than N then ẼN
D2

(x, y) = 0.

We call this kind of theorem an “extactic curve theorem”. Indeed, the matrix
ẼN
D2

corresponds to the study of a high order of contact between a solution of the
differential system (S) and a Liouvillian function. This generalizes the situation
introduced by Pereira in [Per01] for rational first integrals.

The main step in our algorithms will be the computation of a non-trivial ele-
ment in the kernel of a matrix ẼN

Dr
. From such an element we will show that we

can construct easily the rational function F appearing in equations (Rat), (D), (L),
(Ric). Therefore, the computation of symbolic first integrals with bounded degree
is reduced to a linear algebra problem.

Related results. The computation of symbolic first integrals can be credited to
G. Darboux in 1878, see [Dar78]. In this paper Darboux introduced what we call
nowadays Darboux polynomials. A polynomial f ∈ K[x, y] is a Darboux polynomial
for D0 means that f divides D0(f). Thus f is an invariant algebraic curve. Dar-
boux has shown how to find a Darbouxian first integral thanks to a recombination
of Darboux polynomials.
This approach has been generalized in order to compute elementary first integrals
by Prelle and Singer in [PS83]. This method has been implemented and studied in
[Man93, MM97].
In [Sin92], Singer has given a theoretical characterization of Liouvillian first inte-
grals. This characterization is the main ingredient of the algorithm proposed by
Duarte et al. in [ADDdM05, DDdM02a, DDdM02b].
The interested reader can also consult the following surveys [Sch93, Gor01, DLA06,
Zha17] for more results about Darboux polynomials and first integrals.

Roughly speaking, all the previous algorithms proceed as follows: first compute
Darboux polynomials with bounded degree and second recombine them in order to
find a first integral.
These two steps correpond to two practical difficulties. The computation of Dar-
boux polynomials with bounded degree can be performed in polynomial time, see
[Chè11]. This method is based on the so-called extactic curve inroduced by Pereira
in [Per01] and uses a number of binary operations that is polynomial in the bound
N , the degree d and the logarithm of the height of A and B. Unfortunately, the
arithmetic complexity of this computation is in O(dω+1N4ω+4), see [Chè11].
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The recombination part can be solved with linear algebra if we are looking for Dar-
bouxian first integrals. However, if we are looking for a Liouvillian first integral
then the recombination step used in [ADDdM05, DDdM02a, DDdM02b] uses at
least 2d arithmetics operations. Indeed, this algorithm tries to solve a family of
equation. Each equation of this family is constucted from a polynomial

∏

i f
ei
i ,

where fi is a Darboux polynomial and ei is an unknown integer. A condition on
the degree of the output leads to a condition on the degree of

∏

i f
ei
i . With this

approach if D0 has d Darboux polynomials and the bound on the degree of
∏

i f
ei
i

is bigger than d then we have to study at least 2d situations.
In [ADDdM05, DDdM02a, DDdM02b], the authors compute a Darbouxian inte-
grating factor R = eP/Q

∏

i f
ci
i in order to find a Liouvillian first integral. With

our approach the integrating factor R is related to the equation (L) in the follwoing
way:

∂yR
R = F − ∂yA

A
.

Thus our bound on the degree of F corresponds to a bound on the degree of the
polynomials P,Q, fi.

In [FG10], Ferragut and Giacomini have proposed a method to compute rational
first integrals with bounded degree. This approach does not follow the previous
strategy. The idea is to computed a bivariate polynomial annihilating y(x0, y0;x)
written as a power series solution of a first order equation. From this polynomial
we can then deduce a rational first integral if it exists. Unfortunately, the precision
needed on the power series to get a correct output was not explicitly given.
In [BCCW16], the authors have improved the Ferragut-Giacomini’s method. They
have given an explicit bound on the precision needed on the power series to get a
rational first integral when it exists. Furthermore, the main step of this algorithm
is reduced to linear algebra only. The complexity of the probabilistic algorithm is
then in Õ(N2ω). However, as remaked by G. Villard this complexity can be lowered

to Õ(Nω+1) with an application of Hermite-Padé approximation. This approach
was just study as an heuristic in [BCCW16].

The algorithm proposed in this article is based on a generalization of the extactic
curve and follows the idea used in [FG10] and [BCCW16]. We give then a uniform
strategy with a uniform complexity to compute rational, Darbouxian, Liouvillian,
and Riccati first integrals. Furthermore, we explain in Section 1 why our approach
cannot be generalized to another class of functions.

Structure of the paper. In the first section of this article we prove Proposition 7,
i.e. we show how the computation of a symbolic first integral can be reduced to the
computation of a rational first integral of a differential system (S′

r). In the second
section, we define and study extactic hypersurfaces. We give a precise statement
for the following idea: if an hypersurface has a sufficiently big order of contact
with a generic solution of a differential system then this order of contact is infinite.
This result will be useful in our algorithm in order to compute a solution with a
sufficient precision in order to construct a first integral. As a byproduct we show
that the computation of a rational first integral of a derivation in K[x1, . . . , xn] can
be reduced to a linear algebra problem. In Section 3, we define the Darbouxian,
Liouvillian and the Riccati extactic curve. We prove that these curves allow us to
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characterize the existence of symbolic first integrals with bounded degree. In Sec-
tion 4 we study the evaluation of the extactic curves. In particular we characterize
non-generic solutions. In Section 5, we give and prove our algorithms based on the
previous results. In Section 6 we study the complexity of our algorithms. At last,
in Section 7 we give some examples.

Notations. K[x, y]≤N : vector space of polynomials in x, y with coefficients in K

of total degree less than N .
div = ∂xA+ ∂yB

1. First integrals and differential invariants

1.1. Representation of first integrals. Let us first prove that equations (Rat),
(D), (L), (Ric) used to represent first integrals allow to recover them. The next
proposition explains then why (Rat), (D), (L), (Ric) are admissible outputs when
we are looking for rational or k-Darbouxian or Liouvillian or Riccati first integrals.

Proposition 9.

A rational first integral is uniquely defined by equation (Rat).
A k-Darbouxian first integral is defined up to addition of a constant by equation
(D).
A Liouvillian first integral is defined up to affine transformation by equation (L).
A Riccati first integral is defined up to homography by equation (Ric).

Proof. According to equation (Rat), a rational first integral is simply F , and so
defined uniquely by equation (Rat).
A k-Darbouxian first integral F satisfies an equation (D). Indeed, with our defini-
tion we have ∂yF = F . We also know that it should satisfy the equation of first
integrals. This gives

∂yF = F (x, y), A(x, y)∂xF(x, y) +B(x, y)∂yF(x, y) = 0.

Thus we know the derivative of F with respect to x and y, and so (D) defines F
up to an addition of a constant.
A Liouvillian first integral F satisfies an equation (L). Let us note

R(x, y) = ∂yF(x, y).

Equation (L) becomes
∂yR

R
= F (x, y).

We now use the first integral equation (Eq), dividing it by A and differentiate
in y, giving

∂x∂yF + ∂y

(

B

A
∂yF

)

= 0

∂xR+ ∂y

(

B

A
R

)

= 0

∂xR + ∂y

(

B

A

)

R +
B

A
FR = 0

∂xR

R
= −∂y

(

B

A

)

− B

A
F.
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Therefore we know the logarithmic derivatives of R with respect to x and y, and
thus we obtain R up to a multiplication by a constant. Then noting that

∂yF(x, y) = R(x, y), ∂xF(x, y) = −B
A
(x, y)R(x, y)

we obtain F from R up to addition of a constant. Thus equation (L) defines F up
to an affine transformation.
A Riccati first integral is a quotient of two solutions F1,F2 of equation (Ric) inde-

pendent over K(x). Knowing that the quotient is a first integral, we have moreover

D0

(F1

F2

)

=
1

F2
2

(D0(F1)F2 −F1D0(F2)) = 0

and thus
D0(F1)

F1
=
D0(F2)

F2

Let us note Ω = D0(Fi)/Fi (for i = 1 or 2 as they are equal), the functions F1,F2

are solutions of the PDE system

(1.1) ∂2yFi − F (x, y)Fi = 0, D0(Fi)− Ω(x, y)Fi = 0.

Let us now consider a solution of this system. Due to the first equation, we can
write it

C1(x)F1(x, y) + C2(x)F2(x, y).

Now injecting this in the second equation gives

C1

(

D0(F1)− ΩF1

)

+ C2

(

D0(F2)− ΩF2

)

+A∂xC1F1 +A∂xC2F2 = 0.

Thus

∂xC1(x)F1(x, y) + ∂xC2(x)F2(x, y) = 0.

As the functions F1,F2 are independent over the functions in x, we have ∂xC1(x) = 0,
∂xC2(x) = 0, and so C1, C2 are constants. Thus the dimension over K of the vector
space of solutions of (1.1) is exactly 2. So the system (1.1) defines F1,F2 up to a
change of basis. This change of basis acts on the quotient F1/F2 as a homogra-
phy. �

The canonic equations of the output of our algorithm thus define the first inte-
gral up to a composition by a simple single variable function.

Below, we give a necessary and sufficient criterion for ensuring that an equation
(Rat), (D), (L), (Ric) leads to a first integral.

Proposition 10.

• Equation (Rat) leads to a rational first integral if and only if

D0(F ) = 0, F ∈ K(x, y) \K.
• Equation (D) leads to a k-Darbouxian first integral if and only if

D0(F ) = −AF∂y(B/A), F k ∈ K(x, y) \ {0}.
• Equation (L) leads to a Liouvillian first integral if and only if

D0(F ) = −A∂y(B/A)F −A∂2y(B/A), F ∈ K(x, y).
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• Equation (Ric) leads to a Riccati first integral if and only if

D0(F ) = −2A∂y(B/A)F +
1

2
A∂3y(B/A), F ∈ K(x, y).

Proof. In the rational case, this is simply the definition of first integrals.
In the k-Darbouxian case, we have

∂yF = F (x, y), D0(F) = 0.

So this is equivalent to

∂yF = F (x, y), ∂xF = −B
A
F.

So a necessary and sufficient condition for a function F to exist (at least locally) is
the closed form condition,

∂xF = −∂y
(

B

A
F

)

⇐⇒ ∂xF = −∂y
(B

A

)

F − B

A
∂yF

⇐⇒ A∂xF +B∂yF = −A∂y
(B

A

)

F

⇐⇒ D0(F ) = −A∂y
(B

A

)

F

which gives the condition of the proposition.

In the Liouvillian case, the first integral F has to solve the PDE system

(⋆) ∂2yF − F∂yF = 0, (⋆⋆) D0(F) = 0.

The derivative relatively to x of (⋆) gives:

(A) ∂x∂
2
yF − ∂xF∂yF − F∂x∂yF = 0.

The derivative relatively to y of (⋆⋆) divided by A an then simplified thanks to (⋆)
gives:

∂y∂xF + ∂y

(B

A

)

∂yF +
B

A
F∂yF = 0.

The derivative relatively to y of the previous equality gives:

(B) ∂2y∂xF + ∂2y

(B

A

)

∂yF + ∂y

(B

A

)

∂2yF + ∂y

(B

A
F
)

∂yF +
B

A
F∂2yF = 0.

The difference (A) − (B) simplified thanks to (⋆) gives:

−∂xF∂yF − F∂x∂yF − ∂2y

(B

A

)

∂yF − 2∂y

(B

A

)

F∂yF − B

A
∂yF∂yF − B

A
F∂2yF = 0.

The equation (⋆⋆) implies:

0 = −∂xF∂yF − F∂y

(

− B

A
∂yF

)

− ∂2y

(B

A

)

∂yF − 2∂y

(B

A

)

F∂yF − B

A
∂yF∂yF

−B
A
F∂2yF

= −
(

∂xF +
B

A
∂yF + ∂y(B/A)F + ∂2y(B/A)

)

∂yF .
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If ∂yF = 0 then F only depend on x. This is impossible as this would imply A = 0
or F constant. So the only possibility left is

∂xF +
B

A
∂yF + ∂y(B/A)F + ∂2y(B/A) = 0

This is the condition of the proposition.

Conversely, we suppose that D0(F ) = −A∂y(B/A)F −A∂2y(B/A). We are going
to prove that in this situation D0 has a Liouvillian first integral with integrating
factor R = eF, where F is the integral of a rational closed 1-form. We set

Ω1 = F − ∂yA

A
, Ω2 =

−div −BΩ1

A
.

We are going to show that ∂x(Ω1) = ∂y(Ω2). Then this implies that there exists a
Darbouxian function F such that Ω1 = ∂yF and Ω2 = ∂xF. By construction we have
AΩ2 +BΩ1 = −div, and so BRdx−ARdy is closed, where R = eF . Therefore R

is the integrating factor of a Liouvillian first integral, and we get the desired result.
Thus, now we are going to prove that ∂x(Ω1) = ∂y(Ω2).

∂x(Ω1)− ∂y(Ω2) = ∂xF − ∂x

(∂yA

A

)

+ ∂y

(div

A

)

+ ∂y

(B

A
F
)

− ∂y

(B

A

∂yA

A

)

= ∂xF +
∂2yB

A
− ∂yB∂yA

A2
+ ∂y

(B

A

)

F +
B

A
∂yF − ∂y

(B

A

)∂yA

A

−B
A
∂y

(∂yA

A

)

= ∂xF +
(B

A

)

∂yF + ∂y

(B

A

)

F

+
∂2yB

A
− ∂yB∂yA

A2
− ∂y

(B

A

)∂yA

A
− B

A
∂y

(∂yA

A

)

.

Now we remark that

∂2y

(B

A

)

=
∂2yB

A
− ∂yB∂yA

A2
− ∂y

(B

A

)∂yA

A
− B

A
∂y

(∂yA

A

)

.

Thus

∂x(Ω1)− ∂y(Ω2) = ∂xF +
(B

A

)

∂yF + ∂y

(B

A

)

F + ∂2y

(B

A

)

.

By hypothesis the right hand side of this equation is equal to zero. This gives the
desired result.

In the Riccati case, a first integral is a quotient of two functions F1,F2, common
solutions of a PDE system of the form

(♦) ∂2yFi − FFi = 0, (♦♦) D0(Fi)− ΩFi = 0.

The derivative relatively to x of (♦) and then simplified by (♦♦) gives:

(C) ∂x∂
2
yFi − ∂xF.Fi − F

(Ω

A
Fi −

B

A
∂yFi

)

.

The derivative relatively to y of (♦♦) divided by A and then simplified thanks to
(♦) gives:

∂y∂xFi + ∂y

(B

A

)

∂yFi +
B

A
FFi − ∂y

(Ω

A

)

Fi −
Ω

A
∂yFi = 0.
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The derivative relatively to y of the previous equality and simplified thanks to (♦)
gives:

(E) 0 = ∂2y∂xFi + ∂2y

(B

A

)

∂yFi + ∂y

(B

A

)

FFi + ∂y

(B

A
F
)

Fi +
B

A
F∂yFi − ∂2y

(Ω

A

)

Fi

−∂y
(Ω

A

)

∂yFi − ∂y

(Ω

A

)

∂yFi −
Ω

A
FFi.

The difference (C)− (E) gives:
(

−∂xF − ∂y

(B

A

)

F − ∂y

(B

A
F
)

+ ∂2y

(Ω

A

)

)

Fi +

(

2∂y

(Ω

A

)

− ∂2y

(B

A

)

)

∂yFi = 0.

The functions F1,F2 are independent.Thus the Wronskian of F1,F2 in y is not
0, which implies that the above linear form in Fi, ∂yFi should be 0. We obtain the
equalities

2∂y

(

Ω

A

)

− ∂2y

(

B

A

)

= 0,

−∂xF − B

A
∂yF − 2∂y

(B

A

)

F + ∂2y

(Ω

A

)

= 0.

Therefore, we get:

∂xF +
B

A
∂yF = −2∂y

(B

A

)

F +
1

2
∂3y

(B

A

)

.

This is the condition given by the proposition.
Conversely, let us prove that if this condition is satisfied, then (Ric) leads to a

Riccati first integral. Let us choose

Ω =
1

2
A∂y

(

B

A

)

and prove that the system

(1.2) ∂2yF − FF = 0, D(F)− ΩF = 0

has two independent solutions. Differentiating in x the first equation gives

∂2y∂xF − ∂xFF − F∂xF = 0.

Let us note G = ∂xF , and so this equation rewrites

(♯) ∂2yG − FG = ∂xFF .
So this is a linear differential equation with a non homogeneous term ∂xF (x, y)F .
Let us now consider F1,F2 a basis of solutions of ∂2yF − F (x, y)F = 0, i.e. two
solutions independent over the constant field of functions in x.

We now want to solve equation (♯) with F = Fi, i = 1, 2

(♯♯) ∂2yG − FG = ∂xFFi(x, y)

We already know a basis of solutions of the homogeneous part, and we guess as
particular solution

G = −B
A
∂yFi +

1

2
Fi∂y

(

B

A

)

.

Indeed, thanks to the relation ∂2yF − FF = 0, we get:

∂yG = −1

2
∂y

(B

A

)

∂yFi −
BF

A
Fi +

1

2
Fi∂

2
y

(B

A

)

.
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This gives:

∂2yG = −1

2
∂y

(B

A

)

FFi − ∂y

(BF

A

)

Fi −
BF

A
∂yFi +

1

2
Fi∂

3
y

(B

A

)

= FG +

(

−F∂y
(B

A

)

− ∂y

(BF

A

)

+
1

2
∂3y

(B

A

)

)

Fi

= FG +

(

−2∂y

(B

A

)

F − B

A
∂yF +

1

2
∂3y

(B

A

)

)

Fi

As by hypothesis, we have

−2∂y

(B

A

)

F − B

A
∂yF +

1

2
∂3y

(B

A

)

= ∂xF,

this proves that G is a particular solution.
So the solutions of (♯♯) are respectively for i = 1, 2 of the form

G = C1F1 + C2F2 −
B

A
∂yF1 +

1

2
F1∂y

(

B

A

)

G = C3F1 + C4F2 −
B

A
∂yF2 +

1

2
F2∂y

(

B

A

)

where the Ci depend on x only. So we deduce that there exists C1, C2, C3, C4

functions of x only such that

∂xF1 = C1F1 + C2F2 −
B

A
∂yF1 +

1

2
F1∂y

(

B

A

)

,

∂xF2 = C3F1 + C4F2 −
B

A
∂yF2 +

1

2
F2∂y

(

B

A

)

.

We now search solutions of equations (1.2) of the form

E1F1 + E2F2

with E1, E2 functions of x only. Injecting it in equations (1.2), we obtain 0 for the
first, and for the second

(E1C1 + E2C3 + ∂xE1)F1 + (E1C2 + E2C4 + ∂xE2)F2 = 0

As F1,F2 are independent over functions in x, this is equivalent to the system

∂xE1 = −E1C1 − E2C3, ∂xE2 = −E1C2 − E2C4.

This is a 2× 2 linear system, and so admits two independent solutions. Then these
two solutions E1, E2 give two independent solutions of equations (1.2) of the form
E1F1 + E2F2. Their quotient is then a first integral. �

During the previous proof we have shown the following:

Corollary 11. If D0 has a Riccati first integral F1/F2 then we can suppose that

D0(Fi) =
1

2
A∂y

(B

A

)

Fi.
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1.2. A Casale Theorem. We have defined 4 type of first integrals. We are going
to prove that there are no other types of first integrals with algebraic-differential
properties. Recall that the flow is defined by

∂xy(x0, y0;x) =
B(x, y(x0, y0;x))

A(x, y(x0, y0; y))
, and y(x0, y0;x0) = y0

and we are interested in ∂iy0
y(x0, y0;x), i = 0 . . . 3. These functions belong to

K(x0, y0)[[x−x0]], and we note them y(x0, y0;x), ȳ(x0, y0;x), ¯̄y(x0, y0;x), ¯̄̄y(x0, y0;x)
respectively. Sometimes we will not write the dependance on x0, y0. The y, ȳ, ¯̄y, ¯̄̄y
are now seen as functions in x, solutions of some differential system (S′):

(S′
3)







































































(S′
2)















































(S′
1)



















(S′
0) ∂xy =

B

A

∂xȳ = ȳ∂y

(

B

A

)

∂x ¯̄y = ¯̄y∂y

(

B

A

)

+ ȳ2∂2y

(

B

A

)

∂x ¯̄̄y = ¯̄̄y∂y

(

B

A

)

+ 3¯̄yȳ∂2y

(

B

A

)

+ ȳ3∂3y

(

B

A

)

and by construction, their initial conditions are

y(x0, y0;x0) = y0, ȳ(x0, y0;x0) = 1, ¯̄y(x0, y0;x0) = 0, ¯̄̄y(x0, y0;x) = 0.

The system (S′) gives a method to compute the flow y(x0, y0;x) and finitely many
of its derivatives as series in x: we only have to solve (S′) using the Newton method
for initial condition x = x0, y = y0, ȳ = 1, ¯̄y = 0, ¯̄̄y = 0.

If F is a first integral of D0 then we have F
(

x, y(x0, y0;x)
)

= F(x0, y0). As
mentioned in the introduction, the derivation relatively to y0 of this relation gives
with our notations:

∂yF
(

x, y(x)
)

ȳ(x) = ∂y0
F(x0, y0).

Therefore if F is a Darbouxian first integral, we have ∂yF = F ∈ K(x, y) and then

F
(

x, y(x)
)

ȳ(x) = F (x0, y0).

Thus the rational function F (x, y)ȳ ∈ K(x, y, ȳ) is constant on
(

x, y(x), ȳ(x)
)

,
where the initial condition is y(x0) = y0 and ȳ(x0) = 1. Below we prove that
F (x, y)ȳ is moreover a rational first integral for (S′

1).

In the same way we have

∂2yF
(

x, y(x0, y0;x)
)

(

∂y0
y(x0, y0;x)

)2

+∂yF
(

x, y(x0, y0;x)
)

∂2y0
y(x0, y0;x) = ∂2y0

F(x0, y0).

If F is Liouvillian then ∂2yF/∂yF = F . We get with our notations:

F
(

x, y(x)
)

ȳ(x) +
¯̄y(x)

ȳ(x)
= F (x0, y0).

We are also going to prove that F (x, y)ȳ + ¯̄y/ȳ is a rational first integral of (S′
2).
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At last, for a Riccati first integral similar computations give a rational expression
in x, y, ȳ, . . . , ¯̄̄y which happens to be a rational first integral for (S′

3).

The reason why we stop at r = 3 is the following.

Theorem 12 (Casale). If there exists a non-constant rational invariant of the form

J
(

x, y(x0, y0;x), ȳ(x0, y0;x), . . .
)

= J
(

x0, y(x0, y0;x0), ȳ(x0, y0;x0), . . .
)

then there exists an invariant of one the forms

• h
(

x0, y(x0, y0;x0)
)

= h
(

x, y(x0, y0;x)
)

• h
(

x0, y(x0, y0;x0)
)

= h
(

x, y(x0, y0;x)
)

ȳ(x0, y0;x)
k with k ∈ N∗

• h
(

x0, y(x0, y0;x0)
)

= h
(

x, y(x0, y0;x)
)

ȳ(x0, y0;x) + ¯̄y(x0, y0;x)/ȳ(x0, y0;x)

• h
(

x0, y(x0, y0;x0)
)

= h
(

x, y(x0, y0;x)
)

ȳ2(x0, y0;x)−3¯̄y2(x0, y0;x)/ȳ
2(x0, y0;x)

+ 2¯̄̄y(x0, y0;x)/ȳ(x0, y0;x)

with h rational.

This result is Proposition 1.18 and Theorem 1.19 of Casale in [Cas06] applied to
the map y0 7→ ϕ(x0, y0;x), and restricted to the case of rational invariants instead
of meromorphic. Now Casale’s invariants can be seen as first integrals of the sys-
tems (S′

r) and satisfy the equations Dr(J) = 0. We will associate for each class of
first integral a Casale’s invariant for the flow. This gives the following proposition
stated in the introduction:

Proposition 7. The system (S) admits a rational first integral associated to
(Rat) if and only if F (x, y) is a first integral of (S′

0), where F ∈ K(x, y) \K.
The system (S) admits a k-Darbouxian first integral associated to (D) if and only
if ȳF (x, y) is a first integral of (S′

1), where F
k ∈ K(x, y) \ {0}.

The system (S) admits a Liouvillian first integral associated to (L) if and only if
ȳF (x, y) + ¯̄y/ȳ is a first integral of (S′

2), where F ∈ K(x, y).
The system (S) admits a Riccati first integral associated to (Ric) if and only if
4ȳ2F (x, y)− 2¯̄̄y/ȳ + 3¯̄y2/ȳ2 is a first integral of (S′

3), where F ∈ K(x, y).

Proof. By definition a rational first integral of (S′
0) is a rational function F (x, y)

such that F (x, y(x0, y0;x)) = F (x0, y0). We deduce then

∂xF
(

x, y(x0, y0;x)
)

+ ∂yF
(

x, y(x0, y0;x)
)B

A

(

x, y(x0, y0;x)
)

= 0

⇐⇒ ∂xF (x0, y0) + ∂yF
(

x0, y0)
B

A
(x0, y0) = 0

⇐⇒ D0(F ) = 0.

This gives the desired conclusion in the rational case.
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In the k-Darbouxian case, we have ȳF (x, y) first integral of (S′
1) if and only if

D1

(

ȳF
)

= 0. This gives:

D1

(

ȳF
)

= 0 ⇐⇒ ȳ

(

∂xF +
B

A
∂yF + ∂y

(B

A

)

F

)

= 0

⇐⇒ D0(F ) = −A∂y
(B

A

)

F

Then, Proposition 10 gives the desired conclusion.

In the Liouvillian case, we have ȳF (x, y) + ¯̄y/ȳ first integral of (S′
2) if and only

if D2(ȳF + ¯̄y/ȳ) = 0. This gives:

D2(ȳF + ¯̄y/ȳ) = 0 ⇐⇒ ȳ

(

∂xF +
B

A
∂yF + ∂y

(B

A

)

F + ∂2y

(B

A

)

)

= 0

⇐⇒ D0(F ) = −A∂y
(B

A

)

F −A∂2y

(B

A

)

As before we get the desired conclusion thanks to Proposition 10.
In the Riccati case, we have 4ȳ2F (x, y) − 2¯̄̄y/ȳ + 3¯̄y2/ȳ2 first integral of (S′

3) if
and only if D3(4ȳ

2F (x, y)− 2¯̄̄y/ȳ + 3¯̄y2/ȳ2 = 0. This gives:

D3(4ȳ
2F (x, y)− 2¯̄̄y/ȳ + 3¯̄y2/ȳ2) = 0

⇐⇒ ȳ2
(

∂xF +
B

A
∂yF + 2A∂y

(B

A

)

F − 1

2
A∂3y

(B

A

)

)

= 0

⇐⇒ D0(F ) = −2A∂y

(B

A

)

F +
1

2
A∂3y

(B

A

)

We conclude using Proposition 10. �

Definition 13. Let (K; ∂x, ∂y) be a differential field. An algebraic extension L ⊃ K
is a differential field such that L = K(f) with f algebraic over K. An exponential
extension L ⊃ K is a differential field such that L = K(exp f) with f ∈ K.
A primitive extension L ⊃ K is a differential field such that L = K(f) with

df = ∂xfdx+ ∂yfdy

a 1-form with coefficients in K.
A Riccati extension L ⊃ K is a differential field such that L = K(f) with df a
1-form with coefficients in K[f ]≤2.

Proposition 14. The system (S) admits a first integral in a field built by suc-
cessive algebraic and primitive extensions over K(x, y) if and only if it admits a
k-Darbouxian first integral.
The system (S) admits a first integral in a field built by successive algebraic, ex-
ponential, primitive extensions, over K(x, y) if and only if it admits a Liouvillian
first integral.
The system (S) admits a first integral in a field built by successive algebraic exten-
sions, exponential, primitive and Riccati extensions over K(x, y) if and only if it
admits a Riccati first integral.

Proof. If (S) admits a first integral built by successive algebraic and primitive
extensions over K(x, y), then by Theorem 4.2, Theorem 1.19 and Proposition 1.18
of Casale [Cas06] there exists k ∈ N∗, F ∈ K(x, y) such that ȳkF (x, y) is a first
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integral of (S′
1). By Proposition 7, then (S) admits a k-Darbouxian first integral.

The converse is immediate as a k-Darbouxian first integral is the integral of an
algebraic 1-form.

The Liouvillian case is Singer’s result, and so only Riccati case is left. Again
thanks to Theorem 4.2, Theorem 1.19 and Proposition 1.18 of Casale [Cas06], if (S)
admits a first integral in a field built by successive algebraic exponential, primitive
and Riccati extensions over K(x, y), then

4ȳ2F (x, y)− 2¯̄̄y/ȳ + 3¯̄y2/ȳ2

is a first integral of (S′
3). Using again Proposition 7, (S) admits a Riccati first

integral.
For the converse, we have a first integral which is the quotient of two solutions
F1,F2 of a linear second order differential equation in y. We also know thanks to
Corollary 11 that F1,F2 satisfy the equation

D0(F) =
1

2
A∂y

(

B

A

)

F ,

and thus writing ∂yF in function of ∂xF , we obtain another linear second order
differential equation in x of the following kind: ∂2xF = R∂xF + SF , where R,S
belong to K(x, y).
Therefore, f1 = ∂xFi/Fi is a solution of the following Riccati associated equation:

∂xf1 = Rf1 + S − f2
1 .

Furthermore, f2 = ∂yFi/Fi is a solution of the Riccati equation: ∂yf2 = F − f2
2 .

Now we also have

Af1 +Bf2 =
1

2
A∂y

(

B

A

)

and thus

∂yf1 =− ∂y

(

B

A

)

f2 −
B

A
∂yf2 + ∂y

(

1

2
A∂y

(

B

A

))

=− ∂y

(

B

A

)

f2 −
B

A
(F − f2

2 ) + ∂y

(

1

2
A∂y

(

B

A

))

=− ∂y

(

B

A

)(

1

2

A

B
∂y

(

B

A

)

− A

B
f1

)

− B

A

[

F −
(1

2

A

B
∂y

(

B

A

)

− A

B
f1

)2]

+ ∂y

[

1

2
A∂y

(

B

A

)]

∈ K(x, y)[f1]≤2

Symmetrically, we also obtain that ∂xf2 ∈ K(x, y)[f2]≤2. Then we can construct a
(four successive) Riccati extension L1 of K(x, y) containing

∂yF1/F1, ∂yF2/F2, ∂xF1/F1, ∂xF2/F2.

Now taking a primitive extension and then an exponential extension for each Fi,
we obtain a field L2 containing F1,F2, and thus the first integral F1/F2. �

2. Extactic hypersurfaces

As already remarked in Proposition 7, the existence of a Darbouxian, or Liouvil-
lian or Riccati first integral is equivalent to the existence of a rational first integral
with a special structure for a derivation associated to the problem. Furthermore, in
this situation we have new variables ȳ, ¯̄y, ¯̄̄y. In the following we will need to study
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rational first integral for derivations with several variables x, y, ȳ, ¯̄y, ¯̄̄y. To reduce the
amount of notations, in this subsection we study rational first integrals for deriva-
tion with variables x, y1, . . . , yn. Our main tool will be the extactic curve. This
curve has been discovered independently by Lagutinski and Pereira, see [Per01]. It
allows to characterize the situation where a derivation has a rational first integral
with bounded degree. Here, we define and prove the main property of this object
for a derivation in K(x, y1, . . . , yn) and we will get extactic hypersurfaces.

We consider a derivation

D = f0∂x +

n
∑

j=1

fj∂yj
, where fj ∈ K[x, y1, . . . , yn]

with f0 6= 0 and we consider the associated differential system:

(Sn) ∂xyj(x) =
fj
(

x, y1(x), . . . , yn(x)
)

f0
(

x, y1(x), . . . , yn(x)
) , for j = 1, . . . , n.

We want to characterize the existence of a rational first integral with degree
smaller than N for this kind of differential system. The idea is to study the order
of contact between a solution of (Sn) and a polynomial.

Definition 15. A parametrized curve
(

x, y(x)
)

where y(x) =
(

y1(x) . . . , yn(x)
)

and an implicit hypersurface g(x, y1, . . . , yn) = 0 have a contact of order ν at
(x0, y1,0, . . . , yn,0) =

(

x0, y1(x0), . . . , yn(x0)
)

when ν is the biggest integer such
that:

g
(

x, y(x − x0)
)

= 0 mod (x− x0)
ν−1.

When we consider a planar vector field, the idea to discover a rational first
integral is to compute algebraic curves with a “high” order of contact with a generic
solutions of (S′

0). Actually, here “high” means infinite. However we will see that if
the order of contact is large enough (a bound will be given latter) then this order of
contact will be infinite. We are going to use the same approach in the multivariate
case.

In control theory this kind of idea is also classical. Risler, in [Ris96], and
Gabrielov [Gab95] have shown that if the order of contact is big enough then this
order of contact is infinite. More precisely, in [Gab95] the author shows that if
y(x) is a solution of a differential system with degree d and g is a polynomial with
degree k such that g(y(x)) 6= 0 then the order of contact between g = 0 and y(x)

is smaller than 22n+1
∑n+1

j=1 [k + (j − 1)(d− 1)]2n+2.

In order to compute the order of contact between g and a solution
(

x, y(x)
)

=
(

x, y1(x), . . . , yn(x)
)

we have to compute the Taylor expansion of g(x, y(x)) at x0. As

f0∂x

(

g
(

x, y(x)
)

)

= D(g)
(

x, y(x)
)

,

and f0 6= 0 we deduce easily that

∂ixg
(

x, y(x)
)

= 0, for i = 1, . . . , l ⇐⇒ Di(g)(x0, y1,0, . . . , yn,0) = 0, for i = 1, . . . , l.

where D0(g) = g and Di(g) = D
(

Di−1(g)
)

.
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The study of the order of contact at a generic point (x0, y1,0, . . . , yn,0) leads us
to consider the following map:

Definition 16. Let D be a derivation on K[x, y1 . . . , yn], V be a finite dimensional
linear subspace of K[x, y1 . . . , yn] and x0, y0 = (y1,0, . . . , yn,0) be new variables. We

set L = K(x0, y0). We consider the linear L-morphism:

EV
D : L⊗K V −→ Ll

g(x, y1, . . . , yn) 7−→
(

g(x0, y0), D(g)(x0, y0), D
2(g)(x0, y0), . . . , D

l−1(g)(x0, y0)
)

where l = dimK V , Dk(g) = D
(

Dk−1(g)
)

and D is by abuse of notation the exten-
sion of the derivation D to L[x, y1, . . . , yn], i.e.

D
(

∑

α

cα(x0, y0)x
α1yα2

)

=
∑

α

cα(x0, y0)D(xα1yα2).

The determinant of this linear map is denoted by EV
D(x0, y0). Moreover, we note

EN
D (x0, y0) := E

K[x,y1,...,yn]≤N

D (x0, y0) and call this hypersurface the Nth extactic
hypersurface.

If {g1, . . . , gl} is a basis of V then the associated extactic hypersurface is given
by

EV
D(x0, y0) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

g1(x0, y0) g2(x0, y0) . . . gk(x0, y0)

D(g1)(x0, y0) D(g2)(x0, y0) . . . D(gk)(x0, y0)
...

...
...

...
Dk−1(g1)(x0, y0) Dk−1(g2)(x0, y0) . . . Dk−1(gk)(x0, y0)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The extactic hypersurface is related to invariant algebraic hypersurfaces. We call
these kinds of hypersurface Darboux polynomials.

Definition 17. A non constant polynomial M ∈ K[x, y1, . . . , yn] is a Darboux
polynomial for D if M divides D(M) in K[x, y1, . . . , yn]. We call the polynomial
Λ = D(M)/M the cofactor associated with the Darboux polynomial M .

Proposition 18. If g ∈ V is a Darboux polynomial of a derivation D then g(x0, y0)

is a factor of EV
D(x0, y0).

Proof. As g is a Darboux polynomial we haveD(g) = Λ.g where Λ ∈ K[x, y1, . . . , yn].
Thus there exist polynomials Λj such that Dj(g) = Λj.g. Thus, we have

EV
D (g) = g(x0, y0).

(

1,Λ(x0, y0), . . . ,Λl(x0, y0)
)

and g(x0, y0) is a factor of a column of matrix representation of EV
D . It follows: g

is factor of EV
D(x0, y0). �

We remark that by definition the factors of EV
D(x0) which are not Darboux poly-

nomials correspond to algebraic hypersurfaces with order of contact with a solution
y(x) bigger than l = dimK V .

We also remark that the determinant EV
D(x0, y0) corresponds to a Wronskian

and we recall the following classical lemma, see [Bro05, Lemma 3.3.5]:
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Lemma 19. Let (F,D) be a differential field. Then g1, . . . , gk ∈ F are linearly
dependent over kerD if and only if W (g1, . . . , gk) = 0, where

W (g1, . . . , gk) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

g1 g2 . . . gk
D(g1) D(g2) . . . D(gk)

...
...

...
...

Dk−1(g1) Dk−1(g2) . . . Dk−1(gk)

∣

∣

∣

∣

∣

∣

∣

∣

∣

is the Wronskian of g1, . . . , gn relatively to D.

This leads to the following proposition:

Proposition 20. We have the following equivalence:
There exists a K vector space V such that EV

D(x) = 0 if and only if D has a rational
first integral.

Proof. We denote by g1, . . . , gl a basis of V . This basis gives a basis of the L vector
space L⊗K V .
Then EV

D(x0, y0) =W (g1(x0, y0), . . . , gl(x0, y0)).

By Lemma 19 applied with F = L and D̃ = f0(x0, y0)∂x0
+
∑

i fi(x0, y0)∂yi,0
, we

deduce:

EV
D(x0, y0) = 0 ⇐⇒ g1(x0, y0), . . . , gl(x0, y0) are linearly dependent over ker D̃.

As g1(x0, y0), . . . , gl(x0, y0) are linearly independent overK, this means that ker D̃ 6= K.

Thus D̃ and then D has a rational first integral.

Conversely, if D has a rational first integral G1/G2 with degree N then we set
V = K[x, y1, . . . , yn]≤N and we can consider a basis of V where G1 = g1 and

G2 = g2. We have g1(x0, y0)/g2(x0, y0) ∈ ker D̃ and

g1(x0, y0)−
g1(x0, y0)

g2(x0, y0)
g2(x0, y0) = 0.

Thus we have a non-trivial relation over ker D̃ then

W (g1(x0, y0), . . . , gl(x0, y0)) = EN
D (x0, y0) = 0.

�

Remark 21. The previous proof shows that if D has a rational first integral with
degree N then EN

D (x0, y0) = 0.

This kind of result is not new, see [Per01]. We have given here a proof in order
to emphasize the relation between the extactic curve and the Wronskian. The
following example shows however that it is possible to have EN

D (x0, y0) = 0 and no
rational first integral with degree N .

Example 22. Consider the following derivation

D = x∂x + (3x− 2y1)∂y1
− 3x3∂y2

.

This derivation has two polynomial first integrals with degree 3:

P1(x, y1, y2) = x2y1 + y2, P2(x, y1, y2) = x3 + y2.
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For this derivation we have E2
D(x0, y0) = 0, but D has no rational first integral

with degree 2. Indeed, a direct computation with a computer algebra system shows
that the only Darboux polynomials for this derivation with degree smaller than 2
are: x, y1 − x and their products.
Now, we explain why the second extactic curve is equal to zero. As P1 and P2

are first integrals we have: ∆Pi(x0, y0, x, y(x)) = 0, where ∆Pi(x0, y0, x, y1, y2) =

Pi(x, y1, y2)− Pi(x0, y1,0, y2,0). Thus

P (x0, y0;x, y1, y2) = x.∆P1(x0, y0, x, y1, y2)− y1.∆P2(x0, y0, x, y1, y2)

= xy2 − y1y2 − x(x20y1,0 + y2,0) + y1(x
3
0 + y2,0)

has degree 2 in K(x0, y0)[x, y1, y2] and satisfies

P (x0, y0;x, y(x)) = 0.

Thus P ∈ ker EK[x,y1,y2]≤2

D and E2
D(x0, y0) = 0.

Now, we show that the computation of ker EN
D gives rational first integrals. More

precisely, we are going to exhibit a structure for the element in ker EV
D .

Proposition 23. Let {bi} be a basis of K[x, y1, . . . , yn]. Consider g1(x0, y0, x, y),. . . ,

gr(x0, y0, x, y) a basis of ker EV
D in reduced row echelon form. Then we can write

each gi in the following form:

gi(x0, y0, x, y) =
∑

j∈Ji

cj(x0, y0)bj ,

where Ji is a finite set, cj(x0, y0) ∈ ker D̃ and D̃ = f0(x0, y0)∂x0
+
∑

i fi(x0, y0)∂yi,0
.

Furthermore, there exists j0 such that cj0(x0, y0) 6∈ K.

This result says that the computation of a reduced row echelon basis of kerEV
D

gives a non-trivial rational first integral: cj0(x, y).

Proof. Consider {g1, . . . , gr} a basis of ker EV
D in reduced row echelon form and we

set gi(x0, y0, x, y) =
∑

j∈Ji
pj(x0, y0)bj .

As gi ∈ ker EV
D we deduce that W (bj(x0, y0); j ∈ Ji) = 0. By Lemma 19 we have

bj(x0, y0) are linearly related over ker D̃, where j ∈ Ji.

Then there exists cj(x0, y0) ∈ ker D̃ such that
∑

j∈Ji
cj(x0, y0)bj(x0, y0) = 0. As

{bj(x0, y0) | j ∈ Ji} is a family of linearly independent elements over K, we deduce

that there exists j0 such that cj0(x0, y0) 6∈ K. Furthermore, we have:

0 = D̃
(

∑

j∈Ji

cj(x0, y0)bj(x0, y0)
)

=
∑

j∈Ji

D̃(cj)bj(x0, y0) +
∑

j∈Ji

cj(x0, y0)D̃
(

bj(x0, y0)
)

=
∑

j∈Ji

cj(x0, y0)D̃
(

bj(x0, y0)
)

.

In the same way, we get
∑

j∈Ji
cj(x0, y0)D̃

j
(

bj(x0, y0)
)

= 0.

It follows:
∑

j∈Ji
cj(x0, y0)bi ∈ ker EV

D . This polynomial has the same support than

the polynomial gi and the basis {g1, . . . , gr} is in reduced row echelon form, thus
we get the desired result. �
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Now, we are going to give an explicit statement for “if the contact between an
hypersurface and an orbit is big enough then the orbit is included in the hypersur-
face.”

Theorem 24. Let y(x) be a solution of (Sn) satisfying y(x0) = y
0
.

If P ∈ L⊗KV and P (x0, y0;x, y(x)) = 0 mod (x−x0)l then P (x0, y0;x, y(x)) = 0.

Proof. Consider P (x0, x0, x, y) such that P (x0, y0, x, y(x)) = 0 mod (x−x0)l. The
Taylor expansion of P shows that P (x0, x0, x, y) ∈ kerEV

D .

We can write P (x0, y0, x, y) in the following form:

P (x0, y0, x, y) =
∑

i

λi(x0, y0)gi(x0, y0, x, y),

where gi(x0, y0, x, y) satisfy Proposition 23.
We have:

gi(x, y(x), x, y) =
∑

j∈Ji

cj(x, y(x))bj

=
∑

j∈Ji

cj(x0, y0)bj , because cj(x0, y0) ∈ ker D̃,

= gi(x0, y0, x, y)

Furthermore, gi(x0, y0, x0, y0) = 0 because gi(x0, y0, x, y) ∈ ker EV
D .

Thus gi(x, y(x), x, y(x)) = 0.
As gi(x, y(x), x, y) = gi(x0, y0, x, y) we get

0 = gi(x, y(x), x, y(x)) = gi(x0, y0, x, y(x)).

Then P (x0, y0, x, y(x)) =
∑

i λi(x0, y0)gi(x0, y0, x, y(x)) = 0. �

This result means that for a generic point if the order of contact with a polyno-
mial of degree N is bigger than dimK K[x, y1, . . . , yn]≤N then this order of contact
is infinite.

3. Extactic curves

3.1. Rational extactic curve.

We here recover a classical result for the extactic curve in two variables. Let us
note

ẼN
D0

= EK[x,y]≤N

D0
, ẼN

D0
= E

K[x,y]≤N

D0
,

and call a rational function F ∈ K̄(x, y) indecomposable when it cannot be written
f ◦ g, with f ∈ K(T ), g ∈ K[x, y] and deg(f) ≥ 2.

Theorem 25 (Bivariate rational extactic curve theorem).
The derivation D0 has an indecomposable rational first integral with degree N if
and only if ẼN

D0
= 0 and ẼN−1

D0
6= 0. Moreover, this indecomposable first integral

can always be assumed to have coefficients in K.



SYMBOLIC COMPUTATIONS OF FIRST INTEGRALS 25

This theorem says that the minimal degree of a rational first integral corresponds
to the minimal index where the extactic curve vanishes. This theorem is not new,
see e.g. [Per01, CLP07]. We have recalled it in order to have a self contained paper.
Furthermore, we are going to generalize this result for the study of Darbouxian,
Liouvillian and Riccati first integrals.

Proof. If D0 has a rational first integral P/Q with degree N then by Remark 21

we have ẼN
D0

= 0.

Now, suppose that ẼN−1
D0

= 0 then Theorem 24 implies that all solutions of the
differential system vanishes a polynomial with degree smaller than N − 1. As we
have supposed P/Q indecomposable then a corollary of the Bertini-Krull theorem
see e.g. [BC11], implies that we can assume P and Q irreducible with degree N .
Thus we get the desired contradiction.

If ẼN
D0

= 0 then by Proposition 20, D0 has a rational first integral P/Q. We can
assume that this first integral is indecomposable and thus have a minimal degree.
As before, we can assume that P and Q are irreducible. Furthermore, Remark 21
implies that the degree of this first integral cannot be strictly smaller than N .
Thus suppose that this degree is strictly bigger than N . Therefore, the curve
P = 0 corresponds to an irreducible orbit of the differential system, but Theorem 24
implies that all orbits are included in algebraic curves with degree smaller than N .
This gives the desired contradiction. To conclude, the indecomposable first integral
of degree N has a priori coefficients in K̄, and thus ẼN

D0
has a non trivial kernel.

However, as the coefficients of ẼN
D0

are in K(x0, y0), this implies that ẼN
D0

also as a
non trivial element in its kernel with coefficients in K(x0, y0). And thus that the
system admits a first integral of degree N with coefficients in K (and so thus also
indecomposable). �

3.2. Darbouxian extactic curve.

In this subsection we are going to apply the result of Section 2 to the derivation
D1. Then in the following

(

y(x), ȳ(x)
)

is a solution of (S′
1) satisfying the initial

condition y(x0) = y0, ȳ(x0) = ȳ0, where x0, y0 and ȳ0 are variables.

Now, we are going to generalize Theorem 25 to the Darbouxian case.

Definition 26. We set ẼN,k
D1

(x0, y0) = EV1

D1
(x0, y0, 1), where

V1 := K[x, y]≤N ⊕K[x, y]≤N ȳ
k, l1 = dim(V1).

The N -th k-Darbouxian extactic curve is defined by

ẼN,k
D1

(x0, y0) = EV1

D1
(x0, y0, 1).

Let us begin by two Lemmas about this Darbouxian extactic curve.

Lemma 27. We have the following equivalence:

ȳkP −Q ∈ ker ẼN,k
D1

(x0, y0)

m
ȳkP − ȳk0Q ∈ kerEV1

D1
(x0, y0, ȳ0).

This Lemma essentially says that evaluating ȳ0 = 1 in the definition of the
extactic curve does not loose much information.
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Proof. We denote by ψ(x) the solution of (S′
1) such that ψ(x0) = y0, ψ̄(x0) = 1.

We consider the transformation

T (y, ȳ) = (y, ȳ0ȳ).

We set
(

ψT (x), ψ̄T (x)
)

:= T (ψ(x), ψ̄(x)
)

=
(

ψ(x), ȳ0ψ̄(x)
)

.

Now, we are going to show that
(

ψT (x), ψ̄T (x)
)

is a solution of (S′
1) with initial

conditions ψT (x0) = y0, ψ̄T (x0) = ȳ0. Indeed,

∂xψ̄T (x) = ȳ0∂xψ̄(x) = ȳ0ψ̄(x)∂y

(B

A

)

(

x, ψ(x)
)

= ψ̄T (x)∂y

(B

A

)

(

x, ψT (x)
)

.

Now suppose that ȳkP −Q ∈ ker ẼN,k
D1

(x0, y0) then

ψ̄k(x)P
(

x, ψ(x)
)

−Q
(

x, ψ(x)
)

= 0 mod (x− x0)
l1 .

Thus

ȳk0 ψ̄
k(x)P

(

x, ψ(x)
)

− ȳk0Q
(

x, ψ(x)
)

= 0 mod (x− x0)
l1 .

This gives

ψ̄k
T (x)P

(

x, ψT (x)
)

− ȳk0Q
(

x, ψT (x)
)

= 0 mod (x− x0)
l1 .

Therefore ȳkP − ȳk0Q ∈ ker EV1

D1
.

The converse is straightforward. �

Lemma 28. Consider a non trivial solution ȳkP −Q ∈ ker ẼN,k
D1

(x0, y0), then:

• If P = 0 then Q ∈ ker ẼN
D0

.

• If Q = 0 then P ∈ ker ẼN
D0

.

• If PQ 6= 0 and Q 6∈ ker ẼN
D0

then:
(

D0((P/Q)1/k) +A(P/Q)1/k∂y(B/A)
)

(

x, y(x)
)

= 0.

The two first cases are pathological ones, i.e. we compute the Darbouxian ex-
tactic curve but it appears that a rational first integral exists.

Proof. As ȳkP −Q ∈ ker ẼN,k
D1

(x0, y0) we get using Lemma 27

ȳk0Q(x, y)− ȳkP (x, y) ∈ ker EV1

D1
(x0, y0, ȳ0).

Thus

ȳk0Q(x, y(x)) − ȳ(x)kP (x, y(x)) = 0 mod (x− x0)
l1 .

By Theorem 24, we deduce that ȳk0Q(x, y(x)) − ȳ(x)kP (x, y(x)) = 0.

If P = 0 then we get Q(x, y(x)) = 0 mod (x− x0)
l1 , then Q ∈ ker ẼN

D0
.

If Q = 0 then we get ȳ(x)kP (x, y(x)) = 0 mod (x − x0)
l1 . We have ȳ(x) 6= 0 as

ȳ(x0) = ȳ0 and thus P ∈ ker ẼN
D0

.

Now we suppose that PQ 6= 0, and Q 6∈ ker ẼN
D0

. We have then Q
(

x, y(x)
)

6= 0
and:

ȳ(x)k
P

Q

(

x, y(x)
)

= ȳk0 .

and thus

ȳ(x)

(

P

Q

)1/k
(

x, y(x)
)

= ξȳ0, where ξ is a k − root of unity.
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The derivation relatively to x of this relation and the fact that ȳ(x) is a solution of
(S′

1) gives:

ȳ(x)∂y

(B

A

)

(

x, y(x)
)

(

P

Q

)1/k
(

x, y(x)
)

+

ȳ(x)

(

∂x

((P

Q

)1/k)
(

x, y(x)
)

+ ∂y

((P

Q

)1/k)
(

x, y(x)
)B

A

(

x, y(x)
)

)

= 0

As ȳ(x) 6= 0 we get:
(

A

(

P

Q

)1/k

∂y

(B

A

)

+D0

(

(

P

Q

)1/k
)

)

(

x, y(x)
)

= 0.

This gives the desired result. �

We now prove the main result about the Darbouxian extactic curve.

Theorem 29 (Darbouxian extactic curve theorem).

(1) If ẼN,k
D1

(x0, y0) = 0 then the derivation D0 has a k-Darbouxian first integral
with degree smaller than N or a rational first integral with degree smaller
than 2N+2d−1. Moreover the defining equation of the first integral, (Rat)
or (D), has coefficients in K.

(2) If D0 has a rational or a k-Darbouxian first integral with degree smaller

than N then ẼN,k
D1

(x0, y0) = 0.

Proof of Theorem 29. First, consider a non trivial solution ȳP−Q ∈ ker ẼN,k
D1

(x0, y0).

If P = 0 then by Lemma 28 we getQ ∈ ker ẼN
D0

. Theorem 25 implies that the deriva-
tion D0 has a rational first integral with degree smaller than N with coefficients in
K.
If Q = 0, we deduce in the same way that D0 has a rational first integral with
degree smaller than N with coefficients in K.

Now we suppose that PQ 6= 0.
If Q ∈ ker EN

D0
, then by Theorem 25, D0 has a rational first integral with degree

smaller than N with coefficients in K.
Now, we suppose that Q do not belong to ker EN

D0
. By Lemma 28, we have

(

D0((P/Q)1/k) +A(P/Q)1/k∂y(B/A)
)

(

x, y(x)
)

= 0.

We introduce the polynomial

G := APQ(P/Q)−1/k
(

D0((P/Q)1/k) +A(P/Q)1/k∂y(B/A)
)

we have G
(

x, y(x)
)

= 0. Therefore, if G = 0 then Proposition 10 gives the existence
of a k-Darbouxian first integral. Moreover, the equation of type (D) giving the exis-
tence of a Darbouxian first integral has coefficient in K since P,Q ∈ K(x0, y0)[x, y].
Now, we consider the situation where G 6= 0 then G is a non-zero polynomial with
degree smaller than 2N + 2d− 1 such that G ∈ ker Ẽ2N+2d−1

D0
. By Theorem 25, D0

has a rational first integral with degree smaller than 2N + 2d− 1 with coefficients
in K. This concludes the first part of the proof.

Now, we suppose that D0 has a rational or a k-Darbouxian first integral with
degree smaller than N .
If D0 has a k-Darbouxian first integral F with degree smaller than N then we have
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∂yF = (P/Q)1/k, with P,Q ∈ K̄[x, y], and degP, degQ ≤ N . Proposition 7 implies
that ȳkP/Q is a rational first integral of (S′

1). This gives

ȳ(x)k
P
(

x, y(x)
)

Q
(

x, y(x)
) = c,

where c ∈ K̄(x0, y0), putting ȳ0 = 1. Thus ȳkP (x, y)−cQ(x, y) ∈ K̄⊗Kker ẼN,k
D1

(x0, y0).

Now as A,B ∈ K[x, y], the coefficients of ẼN,k
D1

(x0, y0) are in K(x0, y0), and so we

deduce the existence of P̃ , Q̃ ∈ K(x0, y0)[x, y] with degree N such that ȳkP̃ − Q̃

belong to ker ẼN,k
D1

(x0, y0). Thus ẼN,k
D1

(x0, y0) = 0 and we get the desired conclusion.
If D0 has a rational first integral P/Q with degree smaller than N , then we can
suppose P/Q ∈ K(x, y) thanks to Theorem 25 and

P (x, y)Q(x0, y0)−Q(x, y)P (x0, y0) ∈ ker ẼN,k
D1

(x0, y0).

Thus ẼN,k
D1

(x0, y0) = 0. �

As a corollary, we obtain the following results about the coefficient field exten-
sions of the possible first integrals.

Corollary 30. Suppose that D0 has a k-Darbouxian first integral and no rational
first integral. We have:
There exists F ∈ K(x, y) with degF ≤ N such that equation (D) gives a k-

Darbouxian first integral if and only if there exists F̃ ∈ K(x, y) with deg F̃ ≤ N

such that equation (D) with F̃ gives a k-Darbouxian first integral.

Proof. Suppose that there exists F̃ ∈ K(x, y) with deg F̃ = N such that equation
(D) gives a k-Darbouxian first integral. Then by second part of Theorem 29, we

have ẼN,k
D1

(x0, y0) = 0. Applying now the first part, we obtain either a rational
first integral (forbidden by our assumption) or a k-Darbouxian first integral given
by an equation (D) with a rational function with degree smaller than N and with
coefficients in K. �

3.3. Liouvillian Extactic curve.

In this subsection we are going to apply the result of Section 2 to the derivation D2.
Then in the following

(

y(x), ȳ(x), ¯̄y(x)
)

is a solution of (S′
2) satisfying the initial

condition y(x0) = y0, ȳ(x0) = ȳ0, ¯̄y(x0) = ¯̄y0 where x0, y0, ȳ0 and ¯̄y0 are variables.

Now, we are going to generalize Theorem 25 to the Liouvillian case.

Definition 31. We set ẼN
D2

(x0, y0) = EV2

D2
(x0, y0, 1, 0) where

V2 := K[x, y]≤N ȳ
2 ⊕K[x, y]≤N ¯̄y ⊕K[x, y]≤N ȳ, l2 = dim(V2).

The N-th Liouvillian extactic curve is

ẼN
D2

(x0, y0) = EV2

D2
(x0, y0, 1, 0).

We begin by proving the following two Lemmas.

Lemma 32. We have the following equivalence:

P (x, y)ȳ2 +Q(x, y)¯̄y +R(x, y)ȳ ∈ ker ẼN
D2

(x0, y0)

m

P (x, y)ȳ2 +Q(x, y)¯̄y +
(

ȳ0R(x, y)−
¯̄y0
ȳ0
Q(x, y)

)

ȳ ∈ ker EV2

D2
(x0, y0, ȳ0, ¯̄y0)
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Proof. We denote by ψ(x) the solution of (S′
2) such that ψ(x0) = y0, ψ̄(x0) = 1,

¯̄ψ(x0) = 0.
We consider the transformation

T (y, ȳ, ¯̄y) = (y, ȳ0ȳ, ȳ
2
0
¯̄y + ¯̄y0ȳ).

We set
(

ψT (x), ψ̄T (x),
¯̄ψT (x)

)

:= T (ψ(x), ψ̄(x), ¯̄ψ(x)
)

=
(

ψ(x), ȳ0ψ̄(x), ȳ0
2 ¯̄ψ(x) + ¯̄y0ψ̄(x)

)

.

Now, we are going to show that
(

ψT (x), ψ̄T (x),
¯̄ψT (x)

)

is a solution of (S′
2) with

initial conditions ψT (x0) = y0, ψ̄T (x0) = ȳ0,
¯̄ψT (x0) = ¯̄y0. Indeed we have:

∂xψ̄T (x) = ȳ0∂xψ̄(x) = ȳ0ψ̄(x)∂y

(B

A

)

(

x, ψ(x)
)

= ψ̄T (x)∂y

(B

A

)

(

x, ψT (x)
)

.

Furthermore,

∂x
¯̄ψT (x) = ȳ20∂x

¯̄ψ(x) + ¯̄y0∂xψ̄(x)

= ȳ20
¯̄ψ(x)∂y

(B

A

)

(

x, ψ(x)
)

+ ȳ20
(

ψ̄(x)
)2
∂2y

(B

A

)

(

x, ψ(x)
)

+ ¯̄y0ψ̄(x)∂y

(B

A

)

(

x, ψ(x)
)

=
(

ȳ20
¯̄ψ(x) + ¯̄y0ψ̄(x)

)

∂y

(B

A

)

(

x, ψ(x)
)

+
(

y0ψ̄(x)
)2
∂2y

(B

A

)

(

x, ψ(x)
)

= ¯̄ψT (x)∂y

(B

A

)

(

x, ψT (x)
)

+
(

ψ̄T (x)
)2
∂2y

(B

A

)

(

x, ψT (x)
)

Now suppose that P (x, y)ȳ2 +Q(x, y)¯̄y +R(x, y)ȳ ∈ ker ẼN
D2

(x0, y0) then

P (x, ψ(x))ψ̄2(x) +Q(x, ψ(x)) ¯̄ψ(x) +R(x, ψ(x))ψ̄(x) = 0 mod (x− x0)
l2

Thus

ȳ20P (x, ψ(x))ψ̄
2(x) + ȳ20Q(x, ψ(x)) ¯̄ψ(x) + ¯̄y0Q(x, ψ(x))ψ̄(x)

− ¯̄y0Q(x, ψ(x))ψ̄(x) + ȳ20R(x, ψ(x))ψ̄(x) = 0 mod (x− x0)
l2

This gives

P (x, ψT (x))ψ̄
2
T (x) +Q(x, ψT (x))

¯̄ψT (x)

+
(

−
¯̄y0
ȳ0
Q(x, ψT (x)) + ȳ0R(x, ψT (x)

)

ψ̄T (x) = 0 mod (x − x0)
l2

Therefore

P (x, y)ȳ2 +Q(x, y)¯̄y +
(

ȳ0R(x, y)−
¯̄y0
ȳ0
Q(x, y)

)

ȳ ∈ kerEV2

D2
(x0, y0, ȳ0, ¯̄y0).

The converse is straightforward. �

Lemma 33. Consider a non trivial solution P (x, y)ȳ2 + Q(x, y)¯̄y + R(x, y)ȳ in

ker ẼN
D2

(x0, y0), then:

• If Q = 0 then P ȳ +R ∈ ker ẼN
D1

(x0, y0).

• If Q 6= 0 and Q 6∈ ker EN
D0

then:

ȳ(x)
(

D0(P/Q)+A(P/Q)∂y(B/A)+A∂
2
y(B/A)

)

(

x, y(x)
)

+ȳ0D0(R/Q)
(

x, y(x)
)

= 0
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Proof. As P (x, y)ȳ2+Q(x, y)¯̄y+R(x, y)ȳ ∈ ker ẼN
D2

(x0, y0), we get using Lemma 32

P (x, y)ȳ2 +Q(x, y)¯̄y +
(

ȳ0R(x, y)−
¯̄y0
ȳ0
Q(x, y)

)

ȳ ∈ ker EV2

D2
(x0, y0, ȳ0, ¯̄y0)

and thus

P (x, y(x))ȳ(x)2+Q(x, y(x))¯̄y(x)+
(

ȳ0R(x, y(x))−
¯̄y0
ȳ0
Q(x, y(x))

)

ȳ(x) = 0 mod (x−x0)l2

Then Theorem 24 applied with the four variables x, y, ȳ, ¯̄y gives

P (x, y(x))ȳ(x)2 +Q(x, y(x))¯̄y(x) +
(

ȳ0R(x, y(x)) −
¯̄y0
ȳ0
Q(x, y(x))

)

ȳ(x) = 0.

If Q(x, y) = 0 as a polynomial then we have

P (x, y(x))ȳ(x) + ȳ0R(x, y(x)) = 0.

Thus P ȳ+ȳ0R ∈ ker ED1
V1(x0, y0, ȳ0) and by Lemma 27 we get P ȳ+R ∈ ker ẼN

D1
(x0, y0).

If Q(x, y) 6= 0 as a polynomial and Q 6∈ kerEN
D0

then Q
(

x, y(x)
)

6= 0. We set
F = P/Q and G = R/Q then we have:

F
(

x, y(x)
)

ȳ(x) +
¯̄y(x)

ȳ(x)
−

¯̄y0
ȳ0

+ ȳ0G
(

x, y(x)
)

= 0.

The derivation relatively to x of the previous expression and the relation given by
the differential system (S′

2) gives:

0 = ∂xF
(

x, y(x)
)

ȳ(x) + ∂yF
(

x, y(x)
)B

A

(

x, y(x)
)

ȳ(x) + F
(

x, y(x)
)

ȳ(x)∂y

(B

A

)

(

x, y(x)
)

+
1

ȳ2(x)

(

¯̄y(x)ȳ(x)∂y

(B

A

)

(

x, y(x)
)

+ (ȳ(x))3∂2y

(B

A

)

(

x, y(x)
)

− ¯̄y(x)ȳ(x)∂y

(B

A

)

(

x, y(x)
)

)

+ȳ0∂xG
(

x, y(x)
)

+ ȳ0∂yG
(

x, y(x)
)B

A

(

x, y(x)
)

= ∂xF
(

x, y(x)
)

ȳ(x) + ∂yF
(

x, y(x)
)B

A

(

x, y(x)
)

ȳ(x) + F
(

x, y(x)
)

ȳ(x)∂y

(B

A

)

(

x, y(x)
)

+ȳ(x)∂2y

(B

A

)

(

x, y(x)
)

+ ȳ0∂xG
(

x, y(x)
)

+ ȳ0∂yG
(

x, y(x)
)B

A

(

x, y(x)
)

This gives:

0 = ȳ(x)

(

∂xF
(

x, y(x)
)

+ ∂yF
(

x, y(x)
)B

A

(

x, y(x)
)

+ F
(

x, y(x)
)

∂y

(B

A

)

(

x, y(x)
)

+∂2y

(B

A

)

(

x, y(x)
)

)

+ ȳ0∂xG
(

x, y(x)
)

+ ȳ0∂yG
(

x, y(x)
)B

A

(

x, y(x)
)

Thus

0 = ȳ(x)
(

D0(F ) + (AF )∂y(B/A) +A∂2y(B/A)
)

(

x, y(x)
)

+ȳ0D0(G)
(

x, y(x)
)

.

This gives the desired conclusion. �

Now we can state the generalization of Theorem 25 for the Liouvillian case.
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Theorem 34 (Liouvillian extactic curve Theorem).

(1) If ẼN
D2

(x0, y0) = 0 then the derivation D0 has a Liouvillian first inte-
gral with degree smaller than N or a Darbouxian first integral with degree
smaller than 2N+3d−1 or a rational first integral with degree smaller than
4N + 8d− 3. Moreover the defining equation of the first integral, equation
(Rat), (D) or (L), has coefficients in K.

(2) If D0 has a rational or a Darbouxian or a Liouvillian first integral with

degree smaller than N then ẼN
D2

(x0, y0) = 0.

Proof of Theorem 34. First suppose that ẼN
D2

(x0, y0) = 0, giving a non trivial so-
lution

P (x, y)ȳ2 +Q(x, y)¯̄y +R(x, y)ȳ ∈ ker ẼN
D2

(x0, y0).

If Q = 0 then by Lemma 33, then P ȳ + R ∈ ker ẼN
D1

(x0, y0) and Theorem 29
gives the existence of a Darbouxian first integral with degree smaller than N and
defining equation (D) with coefficients in K or a first integral with degree smaller
than 2N + 2d− 1 with coefficients in K.

If Q 6= 0 and Q ∈ ker EN
D0

then by Theorem 25 there exists a rational first integral
with degree smaller than N with coefficients in K.

If Q 6= 0 and Q 6∈ ker EN
D0

then by Lemma 33 we have two situations:
In the first situation we have:

D0(P/Q) +A(P/Q)∂y(B/A) +A∂2y(B/A) = 0.

In this case, Proposition 10 gives the existence of a Liouvillian first integral. As
degP, degQ ≤ N , we deduce the existence of a Liouvillian first integral with degree
smaller than N . Moreover, the equation of type (L) giving the existence of a
Liouvillian first integral has coefficients in K since P,Q ∈ K(x0, y0)[x, y].
In the second situation we have D0(P/Q)+A(P/Q)∂y(B/A) +A∂2y(B/A) 6= 0 and

ȳ(x)
(

D0(P/Q)+A(P/Q)∂y(B/A)+A∂
2
y(B/A)

)

(

x, y(x)
)

+ȳ0D0(R/Q)
(

x, y(x)
)

= 0.

In this case, we set P1 = A2Q2
(

D0(P/Q) +A(P/Q)∂y(B/A) + A∂2y(B/A)
)

,

Q1 = A2Q2D0(R/Q) and we obtain ȳP1 + ȳ0Q1 ∈ ker EV1

D1
(x0, y0, ȳ0). Thus thanks

to Lemma 27 we get ȳP1 + Q1 ∈ ker Ẽ2N+3d−1,1
D1

(x0, y0). Theorem 29 gives the
existence of a Darbouxian first integral with degree smaller than 2N + 3d − 1 or
the existence of a rational first integral with degree smaller than 4N + 8d− 3 with
coefficients in K.

Now, we study the second part of the theorem.
If D0 has a Liouvillian first integral with degree smaller than N then we have
∂2yF/∂yF = P/Q, with P,Q ∈ K̄[x, y] and deg(P ), deg(Q) ≤ N . Proposition 7
implies that ȳP/Q+ ¯̄y/ȳ is a first integral of (S′

2). This gives

ȳ(x)P/Q
(

x, y(x)
)

+ ¯̄y(x)/ȳ(x) = c,

where c ∈ K̄(x0, y0) putting ȳ0 = 1, ¯̄y0 = 0. Thus

−cQ
(

x, y(x)
)

ȳ(x) + P
(

x, y(x)
)

ȳ2(x) +Q
(

x, y(x)
)

¯̄y(x) = 0,
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and then

−cQȳ + P ȳ2 +Q ¯̄y ∈ K̄⊗K ker ẼN
D2

(x0, y0).

As the coefficients of ẼN
D2

(x0, y0) are in K(x0, y0), this implies that there exists an

element with coefficients in K(x0, y0) in ker ẼN
D2

(x0, y0) and thus ẼN
D2

(x0, y0) = 0.
The situation where D0 has a rational or a Darbouxian first integral with degree
smaller than N can be done in the same way. �

As before, we deduce that the computation of F ∈ K(x, y) is not restrictive.

Corollary 35. Suppose that D0 has a Liouvillian first integral and no Darbouxian
nor rational first integral. There exists F ∈ K(x, y) with degF ≤ N such that

equation (L) gives a Liouvillian first integral if and only if there exists F̃ ∈ K(x, y)

with deg F̃ ≤ N such that equation (L) with F̃ gives a Liouvillian first integral.

Proof. We just apply to a Liouvillian first integral with a defining equation (L) with

coefficients in K̄ the second part of Theorem 34, proving that ẼN
D2

(x0, y0) = 0. Then
we apply the first part proving there exists a Liouvillian first integral with degree
smaller than N or a Darbouxian first integral with degree smaller than 2N +3d−1
or a rational first integral with degree smaller than 4N + 8d − 3 with coefficients
in K. As the last two are forbidden by assumption, D0 admits a Liouvillian first
integral given by an equation (L) with a rational function with degree smaller than
N and with coefficients in K. �

3.4. Riccati extactic curve.

In this subsection we are going to apply the result of Section 2 to the derivation
D3. Then in the following

(

y(x), ȳ(x), ¯̄y(x), ¯̄̄y(x)
)

is a solution of (S′
3) satisfying the

initial condition y(x0) = y0, ȳ(x0) = ȳ0, ¯̄y(x0) = ¯̄y0, ¯̄̄y(x0) = ¯̄̄y0 where x0, y0, ȳ0, ¯̄y0
and ¯̄̄y0 are variables.

Now, we are going to generalize Theorem 25 to the Riccati case.

Definition 36. We set ẼN
D3

(x0, y0) = EV3

D3
(x0, y0, 1, 0, 0), where

V3 := K[x, y]≤N ȳ
4 ⊕K[x, y]≤N (3¯̄y2 − 2¯̄̄yȳ)⊕ K[x, y]≤N ȳ

2, l3 = dim(V3).

The N -th Riccati extactic curve is defined by

ẼN
D3

(x0, y0) = EV3

D3
(x0, y0, 1, 0, 0).

As before, we begin by proving two Lemmas.

Lemma 37. We have the following equivalence:

4P (x, y)ȳ4 +Q(x, y)(3¯̄y2 − 2¯̄̄yȳ) +R(x, y)ȳ2 ∈ ker ẼN
D3

(x0, y0)

m

4P (x, y)ȳ4+Q(x, y)(3¯̄y2−2¯̄̄yȳ)+

(

R(x, y)ȳ20 −
(

3
¯̄y20
ȳ20

− 2
¯̄̄y0
ȳ0

)

Q(x, y)

)

ȳ2 ∈ ker EV3

D3
(x0, y0, ȳ0, ¯̄y0, ¯̄̄y0)

Proof. We denote by ψ(x) the solution of (S′
3) such that ψ(x0) = y0, ψ̄(x0) = 1,

¯̄ψ(x0) = 0,
¯̄̄
ψ(x0) = 0.

We consider the transformation

T (y, ȳ, ¯̄y, ¯̄̄y) = (y, ȳ0ȳ, ȳ
2
0
¯̄y + ¯̄y0ȳ, ȳ

3
0
¯̄̄y + 3ȳ0 ¯̄y0 ¯̄y + ¯̄̄y0ȳ).
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We set
(

ψT (x), ψ̄T (x),
¯̄ψT (x),

¯̄̄
ψT (x)

)

:= T (ψ(x), ψ̄(x), ¯̄ψ(x),
¯̄̄
ψ(x)

)

=
(

ψ(x), ȳ0ψ̄(x), ȳ
2
0
¯̄ψ(x) + ¯̄y0ψ̄(x), ȳ

3
0
¯̄̄
ψ(x) + 3ȳ0 ¯̄y0

¯̄ψ(x) + ¯̄̄y0ψ̄(x)
)

.

Now, we are going to show that
(

ψT (x), ψ̄T (x),
¯̄ψT (x),

¯̄̄
ψT (x)

)

is a solution of (S′
3)

with initial conditions

ψT (x0) = y0, ψ̄T (x0) = ȳ0,
¯̄ψT (x0) = ¯̄y0,

¯̄̄
ψT (x0) = ¯̄̄y0.

We have already proved in Lemma 32 that:

∂xψ̄T (x) = ψ̄T (x)∂y

(B

A

)

(

x, ψT (x)
)

.

and

∂x
¯̄ψT (x) =

¯̄ψT (x)∂y

(B

A

)

(

x, ψT (x)
)

+
(

ψ̄T (x)
)2
∂2y

(B

A

)

(

x, ψT (x)
)

.

Finally

∂x
¯̄̄
ψT (x) =ȳ

3
0∂x

¯̄̄
ψ(x) + 3¯̄y0ȳ0∂x

¯̄ψ(x) + ¯̄̄y0∂xψ̄(x)

=ȳ30
¯̄̄
ψ(x)∂y

(B

A

)

(

x, ψ(x)
)

+ 3ȳ30
¯̄ψ(x)ψ̄(x)∂2y

(B

A

)

(

x, ψ(x)
)

+ ȳ30ψ̄(x)
3∂3y

(B

A

)

(

x, ψ(x)
)

+ 3¯̄y0ȳ0
¯̄ψ(x)∂y

(B

A

)

(

x, ψ(x)
)

+ 3¯̄y0ȳ0
(

ψ̄(x)
)2
∂2y

(B

A

)

(

x, ψ(x)
)

+ ¯̄̄y0ψ̄(x)∂y

(B

A

)

(

x, ψ(x)
)

=
(

ȳ30
¯̄̄
ψ(x) + 3¯̄y0ȳ0

¯̄ψ(x) + ¯̄̄y0ψ̄(x)
)

∂y

(B

A

)

(

x, ψ(x)
)

+
(

3ȳ30
¯̄ψ(x)ψ̄(x) + 3¯̄y0ȳ0

(

ψ̄(x)
)2
)

∂2y

(B

A

)

(

x, ψ(x)
)

+ ȳ30ψ̄(x)
3∂3y

(B

A

)

(

x, ψ(x)
)

=
¯̄̄
ψT (x)∂y

(B

A

)

(

x, ψ(x)
)

+ 3 ¯̄ψT (x)ψ̄T (x)∂
2
y

(B

A

)

(

x, ψ(x)
)

+ ψ̄T (x)
3∂3y

(B

A

)

(

x, ψ(x)
)

.

Now suppose that 4P (x, y)ȳ4 +Q(x, y)(3¯̄y2 − 2¯̄̄yȳ) +R(x, y)ȳ2 ∈ ker ẼN
D3

(x0, y0)
then

4P (x, ψ(x))ψ̄4(x)+Q(x, ψ(x))(3 ¯̄ψ2(x)−2
¯̄̄
ψ(x)ψ̄(x))+R(x, ψ(x))ψ̄2(x) = 0 mod (x−x0)l3

Thus

4P (x, ψ(x))ȳ40ψ̄
4(x)

+Q(x, ψ(x))
(

3ȳ40
¯̄ψ2(x) − 2

(

ȳ30
¯̄̄
ψ(x) + 3ȳ0 ¯̄y0

¯̄ψ(x) + ¯̄̄y0ψ̄(x)
)

ȳ0ψ̄(x) + 6ȳ20 ¯̄y0
¯̄ψ(x)ψ̄(x) + 2¯̄̄y0ȳ0ψ̄

2(x)
)

+R(x, ψ(x))ȳ40ψ̄
2(x) = 0 mod (x− x0)

l3

m
4P (x, ψ(x))ψ̄4

T (x)

+Q(x, ψ(x))
(

3ȳ40
¯̄ψ2(x)− 2

¯̄̄
ψT (x)ψ̄T (x) + 6ȳ20 ¯̄y0

¯̄ψ(x)ψ̄(x) + 2¯̄̄y0ȳ0ψ̄
2(x)

)

+R(x, ψ(x))ȳ20ψ̄
2
T (x) = 0 mod (x− x0)

l3

m
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4P (x, ψ(x))ψ̄4
T (x)

+Q(x, ψ(x))
(

3(ȳ20
¯̄ψ(x) + ¯̄y0ψ̄(x))

2 − 6ȳ20 ¯̄y0
¯̄ψ(x)ψ̄(x) − 3¯̄y20ψ̄

2(x)

−2
¯̄̄
ψT (x)ψ̄T (x) + 6ȳ20 ¯̄y0

¯̄ψ(x)ψ̄(x) + 2¯̄̄y0ȳ0ψ̄
2(x)

)

+R(x, ψ(x))ȳ20ψ̄
2
T (x) = 0 mod (x− x0)

l3

m
4P (x, ψ(x))ψ̄4

T (x)

+Q(x, ψ(x))
(

3 ¯̄ψ2
T (x)− 3¯̄y20ψ̄

2(x) − 2
¯̄̄
ψT (x)ψ̄T (x) + 2¯̄̄y0ȳ0ψ̄

2(x)
)

+R(x, ψ(x))ȳ20ψ̄
2
T (x) = 0 mod (x− x0)

l3

m
4P (x, ψT (x))ψ̄

4
T (x)

+Q(x, ψT (x))(3
¯̄ψT (x)

2 − 2
¯̄̄
ψT (x)ψ̄T (x))

((

−3
¯̄y2

0

ȳ2

0

+ 2
¯̄̄y0

ȳ0

)

Q(x, ψT (x)) +R(x, ψT (x))ȳ
2
0

)

ψ̄2
T (x) = 0 mod (x − x0)

l3

Therefore

4P (x, y)ȳ4 +Q(x, y)(3¯̄y2 − 2¯̄̄yȳ) +

(

R(x, y)ȳ20 −
(

3
¯̄y20
ȳ20

− 2
¯̄̄y0
ȳ0

)

Q(x, y)

)

ȳ2

belongs to ker EV3

D3
(x0, y0, ȳ0, ¯̄y0, ¯̄̄y0). The converse is straightforward. �

Lemma 38. Consider a non trivial solution

4P (x, y)ȳ4 +Q(x, y)(3¯̄y2 − 2¯̄̄yȳ) +R(x, y)ȳ2 ∈ ker ẼN
D3

(x0, y0),

then:

• If Q = 0 then 4P ȳ2 +R ∈ ker ẼN,2
D1

(x0, y0).

• If Q 6= 0 and Q 6∈ ker EN
D0

then:

ȳ(x)2
(

4D0(P/Q)+8A(P/Q)∂y(B/A)−2A∂3y(B/A)
)(

x, y(x)
)

+ȳ20D0(R/Q)
(

x, y(x)
)

= 0.

Proof. As 4P (x, y)ȳ4 + Q(x, y)(3¯̄y2 − 2¯̄̄yȳ) + R(x, y)ȳ2 ∈ ker ẼN
D3

(x0, y0), we have
using Lemma 37

4P
(

x, y(x)
)

ȳ4(x) +Q
(

x, y(x)
)

(3¯̄y2(x) − 2¯̄̄y(x)ȳ(x))

+

(

R
(

x, y(x)
)

ȳ20 −
(

3
¯̄y20
ȳ20

− 2
¯̄̄y0
ȳ0

)

Q
(

x, y(x)
)

)

ȳ2(x) = 0 mod (x− x0)
l3

Then Theorem 24 applied with the five variables x, y, ȳ, ¯̄y, ¯̄̄y gives

4P
(

x, y(x)
)

ȳ4(x) +Q
(

x, y(x)
)

(3¯̄y2(x) − 2¯̄̄y(x)ȳ(x))

+

(

R
(

x, y(x)
)

ȳ20 −
(

3
¯̄y20
ȳ20

− 2
¯̄̄y0
ȳ0

)

Q
(

x, y(x)
)

)

ȳ2(x) = 0.

IfQ(x, y) = 0 as a polynomial then we have 4P
(

x, y(x)
)

ȳ4(x) + ȳ20R
(

x, y(x)
)

ȳ2(x) = 0.

As ȳ(x) 6= 0, we get 4P
(

x, y(x)
)

ȳ2(x) + ȳ20R
(

x, y(x)
)

= 0. And thus 4P ȳ2 +R be-

longs to ker ẼN,2
D1

(x0, y0) by Lemma 27.
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If Q(x, y) 6= 0 as a polynomial and Q 6∈ kerEN
D0

then Q
(

x, y(x)
)

6= 0. We set
F = P/Q and G = R/Q then we have:

(⋆) 4F
(

x, y(x)
)

ȳ2(x) +

(

3
¯̄y2(x)

ȳ2(x)
− 2

¯̄̄y(x)

ȳ(x)

)

+ ȳ20G
(

x, y(x)
)

−
(

3
¯̄y20
ȳ20

− 2
¯̄̄y0
ȳ0

)

= 0.

The derivation relatively to x of 3
¯̄y2(x)
ȳ2(x) − 2

¯̄̄y(x)
ȳ(x) and the relation given by the differ-

ential system (S′
3) gives:

∂x

(

3
¯̄y2(x)

ȳ2(x)
− 2

¯̄̄y(x)

ȳ(x)

)

=

[

3

(

2¯̄y
[

¯̄y∂y

(B

A

)

+ ȳ2∂2y

(B

A

)] 1

ȳ2

)

−6¯̄y2ȳ∂y

(B

A

) 1

ȳ3

−2

(

¯̄̄y∂y

(B

A

)

+ 3¯̄yȳ∂2y

(B

A

)

+ ȳ3∂3y

(B

A

)

)

1

ȳ

+2¯̄̄yȳ∂y

(B

A

) 1

ȳ2

]

(

x, y(x), ȳ(x), ¯̄y(x), ¯̄̄y(x)
)

= −2ȳ2(x)∂3y

(B

A

)

(

x, y(x)
)

.

Then the derivation relatively to x of (⋆) gives:

0 = 4A−1(x, y(x))D0(F )(x, y(x))ȳ
2(x) + 8F (x, y(x))ȳ2(x)∂y

(B

A

)

−2ȳ2(x)∂3y

(B

A

)

(

x, y(x)
)

+ ȳ20A
−1(x, y(x))D0(G)(x, y(x))

Thus

0 = ȳ(x)2
(

4D0(F ) + 8AF∂y(B/A)− 2A∂3y(B/A)
)(

x, y(x)
)

+ȳ20D0(G)
(

x, y(x)
)

.

This gives the desired conclusion. �

Now we can state the generalization of Theorem 34 for the Riccati case.

Theorem 39 (Riccati extactic curve Theorem).

(1) If ẼN
D3

(x0, y0) = 0 then the derivation D0 has a Riccati first integral with
degree smaller than N or a 2-Darbouxian first integral with degree smaller
than 2N + 4d − 1 or a rational first integral with degree smaller than
4N + 10d− 3. Moreover the defining equation of the first integral, (Rat),
(D) or (Ric), has coefficients in K.

(2) If D0 has a rational or a 2-Darbouxian or a Riccati first integral with degree

smaller than N then ẼN
D3

(x0, y0) = 0.

Proof of Theorem 39. First consider a non trivial solution

4P (x, y)ȳ4 +Q(x, y)(3¯̄y2 − 2¯̄̄yȳ) +R(x, y)ȳ2 ∈ ker ẼN
D3

(x0, y0).

If Q = 0 then by Lemma 38, then 4P ȳ2 +R ∈ ker ẼN,2
D1

(x0, y0) and Theorem 29
gives the existence of a 2-Darbouxian first integral with degree smaller than N and
defining equation (D) with coefficients in K or a first integral with degree smaller
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than 2N + 2d− 1 and with coefficients in K.

If Q 6= 0 and Q ∈ ker ẼN
D0

then by Theorem 25 there exists a rational first integral
with degree smaller than N with coefficients in K.

If Q 6= 0 and Q 6∈ ker EN
D0

then by Lemma 38 we have two situations:
In the first situation we have:

4D0(P/Q) + 8A(P/Q)∂y(B/A) − 2A∂3y(B/A) = 0.

In this case, Proposition 10 gives the existence of a Riccati first integral. As
degP, degQ ≤ N , we deduce the existence of a Riccati first integral with degree
smaller than N . Moreover, the equation of type (Ric) giving the existence of a
Riccati first integral has coefficients in K since P,Q ∈ K(x0, y0)[x, y].
In the second situation we have 4D0(P/Q) + 8A(P/Q)∂y(B/A) − 2A∂3y(B/A) 6= 0
and

ȳ(x)2
(

4D0(P/Q)+8A(P/Q)∂y(B/A)−2A∂3y(B/A)
)(

x, y(x)
)

+ȳ20D0(R/Q)
(

x, y(x)
)

= 0.

In this case, we set

P1 = A3Q2
(

4D0(P/Q) + 8A(P/Q)∂y(B/A)− 2A∂3y(B/A)
)

,

Q1 = A3Q2D0(R/Q)

and we obtain ȳ2P1 + ȳ20Q1 ∈ ker Ẽ2N+4d−1,2
D1

(x0, y0, ȳ0). Therefore by Lemma 27,

ȳ2P1 + Q1 ∈ ker E2N+4D−1,2
D1

(x0, y0), thus Theorem 29 gives the existence of a 2-
Darbouxian first integral with degree smaller than 2N + 4d − 1 or the existence
of a rational first integral with degree smaller than 4N + 10d − 3. Moreover the
equation giving this first integral has coefficients in K since P1, Q1 ∈ K(x0, y0[x, y].

Now, we study the second part of the theorem.
If D0 has a Riccati first integral with degree smaller than N then we have the
following relation ∂2yF/F = P/Q, with P,Q ∈ K̄[x, y] and deg(P ), deg(Q) ≤ N .

Proposition 7 implies that 4ȳ2P/Q+ 3¯̄y2/ȳ2 − 2¯̄̄y/ȳ is a first integral of (S′
3). This

gives 4ȳ2(x)P/Q
(

x, y(x)
)

+ 3¯̄y2(x)/ȳ2(x) − 2¯̄̄y(x)/ȳ(x) = c, where c ∈ K̄(x0, y0)

putting ȳ(x0) = 1, ¯̄y(x0) = 0, ¯̄̄y(x0) = 0. Thus

4P
(

x, y(x)
)

ȳ4(x) +Q
(

x, y(x)
)

(3¯̄y2(x)− 2¯̄̄y(x)ȳ(x)) − cQ
(

x, y(x)
)

ȳ2(x) = 0,

and then

4P ȳ4 +Q(3¯̄y2 − 2¯̄̄yȳ)− cQȳ2 ∈ K̄⊗K ker ẼN
D3

(x0, y0).

Thus there exists a non trivial element with coefficients in K in ker ẼN
D3

(x0, y0), and

thus ẼN
D3

(x0, y0) = 0. The situation where D0 has a rational or a 2-Darbouxian
first integral with degree smaller than N can be done in the same way. �

As before, we remark that the computation of F ∈ K(x, y) is not restrictive.

Corollary 40. Suppose that D0 has a Riccati first integral and no 2-Darbouxian
nor rational first integral. We have:
There exists F ∈ K(x, y) with degF ≤ N such that equation (Ric) gives a Riccati

first integral if and only if there exists F̃ ∈ K(x, y) with deg F̃ ≤ N such that
equation (Ric) gives a Riccati first integral
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Proof. Given a Riccati first integral with coefficients in K̄, we apply the second part
of Theorem 39, giving ẼN

D3
(x0, y0) = 0. We then apply the first part, and knowing

that 2-Darbouxian and rational first integrals are forbidden, the only possibility
left is a the existence of a Riccati first integral of degree ≤ N with an equation of
type (Ric) with coefficients in K. �

4. Evaluations of extactic curves

In the algorithms, we will not compute the extactic curves as polynomials in
x0, y0. We will only compute the extactic curves evaluated at a random point. If
the extactic curve is a non-zero polynomial, then almost surely its evaluation at a
random point will not be zero. However, theoretically this can happen, and thus we
want to bound the algebraic set on which such kind of bad situations can happen.

Definition 41. We denote by ΣDr ,N,k (where k is omited when r 6= 1) the following
algebraic variety:

ΣDr ,N,k = V
(

p× p minors of ẼN,k
Dr

(x0, y0), where p = rank ẼN,k
Dr

)

.

With this definition we can now state a specialized version of Theorem 24. In
the following in order to have a uniform statement we set ȳ(2) = ¯̄y and ȳ(3) = ¯̄̄y.

Lemma 42. Let P ∈ ker ẼN,k
Dr

(x⋆0, y
⋆
0) and (x⋆0, y

⋆
0) 6∈ ΣDr ,N,k then

P
(

x, y⋆(x), . . . , ȳ
(r)
⋆ (x)

)

= 0,

where y⋆(x), . . . , ȳ
(r)
⋆ (x) is a solution of (S′

r) with initial condition y⋆(x
⋆
0) = y⋆0 ,

ȳ⋆(x
⋆
0) = 1, ȳ

(2)
⋆ (x⋆0) = ȳ

(3)
⋆ (x⋆0) = 0.

Proof. If (x⋆0, y
⋆
0) 6∈ ΣDr ,N,k then

dimK ker ẼN,k
Dr

(x⋆0, y
⋆
0 , 1, 0, . . . , 0) = dimK(x0,y0) ker ẼN,k

Dr
(x0, y0).

By Lemma 27, Lemma 32 and Lemma 37, we have

dimK(x0,y0) ker ẼN,k
Dr

(x0, y0) = dimLr
ker EVr

Dr
,

where Lr = K(x0, y0, ȳ0, . . . , ȳ
(r)
0 ). Thus in this situation, if P ∈ ker ẼN,k

Dr
(x⋆0, y

⋆
0)

then there exists P(x0, y0, . . . , ȳ
(r)
0 , x, y, . . . , ȳ(r)) in ker EVr

Dr
such that

P(x⋆0, y
⋆
0 , 1, 0, 0;x, y, ȳ, . . . , ȳ

(r)) = P (x, y, . . . , ȳ(r)).

By Theorem 24, we have

P(x0, y0, . . . , ȳ
(r)
0 , x, y(x), . . . , ȳ(r)(x)) = 0

then

P
(

x, y⋆(x), . . . , ȳ
(r)
⋆ (x)

)

= 0.

�

In the following, we will need some explicit bounds on the degree of the minors

of ẼN,k
Di

.
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Lemma 43. The degree of a minor of EN
D0

is smaller than

B0(d,N) :=
N(N + 1)(N + 2)

2
+ (d− 1)

(N + 1)2(N + 2)2 − (N + 1)(N + 2)

8
.

The degree of a minor of ẼN,k
D1

is smaller than

B1(d,N) := Nl1 +
(2d− 1)(l1 − 1)l1

2

= N(N + 1)(N + 2) + (2d− 1)
(N + 1)2(N + 2)2 − (N + 1)(N + 2)

2
.

The degree of a minor of ẼN
D2

is smaller than

B2(d,N) := Nl2 +
(3d− 1)(l2 − 1)l2

2

=
3N(N + 1)(N + 2)

2
+

3d− 1

2

[(3

2
(N + 1)(N + 2)

)2

− 3

2
(N + 1)(N + 2)

]

.

The degree of a minor of ẼN
D3

is smaller than

B3(d,N) := Nl2 +
(4d− 1)(l3 − 1)l3

2

=
3N(N + 1)(N + 2)

2
+

4d− 1

2

[(3

2
(N + 1)(N + 2)

)2

− 3

2
(N + 1)(N + 2)

]

.

Proof. The degree of a minor of ẼN
D0

is smaller than the degree of the extactic curve.

The annouced bound is given in [Chè11]. We apply here the same strategy for ẼN,k
D1

:

Let {vi} be basis of V1. The degree in x0, y0 of a minor M of ẼN
D1

satisfies

degM ≤
l1−1
∑

k=0

degDk
1 (vi).

As degDk
1 (vi) ≤ k(2d− 1) +N , we get

degM ≤
l1−1
∑

k=0

k(2d− 1) +N ≤ Nl1 + (2d− 1)

l1−1
∑

k=0

k ≤ Nl1 +
(2d− 1)(l1 − 1)l1

2
.

The bounds for ẼN
D2
, ẼN

D3
are obtained in the same way. �

Corollary 44. The algebraic variety ΣDr,N,k is included in an algebraic hypersur-
face with degree smaller than Br(d,N).

The following set will be also useful to characterize some special situations.

Definition 45. We denote by SN the following set:
If D has no rational first integrals of degree ≤ N then

SN =

{

(x0, y0, x1, y1) ∈ K4

∣

∣

∣

∣

(x0, y0) or (x1, y1) vanishes an irreducible
Darboux polynomial of degree ≤ N

}

If D has an indecomposable rational first integral P/Q of degree p ≤ N then

SN =







(x0, y0, x1, y1) ∈ K4

∣

∣

∣

∣

∣

∣

P (x0, y0)Q(x1, y1) = P (x1, y1)Q(x0, y0) or
(x0, y0) or (x1, y1) vanishes an irreducible
Darboux polynomial of degree < p
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This set corresponds to situations we try to avoid. More precisely, when D0 has
no rational first integral we do not want to get a solution

(

x, y(x)
)

corresponding
to a Darboux polynomial. When D0 has a rational first integral we do not want to
get an orbit with degree strictly smaller than the degree of generic orbit. At last,
when considering two initial conditions with D0 having a rational first integral we
do not want them to be on the same level of this first integral. Now, we give a
bound on this set:

Lemma 46. The algebraic variety SN is included in an algebraic hypersurface with
degree smaller than

(

d(d+ 1) + 12
)

N .

Proof. If D0 has no rational first integral then by the Darboux-Jouanolou theo-
rem D0 has at most d(d + 1)/2 irreducible Darboux polynomials. Therefore, if
(x0, y0, x1, y1) ∈ SN then (x0, y0) or (x1, y1) vanishes the product of d(d+1)/2 bi-
variate polynomials with degree smaller than N . This gives a bound on the degree
which is lower than the bound of the Lemma.
If D0 has a rational first integral with degree p ≤ N then all irreducible Darboux
polynomials divide a linear combination λP − µQ where P/Q is an indecompos-
able rational first integral with degree p. By the Darboux-Jouanolou theorem we
know that all but finitely many irreducible Darboux polynomials are of the form
λP −µQ and have degree p. The set σ(P,Q) of (λ : µ) ∈ P1(K) such that λP −µQ
is reducible or has a degree strictly smaller than p is the set of remarkable val-
ues. Sometimes this set is called the spectrum of P/Q. It is proved in [Chè15]
that |σ(P,Q)| ≤ d(d + 1)/2 + 5. So if (x0, y0, x1, y1) ∈ SN then it vanishes the
polynomial

P (x0, y0)Q(x1, y1)− P (x1, y1)Q(x0, y0)

of degree 2N or (x0, y0) or (x1, y1) vanishes a polynomial λP − µQ where (λ : µ)
belongs to σ(P,Q). Multiplying these polynomials together gives the bound on the
degree of the Lemma

2N +N

(

5 +
d(d+ 1)

2

)

+N

(

5 +
d(d+ 1)

2

)

= (d(d+ 1) + 12)N.

�

5. The first integral algorithms

In the following sections we are going to describe our algorithms. As men-
tionned before we are going to compute rational first integrals for the derivations
D0, D1, D2, D3. These rational first integrals are computed thanks to the extactic
curves. We need then to compute the flow and a non trivial solution for ẼN

Di
.

Compute flow series

Input: A(x, y), B(x, y) ∈ K[x, y], x⋆0, y
⋆
0 , N ∈ N, r ∈ [[0; 3]].

Output: r + 1 series y(x), . . . , ȳ(r)(x) solutions of (S′
r) mod (x − x⋆0)

σ

where σ = (r + 1) (N+1)(N+2)
2 , with initial condition y(x⋆0) = y⋆0 , ȳ(x

⋆
0) = 1,

ȳ(2)(x⋆0) = ȳ(3)(x⋆0) = 0.
This subroutine is performed with the algorithm given in [BCO+07].

For the following subroutine, we need a weighted degree in order to specified the
output. We use the following weighted degree:
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w-deg
(

P (x, y, ȳ, ȳ(2), ȳ(3)
)

= degP (x, y, ȳN+1, (ȳ(2))2N+2, (ȳ(3))3N+3).

Compute solution extactic kernel

Input: A(x, y), B(x, y) ∈ K[x, y], y(x), . . . , ȳ(r)(x) ∈ K[[x]]/(x−x⋆0)σ, N , r ∈ [[0; 3]],
k ∈ N∗ (k is omited if r 6= 1).

Output: A non trivial solution, if it exists, with minimal weighted degree of ẼN,k
Dr

,
or “None”.

(1) Compute a Hermite-Padé approximation of
(

y(x), . . . , yN(x), ȳ(x), . . . , ȳ(x)yN (x), . . . , ȳ(r)(x), . . . , ȳ(r)(x)yN (x)
)

with minimal weighted degree, see Section 6.
(2) Construct from this approximation a polynomial J ∈ K[x, y, ȳ, ȳ(2), ȳ(3)],

such that J
(

x, y(x), . . . , y(r)(x)
)

= 0 mod (x− x⋆0)
σ.

(3) If J ∈ Vr and degx,y J ≤ N then Return J , Else Return “None”.

5.1. Rational first integrals.

An algorithm which computes a rational first integral with degree smaller than N
has been described in [BCCW16]. In this article, rational first integrals are com-
puted using the same approach. We recall here the description of such algorithm.

The following algorithm search for Darboux polynomials factors of a polynomial
P which vanish at some point (x0, y0).

Build Rational first integral

Input: P,A,B ∈ K[x, y], (x⋆0, y
⋆
0) ∈ K2.

Output: An irreducible Darboux polynomial P(x, y) ∈ K[x, y], such that P(x⋆0, y
⋆
0) = 0,

or 1.

(1) Compute the factorization gcd
(

P,D0(P )
)

=
∏l

j=1 Lj(x, y), where Li are

irreducible in K[x, y] and set i := 1.
(2) While Li(x

⋆
0, y

⋆
0) 6= 0 do i := i+ 1.

(3) If i ≤ l then Return Li Else Return 1.

The algorithm for computing the rational first integrals is then the following.

Compute Rational first integral

Input: A,B ∈ K[x, y], (x⋆0, y
⋆
0), (x

⋆
0, y

⋆
1) ∈ K2, N ∈ N

Output: An equation (Eq0) : F − F = 0 where F (x, y) ∈ K(x, y) \ K, or “None”
or “I don’t know”.

(1) For y⋆i in {y⋆0 , y⋆1} do
(a) If A(x⋆0, y

⋆
i ) = 0 then Return “I don’t know”.

(b) Compute flow series(A,B, x⋆0, y
⋆
i , N, 0)=: y(x).

(c) Compute solution extactic kernel(A,B, y(x), N, 0)=:S.
If S=“None”, then Return “None”, else S =: P .

(d) Build Rational first integral(A,B, P, x⋆0, y
⋆
i )=: Pi.

(2) If P0/P1 /∈ K and D0(P0/P1) = 0 then Return((Eq0) : F − P0/P1 = 0),
else Return “I don’t know”.
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5.2. Darbouxian first integrals.

This section describes how to use the results given in the previous section in order
to get an efficient probabilistic algorithm for searching Darbouxian first integrals.

Build Darbouxian first integral

Input: A(x, y), B(x, y), P (x, y), Q(x, y) ∈ K[x, y] with (P,Q) 6= (0, 0), (x0, y0) in
K2, k ∈ N∗ (by default k = 1).
Output: An equation (Eq1) : ∂yF − F 1/k = 0, where F (x, y) ∈ K(x, y) \ {0}, or a
polynomial P(x, y).

(1) If P = 0 then Return
(

Build Rational first integral(Q,A,B, x0, y0)
)

.

(2) If Q = 0 then Return
(

Build Rational first integral(P,A,B, x0, y0)
)

.

(3) R1 := APQ(P/Q)−1/k
(

D0((P/Q)1/k) +A(P/Q)1/k∂y(B/A)
)

.

(4) If R1 = 0 then Return (Eq1) : ∂yF − (P/Q)1/k = 0
Else Return

(

Build Rational first integral (R1, A,B, x0, y0)
)

.

With the previous algorithm we can now describe how we compute Darbouxian
first integral.

Compute Darbouxian first integral

Input: A,B ∈ K[x, y], (x⋆0, y
⋆
0), (x

⋆
0, y

⋆
1) ∈ K2, N ∈ N, k ∈ N∗ (by default k = 1)

Output: An equation (Eq1) : ∂yF − F 1/k = 0, where F (x, y) ∈ K(x, y) \ {0}, or
an equation (Eq0) : F − F = 0 where F (x, y) ∈ K(x, y) \K, or “None” or “I don’t
know”.

(1) For y⋆i in {y⋆0 , y⋆1} do
(a) If A(x⋆0, y

⋆
i ) = 0 then Return “I don’t know”.

(b) Compute flow series(A,B, x⋆0, y
⋆
i , N, 1)=: y(x), ȳ(x).

(c) Compute solution extactic kernel(A,B, y(x), ȳ(x), N, 1, k)=:S.
If S=“None”, then Return “None”, else S =: ȳkP −Q.

(d) Build Darbouxian first integral(A,B, P,Q, x⋆0, y
⋆
i , k)=: Pi.

(e) If Pi 6∈ K[x, y] then Return(Pi)
(2) If P0/P1 /∈ K and D0(P0/P1) = 0 then Return((Eq0) : F − P0/P1 = 0),

else Return “I don’t know”.

Proposition 47. The algorithm Compute Darbouxian first integral satisfies the fol-
lowing properties:

• If it returns “None” then there are no k-Darbouxian nor rational first in-
tegral with degree smaller than N .

• If it returns an equation (Eq0) or (Eq1) then this equation leads to a first
integral.

• If it returns “I don’t know”, then (x⋆0, y
⋆
0 , x

⋆
0, y

⋆
1) belongs to

(K2×(A−1(0)∪ΣD0,N ∪ΣD1,N,k))∪((A−1(0)∪ΣD0,N ∪ΣD1,N,k)×K2)∪S2N+2d−1.

Proof. If the algorithm returns “None”, this means that ẼN,k
D1

(x⋆0, y
⋆
0) 6= 0. Theo-

rem 29 implies that D0 has no rational nor k-Darbouxian first integral with degree
smaller than N .
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If the algorithm returns (Eq1) this means that we have R1 = 0 in Build Darboux-

ian first integral. Proposition 10 gives then the desired result.

If the algorithm returns (Eq0) then we necessarily have a rational first integral
since Step 2 checks if D0(P0/P1) = 0 and P0/P1 /∈ K.

Now we prove the last point of the proposition. We suppose that (x⋆0, y
⋆
0 , x

⋆
0, y

⋆
1)

do not belong to

(K2×(A−1(0)∪ΣD0,N ∪ΣD1,N,k))∪((A−1(0)∪ΣD0,N ∪ΣD1,N,k)×K2)∪S2N+2d−1.

First, if dimK ker ẼN,k
D1

(x⋆0, y
⋆
i ) = 0 then in Step 1c of Compute Darbouxian first

integral we have S =“None”. Thus the algorithm returns “None”.

Second, we suppose that dimK ker ẼN,k
D1

(x⋆0, y
⋆
i ) 6= 0.

In Step 1c of Compute Darbouxian first integral we have S = ȳkP −Q.
• If P = 0, then the computed solution has the form (Q, 0) with Q 6= 0 and

Q ∈ ker ẼN
D0

(x⋆0, y
⋆
i ). Furthermore (x⋆0, y

⋆
i ) 6∈ ΣD0,N , thus by Lemma 42 we get

Q
(

x, y(x)
)

= 0. Then a factor of Q is a Darboux polynomial which vanishes at
(x⋆0, y

⋆
i ) with (x⋆0, y

⋆
0 , x

⋆
0, y

⋆
1) 6∈ SN . As (x⋆0, y

⋆
i ) 6∈ ΣD0,N , we also deduce that there

exists a rational first integral with degree p smaller than N . Thus in Step 1d of
Compute Darbouxian first integral the polynomial Pi is a Darboux polynomial with
degree p since in Compute solution extactic solution we compute a solution with
minimal degree and (x⋆0, y

⋆
0 , x

⋆
0, y

⋆
1) /∈ SN .

We claim that if we have obtained a solution with P = 0 for (x⋆0, y
⋆
0) then we nec-

essary have the same situation for (x⋆0, y
⋆
1). Indeed, we have already remarked that

in this situation D0 admits a rational first integral f/g with degree p smaller than
N . Thus as (x⋆0, y

⋆
0 , x

⋆
0, y

⋆
1) 6∈ SN there exists an irreducible Darboux polynomial

Q with degree p which gives a non-trivial solution (Q, 0) in ker ẼN,k
D1

(x⋆0, y
⋆
1). As

in Compute solution extactic kernel we compute a non-trivial solution with minimal
weighted degree this proves our claim.
Therefore, in this situation we have P0 = λ0f − µ0g, and P1 = λ1f − µ1g, where
(λi : µi) 6∈ σ(f, g). Now as (x⋆0, y

⋆
0 , x

⋆
0, y

⋆
1) 6∈ SN , we have (λ0 : µ0) 6= (λ1 : µ1).

Then P0/P1 is not constant and thus gives a first integral.

• If P 6= 0 then Q 6= 0. Indeed, if Q = 0 then as (x⋆0, y
⋆
i ) 6∈ ΣD1,N,k we

have, thanks to Lemma 42, ȳ(x)kP
(

x, y(x)
)

= 0. Since ȳ(x) 6= 0 we deduce that

P
(

x, y(x)
)

= 0. Therefore a factor P of P is a Darboux polynomial which vanishes

at (x⋆0, y
⋆
i ). It would give a solution (P , 0) ∈ ker ẼN,k

D1
(x⋆0, y

⋆
i ). This is absurd since

Compute solution extactic kernel returns a solution with minimal weighted degree.
It follows Q 6= 0.
Furthermore, we have Q 6∈ ker ẼN

D0
(x⋆0, y

⋆
i ). Indeed, since (x

⋆
0, y

⋆
i ) 6∈ ΣD0,N , the con-

trary would imply Q
(

x, y(x)
)

= 0, thus (Q, 0) ∈ ker ẼN,k
D1

(x⋆0, y
⋆
1). This is absurd

since ȳkP −Q is a solution with minimal weighted degree.
In Build Darbouxian first integral, we thus compute R1.
If R1 = 0 then by Proposition 10 we get a Darbouxian first integral.
Now, we suppose that R1 6= 0.
As (x⋆0, y

⋆
i ) 6∈ ΣD1,N,k we have ȳ(x)

kP
(

x, y(x)
)

−Q
(

x, y(x)
)

= 0 thanks to Lemma 42.
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Then, with the same strategy used in Lemma 28, we get R1

(

x, y(x)
)

= 0. Therefore
a factor Pi of R1 gives an irreducible Darboux polynomial with degree smaller than
2N +2d− 1 which vanishes at (x⋆0, y

⋆
i ). As (x

⋆
0, y

⋆
0 , x

⋆
0, y

⋆
1) 6∈ S2N+2d−1, this implies

that D0 admits a rational first integral of degree ≤ 2N + 2d− 1 and P0,P1 define
two different levels of this first integral. Then P0/P1 is not constant and thus gives
a rational first integral. Therefore, the test at Step 2 is satisfied, and the algorithm
returns a rational first integral. Thus when R1 6= 0 the algorithm will never return
“I don’t know”. This concludes the proof. �

Proposition 48. We set

D(d,N) = 2d+ 2B0(d,N) + 2B1(d,N) + 2
(d(d+ 1)

2
+ 6
)

(2N + 2d− 1).

There exists a polynomial H with degree smaller than D(d,N) such that:
If H(x⋆0, y

⋆
0 , y

⋆
1) 6= 0 then Compute Darbouxian first integral returns “None” or an

equation leading to a first integral.

Proof. From Corollary 44 we deduce the existence of a polynomial H̃ such that:

ΣD0,N ∪ ΣD1,N,k ∪ V(A) ⊂ V(H̃)

where deg(H̃) ≤ d+B0(d,N)+B1(d,N). We also have from Lemma 46 the existence

of a polynomial ˜̃H such that:

S2N+2d−1 ⊂ V( ˜̃H)

Thus the polynomial

H(x⋆0, y
⋆
0 , y

⋆
0) = H̃(x⋆0, y

⋆
0)H̃(x⋆0, y

⋆
1)

˜̃H(x⋆0, y
⋆
0 , x

⋆
0, y

⋆
1)

vanishes on the set given in Proposition 47 in the “I don’t know” part. So if
H(x⋆0, y

⋆
0 , y

⋆
1) 6= 0 then Compute Darbouxian first integral returns “None” or an

equation leading to a frst integral, and the degree of H satisfies the degree bound.
�

Corollary 49. Let Ω a finite subset of K of cardinal |Ω| greater than D(d,N) and
assume that in Compute Darbouxian first integral x⋆0, y

⋆
0 , y

⋆
1 are chosen independently

and uniformly at random in Ω. Then, Compute Darbouxian first integral returns
“None” or an equation leading to a first integral with probability at least

1− D(d,N)

|Ω| .

Proof. This follows from Proposition 48, and Zippel-Schwartz’s lemma, see [gGG99].
�

Remark 50. In practice the “practical” probability will be much better, see Sec-
tion 7.

Proposition 51. If D0 admits a rational or Darbouxian first integral with degree
smaller than N then Compute Darbouxian first integral returns an equation with
minimal degree.

Proof. This follows directly from the fact that Compute solution extactic kernel re-
turns a solution with minimal weighted degree. �
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5.3. Liouvillian first integrals. This section describes how to use the results
given in the previous section in order to get an efficient probabilistic algorithm for
searching Liouvillian first integrals.

Build Liouvillian first integral

Input: A(x, y), B(x, y), P (x, y), Q(x, y), R(x, y) ∈ K[x, y] such that (P,Q,R) 6= 0,
(x0, y0) ∈ K2.
Output:An equation (Eq2) : ∂

2
yF −F (x, y)∂yF = 0, or (Eq1) : ∂yF −F = 0, where

F (x, y) ∈ K(x, y) \ {0}, or a polynomial P(x, y) ∈ K[x, y].

(1) If Q = 0 then Return(Build Darbouxian first integral(A,B, P,R, x0, y0))

(2) Compute P1 := A3Q2
(

D0(P/Q) +A(P/Q)∂y(B/A) +A∂2y(B/A)
)

,

Q1 := A3Q2D0(R/Q).
(3) If P1 = 0 then Return (Eq2) : ∂

2
yF − (P/Q)∂yF = 0

Else Return
(

Build Darbouxian first integral(A,B, P1, Q1, x0, y0)
)

Compute Liouvillian first integral

Input: A,B ∈ K[x, y], (x⋆0, y
⋆
0), (x

⋆
0, y

⋆
1) ∈ K2, N ∈ N

Output: An equation (Eq2) : ∂2yF − F∂yF = 0, or (Eq1) : ∂yF − F = 0, or an
equation (Eq0) : F − F = 0 where F (x, y) ∈ K(x, y), or “None” or “I don’t know”.

(1) For y⋆i in {y⋆0 , y⋆1} do
(a) If A(x⋆0, y

⋆
i ) = 0 then Return “I don’t know”.

(b) Compute flow series(A,B, x⋆0, y
⋆
i , N, 2)=: y(x), ȳ(x), ȳ(2)(x).

(c) Compute solution extactic kernel(A,B, y(x), ȳ(x), ȳ(2)(x), N, 2)=:S.
If S=“None”, then Return(“None”),
else S =: P (x, y)ȳ2 +Q(x, y)ȳ(2) + R(x, y)ȳ.

(d) Build Liouvillian first integral(A,B, P,Q,R, x⋆0, y
⋆
i )=: Pi.

(e) If Pi 6∈ K[x, y] then Return(Pi)
(2) If P0/P1 /∈ K and D0(P0/P1) = 0 then Return((Eq0) : F − P0/P1 = 0),

else Return “I don’t know”.

Proposition 52. The algorithm Compute Liouvillian first integral satisfies the fol-
lowing properties:

• If it returns “None” then there are no Liouvillian nor Darbouxian nor ra-
tional first integral with degree smaller than N .

• If it returns an equation (Eq0) or (Eq1) or (Eq2) then this equation leads
to a non-trivial first integral.

• If it returns “I don’t know”, then (x⋆0, y
⋆
0 , x

⋆
0, y

⋆
1) belongs to

(

K2×(V(A)∪ΣD0,N∪ΣD1,N∪ΣD2,N )
)

∪
(

(V(A)∪ΣD0,N∪ΣD1,N∪ΣD2,N )×K2
)

∪S4N+8d−3.

Proof. If the algorithm returns “None”, this means that we have ẼN
D2

(x⋆0, y
⋆
0) 6= 0

or ẼN
D2

(x⋆0, y
⋆
1) 6= 0. Theorem 34 implies that D0 has no rational nor Darbouxian

nor Liouvillian first integral with degree smaller than N .



SYMBOLIC COMPUTATIONS OF FIRST INTEGRALS 45

If the algorithm returns (Eq2) this means that we have P1 = 0 in Build Liouvillian

first integral. Proposition 10 gives then the desired result.

If the algorithm returns (Eq1) this result is correct thanks to Proposition 47.
Indeed, the algorithm returns (Eq1) when Build Liouvillian first integral uses Build

Darbouxian first integral.

If the algorithm returns (Eq0) then the output is correct as shown in Proposition
47.

Now,we prove the last point of the proposition and we suppose (x⋆0, y
⋆
0 , x

⋆
0, y

⋆
1)

do not belong to

(K2×(V(A)∪ΣD0,N∪ΣD1,N∪ΣD2,N ))∪((V(A)∪ΣD0 ,N∪ΣD1,N∪ΣD2,N)×K2)∪S4N+8d−3.

First, if dimK ker ẼN
D2

(x⋆0, y
⋆
i ) = 0 then in Step 1c of Compute Liouvillian first in-

tegral we have S =“None”. Thus the algorithm returns “None”.

Second, we suppose that dimK ker ẼN
D2

(x⋆0, y
⋆
i ) 6= 0.

In Step 1c of Compute Liouvillian first integral we have S = P ȳ2 +Q ¯̄y +Rȳ.
• If P = Q = 0 then as in Proposition 47 we deduce that in this situation the
algorithm returns a rational first integral with minimal degree.
• If Q = 0 and P 6= 0 then we deduce that P ȳ + R ∈ ẼN

D1
(x⋆0, y

⋆
i ). Then Proposi-

tion 47 allows us to conclude in this situation.
• If Q 6= 0 then Q 6∈ ker ẼN

D0
(x⋆0, y

⋆
i ). Indeed, as (x

⋆
0, y

⋆
i ) 6∈ ΣD0,N , this would imply

the existence of a rational first integral with degree smaller than N . Therefore,
this would give a non-trivial element (0, 0,R) ∈ ker ẼN

D2
(x⋆0, y

⋆
i ). This is impossible

since the computed solution has a minimal weighted degree.
Then in Build Liouvillian first integral, we compute P1.
If P1 = 0 then by Proposition 10 we get a Liouvillian first integral.
Now, we suppose P1 6= 0.
As (x⋆0, y

⋆
i ) 6∈ ΣD2,N , we have thanks to Lemma 42

P
(

x, y(x)
)

ȳ2(x) +Q
(

x, y(x)
)

¯̄y(x) +R
(

x, y(x)
)

ȳ(x) = 0.

Thus with the strategy used in Lemma 33 we get P1

(

x, y(x)
)

ȳ(x)+Q1

(

x, y(x)
)

= 0,
where deg(P1), deg(Q1) ≤ 2N + 3d − 1. Then by Lemma 28, the algorithm Build

Darbouxian first integral gives either a Darbouxian first integral with degree smaller
than 2N +3d− 1, or a rational first integral with degree smaller than 4N + 8d− 3
or a Darboux polynomial with degree smaller than 4N + 8d− 3. In this last case,
we continue to Step 2 and we have a Darboux polynomial Pi with degree smaller
than 4N +8d− 3 vanishing at (x⋆0, y

⋆
i ). As (x

⋆
0, y

⋆
0 , x

⋆
0, y

⋆
1) 6∈ S4N+8d−3, this implies

that D0 admits a rational first integral of degree ≤ 4N + 8d− 3 and P0,P1 define
two different levels of this first integral. Then P0/P1 is not constant and thus gives
a rational first integral. So the checking at Step 2 is satisfied, and the algorithm
returns a rational first integral. �

Proposition 53. We set

L(d,N) = 2d+2B0(d,N)+ 2B1(d,N)+ 2B2(d,N)+ 2
(d(d + 1)

2
+6
)

(4N +8d− 3).
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There exists a polynomial HL with degree smaller than L(d,N) such that:
If HL(x

⋆
0, y

⋆
0 , y

⋆
1) 6= 0 then Compute Liouvillian first integral returns “None” or an

equation leading to a first integral.

Proof. The proof is done exactly in the same way as the proof of Proposition 53. �

Corollary 54. Let Ω a finite subset of K of cardinal |Ω| greater than L(d,N) and
assume that in Compute Liouvillian first integral x⋆0, y

⋆
0 , y

⋆
1 are chosen independently

and uniformly at random in Ω. Then, Compute Liouvillian first integral returns
“None ” or an equation leading to a first integral with probability at least

1− L(d,N)

|Ω| .

Proposition 55. If D0 admits a rational or Darbouxian or Liouvillian first integral
with degree smaller than N then Compute Liouvillian first integral returns an equation
with minimal degree.

Proof. As in the Darbouxian case this is a direct consequence of the minimality of
the weighted degree of a solution in Compute solution extactic kernel. �

5.4. Riccati first integrals. This section describes how to use the results given in
the previous section in order to get an efficient probabilistic algorithm for searching
Riccati first integrals.

Build Riccati first integral

Input: A(x, y), B(x, y), P (x, y), Q(x, y), R(x, y) ∈ K[x, y] such that (P,Q,R) 6= 0,
(x0, y0) ∈ K2.

Output:An equation (Eq3) : ∂
2
yF − F (x, y)F = 0, or (Eq1) : ∂yF −

√

F (x, y) = 0,
where F (x, y) ∈ K(x, y), or a polynomial P(x, y) ∈ K[x, y].

(1) If Q = 0 then Return(Build Darbouxian first integral(A,B, P,R, x0, y0, 2))

(2) Compute P1 := A4Q2
(

4D0(P/Q) + 8A(P/Q)∂y(B/A) − 2A∂3y(B/A)
)

,

Q1 := A4Q2D0(R/Q).
(3) If P1 = 0 then Return (Eq3) : ∂

2
yF − (P/Q)F = 0

Else Return
(

Build Darbouxian first integral(A,B, P1, Q1, x0, y0, 2)
)

Compute Riccati first integral

Input: A,B ∈ K[x, y], (x⋆0, y
⋆
0), (x

⋆
0, y

⋆
1) ∈ K2, N ∈ N

Output: An equation (Eq3) : ∂
2
yF −FF , or (Eq1) : ∂yF −

√
F = 0, or an equation

(Eq0) : F − F = 0 where F (x, y) ∈ K(x, y), or “None” or “I don’t know”.

(1) For y⋆i in {y⋆0 , y⋆1} do
(a) If A(x⋆0, y

⋆
i ) = 0 then Return “I don’t know”.

(b) Compute flow series(A,B, x⋆0, y
⋆
i , N, 3)=: y(x), ȳ(x), ȳ(2)(x), ȳ(3)(x).

(c) Compute solution extactic kernel(A,B, y(x), ȳ(x), ȳ(2)(x), ȳ(3)(x), N, 3)=:S.
If S=“None”, then Return(“None”),
else S =: 4P (x, y)ȳ4 +Q(x, y)(3(ȳ(2))2 − 2ȳ(3)ȳ) +R(x, y)ȳ2.

(d) Build Riccati first integral(A,B, P,Q,R, x⋆0, y
⋆
i )=: Pi.

(e) If Pi 6∈ K[x, y] then Return(Pi)
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(2) If P0/P1 /∈ K and D0(P0/P1) = 0 then Return((Eq0) : F − P0/P1 = 0),
else Return “I don’t know”.

Proposition 56. The algorithm Compute Riccati first integral satisfies the following
properties:

• If it returns “None” then there are no Riccati nor 2-Darbouxian nor rational
first integral with degree smaller than N .

• If it returns an equation (Eq0) or (Eq1) or (Eq3) then this equation leads
to a non-trivial first integral.

• If it returns “I don’t know”, then (x⋆0, y
⋆
0 , x

⋆
0, y

⋆
1) belongs to

(

K2×(V(A)∪ΣD0,N∪ΣD1,N,2∪ΣD3,N )
)

∪
(

(V(A)∪ΣD0,N∪ΣD1,N,2∪ΣD3,N )×K2
)

∪S4N+10d−3.

Proof. If the algorithm returns “None”, this means that we have ẼN
D3

(x⋆0, y
⋆
0) 6= 0

or ẼN
D3

(x⋆0, y
⋆
1) 6= 0. Theorem 39 implies that D0 has no rational nor 2-Darbouxian

nor Riccati first integral with degree smaller than N .

If the algorithm returns (Eq3) this means that we have P1 = 0 in Build Riccati

first integral. Proposition 10 gives then the desired result.

If the algorithm returns (Eq1) this result is correct thanks to Proposition 47.
Indeed, the algorithm returns (Eq1) when Build Riccati first integral uses Build Dar-

bouxian first integral.

If the algorithm returns (Eq0) then the output is correct as shown in Proposi-
tion 47.

Now,we prove the last point of the proposition and we suppose (x⋆0, y
⋆
0 , x

⋆
0, y

⋆
1)

do not belong to

(K2×(V(A)∪ΣD0,N∪ΣD1,N,2∪ΣD3,N))∪((V(A)∪ΣD0 ,N∪ΣD1,N,2∪ΣD3,N )×K2)∪S4N+10d−3.

First, if dimK ker ẼN
D3

(x⋆0, y
⋆
i ) = 0 then in Step 1c of Compute Riccati first integral

we have S =“None”. Thus the algorithm returns “None”.

Second, we suppose that dimK ker ẼN
D3

(x⋆0, y
⋆
i ) 6= 0.

In Step 1c of Compute Riccati first integral we have

S = 4P (x, y)ȳ4 +Q(x, y)(3¯̄y2 − 2¯̄̄yȳ) +R(x, y)ȳ2.

• If P = Q = 0 then as in Proposition 47 we deduce that in this situation the
algorithm returns a rational first integral with minimal degree.

• If Q = 0 and P 6= 0 then we deduce that 4P ȳ2 + R ∈ ẼN,2
D1

(x⋆0, y
⋆
i ). Then

Proposition 47 allows us to conclude in this situation.
• If Q 6= 0 then Q 6∈ ker ẼN

D0
(x⋆0, y

⋆
i ). Indeed, as (x

⋆
0, y

⋆
i ) 6∈ ΣD0,N , this would imply

the existence of a rational first integral with degree smaller than N . Therefore,
this would give a non-trivial element (0, 0,R) ∈ ker ẼN

D3
(x⋆0, y

⋆
i ). This is impossible

since the computed solution has a minimal weighted degree.
Then in Build Riccati first integral, we compute P1.
If P1 = 0 then by Proposition 10 we get a Riccati first integral.



48 G. CHÈZE AND T. COMBOT

Now, we suppose P1 6= 0.
As (x⋆0, y

⋆
i ) 6∈ ΣD3,N , we have

4P
(

x, y(x)
)

ȳ(x)4 +Q
(

x, y(x)
)

(3¯̄y(x)2 − 2¯̄̄y(x)ȳ(x)) +R
(

x, y(x)
)

ȳ(x)2 = 0

thanks to Lemma 42. Thus with the strategy used in Lemma 38 we get

P1

(

x, y(x)
)

ȳ(x)2 +Q1

(

x, y(x)
)

= 0,

where deg(P1), deg(Q1) ≤ 2N + 4d − 1. Then by Lemma 28, the algorithm Build

Darbouxian first integral gives either a 2-Darbouxian first integral with degree smaller
than 2N+4d−1, or a rational first integral with degree smaller than 4N+10d−3 or
a Darboux polynomial with degree smaller than 4N +10d− 3. In this last case, we
continue to Step 2 and we have a Darboux polynomial Pi with degree smaller than
4N + 10d − 3 vanishing at (x⋆0, y

⋆
i ). As (x⋆0, y

⋆
0 , x

⋆
0, y

⋆
1) 6∈ S4N+10d−3, this implies

that D0 admits a rational first integral of degree ≤ 4N +10d− 3 and P0,P1 define
two different levels of this first integral. Then P0/P1 is not constant and thus gives
a rational first integral. Therefore the test at Step 2 is satisfied, and the algorithm
returns a rational first integral. �

As before we deduce the following results:

Proposition 57. We set

R(d,N) = 2d+2B0(d,N)+ 2B1(d,N)+ 2B3(d,N) +
(

d(d+1)+ 12
)

(4N +10d− 3)

There exists a polynomial HR with degree smaller than R(d,N) such that:
If HR(x

⋆
0, y

⋆
0 , y

⋆
1) 6= 0 then Compute Riccati first integral returns “None” or an equa-

tion leading to a first integral.

Proof. The proof is done exactly in the same way as the proof of Proposition 53. �

Corollary 58. Let Ω a finite subset of K of cardinal |Ω| greater than R(d,N) and
assume that in Compute Riccati first integral x⋆0, y

⋆
0 , y

⋆
1 are chosen independently

and uniformly at random in Ω. Then, Compute Riccati first integral returns “None”
or an equation leading to a first integral with probability at least

1− R(d,N)

|Ω| .

Proposition 59. If D0 admits a rational or 2-Darbouxian or Riccati first integral
with degree smaller than N then Compute Riccati first integral returns an equation
with minimal degree.

Proof. As in the Darbouxian case this is a direct consequence of the minimality of
the weighted degree of a solution in Compute solution extactic kernel. �

5.5. Deterministic algorithms. In this section we show how to get a determin-
istic algorithm from our probabilistic ones. We give explicitly the deterministic
algorithm for the Riccati case below. The Darbouxian and Liouvillian can be ob-
tained in the same way.

Deterministic computation Riccati first integral

Input: A,B ∈ K[x, y], such that A(x, y) 6= 0, N ∈ N

Output: An equation (Eq3) : ∂2yF − FF = 0, or (Eq1) : ∂yF −
√
F = 0, where

F (x, y) ∈ K(x, y), or an equation (Eq0) : F − F = 0 where F (x, y) ∈ K(x, y) \ K,
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or “None”.

(1) Set i := 0, x⋆0 := −1.
(2) While i ≤ R(d,N) + 1 do

(a) x⋆0 := x⋆0 + 1, Ω := ∅.
(b) While A(x⋆0, y) = 0 do x⋆0 := x⋆0 + 1.
(c) While |Ω| ≤ R(d,N) + 1 do

(i) Choose two random elements y⋆0 , y
⋆
1 ∈ K \ Ω such that y⋆0 6= y⋆1

and A(x⋆0, y
⋆
j ) 6= 0.

(ii) E :=Compute Riccati first integral(A,B, (x⋆0, y
⋆
0), (x

⋆
0, y

⋆
1), N).

(iii) If E =“None”, then Return “None”.
(iv) If E =“I don’t know” then Ω := Ω ∪ {y⋆0 , y⋆1}, Else Return E .

(d) i := i+ 1.
(3) Return “None”.

Proposition 60. The algorithm Deterministic computation Riccati first integral is
correct.

Proof. The deterministic algorithm repeats the probabilistic algorithm. If the prob-
abilistic returns an equation or “None” then this output is correct thanks to Propo-
sition 56.
We want to get x⋆0, y

⋆
0 , y

⋆
1 such that H(x⋆0, y

⋆
0 , y

⋆
1) 6= 0. As we use the probabilistic

algorithm with at most R(d,N) + 1 different values for x⋆0 and R(d,N) + 1 differ-
ent values for (y⋆0 , y

⋆
1) we necessarily avoid situations where H(x⋆0, y

⋆
0 , y

⋆
1) is equal

to zero. Then Proposition 57 implies that the probabilistic algorithm returns an
output different from “I don’t know” and we get the desired output. �

6. Complexity results

In this section we study the arithmetic complexity of our algorithms. We fo-
cus on the dependency on the degree bound N and we recall that we assume that
N ≥ d, where d = max(deg(A), deg(B)) denotes the degree of the polynomial vec-
tor field. This hypothesis is natural because if a derivation has a polynomial first
integral of degree N , then necessarily d ≤ N − 1. More precisely, we suppose that
d is fixed and N tends to infinity.

All the complexity estimates are given in terms of arithmetic operations in K.
We use the notation f ∈ Õ(g), roughly speaking this means that we neglect the
logarithmic factors in the expression of the complexity. For a precise definition, see
[gGG99, Definition 25.8].
We suppose that the Fast Fourier Transform can be used so that two univariate
polynomials with coefficients in K and degree bounded by r can be multiplied in
Õ(r), see [gGG99, Corollary 8.19].
We further assume that two matrices of size n with entries in K can be multiplied
using O(nω), where 2 ≤ ω ≤ 3 is the matrix multiplication exponent, see [gGG99,
Ch. 12].

The algorithm Compute flow series is a direct application of the algorithm given
in [BCO+07]. In our situation , the number of arithmetic operations needed to per-

form this subroutine is in Õ(Lσ+σ). Here L is the number of arithmetic operations
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needed to evaluate the rational functions defining the system (S′
r). Thus, we have

L ∈ O(d2). Furthermore, σ is the precision on the power series, then σ ∈ O(N2).
It thus follows that the computation modulo (x − x⋆0)

σ of y(x), y2(x),. . . ,yN(x),
ȳ(x), y(x)ȳ(x), . . . ,yN (x)ȳ(3)(x) can done with at most O(d2N2) arithmetic oper-
ations.

In Compute solution extactic kernel we need to find a nontrivial solution for EN
r,Dr

.
This can be done with an Hermite-Padé approximation. We recall this setting: We
have m polynomials fi(x) ∈ K[x], a precision σ, a shift s = (s1, . . . , sm) and we
want to compute m polynomials pi(x) ∈ K[x] such that

m
∑

i=1

pi.fi = 0 mod xσ.

The set of all solutions (p1, . . . , pm) is a K[x]-module. A s-minimal approximate
basis is a basis of this module and furthermore an element of this basis has min-
imal s-degree among all solutions of the problem. We recall that the s-degree of
(p1, . . . , pm) is maxi deg(pi + si).

We can compute such a basis with Õ
(

mω−1(σ + ξ)
)

arithmetic operations in K,
where ξ =

∑

i(si −min(s)), see [BL94], [ZL12, Theorem 5.3] and [JNSV17].

In our situation we have r ∈ [[0; 3]], m = (r + 1)(N + 1), σ = (r + 1) (N+1)(N+2)
2 .

When r = 1 we set:

(f1, . . . , fm) =
(

1, y(x), y2(x), . . . , yN(x), ȳ(x), ȳ(x)y(x), ȳ(x)y2(x), . . . , ȳ(x)yN (x)
)

,

s = (0, 1, 2, . . . , N,N + 1, . . . , 2N + 1).

When r = 2 we set

(f1, . . . , fm) =
(

ȳ(x), ȳ(x)y(x), ȳ(x)y2(x), . . . , ȳ(x)yN (x),

ȳ2(x), ȳ2(x)y(x), ȳ2(x)y2(x), . . . , ȳ2(x)yN (x),

ȳ(2)(x), ȳ(2)(x)y(x), ȳ(2)(x)y2(x), . . . , ȳ(2)(x)yN (x)
)

,

s = (0, 1, 2, . . . , N,N + 1, . . . , 2N + 1, 2N + 2, . . . , 3N + 2).

When r = 3 we set

(f1, . . . , fm) =
(

ȳ4(x), ȳ4(x)y(x), ȳ4(x)y2(x), . . . , ȳ4(x)yN (x),

Ψ(x),Ψ(x)y(x),Ψ(x)y2(x), . . . ,Ψ(x)yN (x),

ȳ2(x), ȳ2(x)y(x), ȳ2(x)y2(x), . . . , ȳ2(x)yN (x)
)

where Ψ(x) = 3¯̄y2(x) − 2¯̄̄y(x)ȳ(x), and

s = (0, 1, 2, . . . , N,N + 1, . . . , 2N + 1, 2N + 2, . . . , 3N + 2).

We remark that from a solution (p1, . . . , pm) we get:

• when r = 1, a polynomial

Q(x, y) + P (x, y)ȳ =

N
∑

i=0

pi(x)y
i +

N
∑

i=0

pN+1+i(x)y
iȳ,

• when r = 2, a polynomial

R(x, y)ȳ+P (x, y)ȳ2+Q(x, y)ȳ(2) =

N
∑

i=0

pi(x)y
iȳ+

N
∑

i=0

pN+1+i(x)y
iȳ2+

N
∑

i=0

p2N+2+i(x)y
iȳ(2),
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• when r = 3, a polynomial

P (x, y)ȳ4+Q(x, y)Ψ+R(x, y)ȳ2 =

N
∑

i=0

pi(x)y
iȳ4+

N
∑

i=0

pN+1+i(x)y
iΨ+

N
∑

i=0

p2N+2+i(x)y
iȳ2,

where Ψ = 3¯̄y2 − 2¯̄̄yȳ.

Therefore a solution with a minimal s-degree corresponds to a polynomial solu-
tion of EN

r,Dr
with minimal weighted degree. Thus the subroutine Compute solution

extactic kernel can be done with at most Õ(Nω−1N2) = Õ(Nω+1) arithmetic oper-
ations in K.

The algorithm Build Darboux computes a gcd of bivariate polynomials with degree
in O(N). This subroutine can be done with at most Õ(N2) arithmetic operations
in K, see [gGG99]. Furthermore, we need to factorize a polynomial with degree at
most N , this can be done in a probabilistic (respectively deterministic) way with

Õ(N3) (respectively Õ(Nω+1)) arithmetic operations plus the factorization of an
univariate polynomial in K[T ] with degree N , see [BLS+04, Lec06].

At last, in our algorithms we test if D0(P0/P1) = 0. This step corresponds to
the multiplication of bivariate polynomials with degree in O(N). Therefore this

step can be done with at most Õ(N2) arithmetic operations in K.

In conclusion our probabilistic algorithms use at most Õ(Nω+1 + d2N2) arith-
metic operations in K plus the factorization of a univariate polynomial with degree
at most N . This is the complexity given in Theorem 4.

AsR(d,N) ∈ O(dN4), the deterministic algorithm uses at most Õ(d2Nω+9 + d4N10)
arithmetic operations in K plus the factorization of a univariate polynomial in K[T ]
with degree at most N .

7. Examples

The algorithms developed in the previous sections have been implemented in
Maple. This implementation is available with some examples at:
http://combot.perso.math.cnrs.fr/software.html,
https://www.math.univ-toulouse.fr/∼cheze/Programme.html.
The computations for the following examples have been done on a Macbook pro
2013, intel core i7 2.8 Ghz.
For practical reasons, the implemented version of our algorithms do not use the
Hermite-Padé algorithm to find a solution of the extactic kernel. We just solve a
linear system. Furthermore, the solutions y(x),. . . , ¯̄̄y(x) are computed from y(x)
and then integrated. For example, we compute ȳ(x) with the formula:

ȳ(x) = exp
(

∫

B

A
(x, y(x))dx

)

.

7.1. The Darbouxian case. Let us consider the system

ẋ = x2 + 2xy + y2 − 4x+ 4y − 2, ẏ = x2 + 2xy + y2 + 4x− 4y − 2.

The algorithm Compute Darbouxian first integral returns in 0.2s, when N = 3:

∂F
∂y

+
14(x2 + 2xy + y2 − 4x+ 4y − 2)

11(x− y)(x2 + 2xy + y2 − 2)
,
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which after integration leads to the Darbouxian first integral

F(x, y) =
√
2 ln

(

x+ y −
√
2
)

−
√
2 ln

(

x+ y +
√
2
)

+ ln(x− y).

Now noting

z =
x+ y +

√
2

x+ y −
√
2
, w = x− y,

we have for the first integral level F(x, y) = c

w = ecz
√
2.

This curve is not algebraic for almost all c, and thus the system does not admit a
rational first integral.

The initial points used in the execution of the algorithm above were (1, 8), (1, 3).
To get “I don’t know”, we need for example to use two bad points, i.e. two points
vanishing a Darboux polynomial. From each point, we will obtain a Darboux poly-
nomial, and thus the algorithm will try the quotient as a first integral, which will
not work as the vector field has no rational first integral. We can choose for ex-
ample (1, 1), (1,

√
2 − 1). Such bad pairs of initial points were never encountered

when using (small) random initial points. In particular, the probabilistic algorithm
is the only algorithm necessary to use in practice, and we never have to rerun it
with several initial points.

If we use the algorithm Compute Darbouxian first integral with N = 2 then the
output is “None”. This is correct and means that there exists no Darbouxian first
integral with degree smaller than 2.

Now let us modify a little the previous example

ẋ = 2λ2x− 2λ2y + λ2 − x2 − 2xy − y2, ẏ = 2λ2y − 2λ2x+ λ2 − x2 − 2xy − y2.

The algorithm Compute Darbouxian first integral returns with λ = 100 and N = 3

∂F
∂y

− 312(x2 + 2xy + y2 − 20000x+ 20000y− 10000)

469(x− y)(y + 100 + x)(y − 100 + x)

in 0.2s which after integration leads to the Darbouxian first integral

F(x, y) = 100 ln (x+ y − 100)− 100 ln (x+ y + 100) + ln(x− y).

Now the exponential of F gives a rational first integral
(

x+ y − 100

x+ y + 100

)100

(x− y),

which is of degree 101.

We remark that if we want to compute a rational first integral we can use Com-

pute Darbouxian first integral. In this case the bound N is a bound on the degree
of the product of the irreducible Darboux polynomials used to write the rational
first integral (3 in the previous example) and not a bound on the degree of the
first integral (101 in the previous example). The difference between these bounds
is important when the rational first integral has one or several factors with large
multiplicities.
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7.2. Comparison with the Avelar-Duarte-da Mota’s algorithm. Now let us
compare our algorithm with the algorithm proposed by J. Avellar, L.G.S. Duarte,
L.A.C.P. da Mota, denoted in the following by: ADM algorithm, see [ADdM12].
First, we consider a vector field of the form (−∂yG, ∂xG) with

G = x+

m
∑

i=1

i ln(x+ y − i),

after multiplying by a common denominator.
We find the Darbouxian first integral in the following times.

m 1 2 3 4 5 6
Compute Darbouxian first integral 0.015 0.031 0.297 2.090 4.883 17.51

ADM algorithm 0.094 0.047 0.078 0.109 0.109 0.187

Unexpectedly, the ADM algorithm fails with m ≥ 7. We see that the ADM algo-
rithm computation times are much better than ours. This is because the Darboux
polynomials are all of degree 1, and the ADM algorithm computes them first. Af-
ter there is an exponential combinatoric step, but here it is negligible at those lowm.

Let us now compare with a growing degree Darboux polynomial case

G = x+ ln(x+ ym − 1).

We find the Darbouxian first integral in the following times.

m 1 2 3 4 5 6
Compute Darbouxian first integral 0.015 0.015 0.125 0.843 1.809 6.412

ADM algorithm 0.094 0.078 1.123 > 103 > 103 > 103

The timings of our algorithm have the same order of magnitude, but the ADM
algorithm becomes almost unusable. This is because the computation of Darboux
polynomials is very expansive even for low degrees. In other words, as soon as
the Darboux polynomials become a little to complicate, the ADM algorithm is not
usable. Our algorithm never computes Darboux polynomials, and thus avoids this
problem.

7.3. The Liouvillian case. Consider the system

ẋ = 2x2 − 2y2 − 1, ẏ = 2x2 − 2y2 − 3.

The algorithm Compute Liouvillian first integral returns in 0.3s when N = 3

∂2F
∂y2

− 2(x+ y)(2x2 − 4xy + 2y2 − 1)

2x2 − 2y2 − 1

∂F
∂y

.

After integration, this gives the first integral

F(x, y) =
√
πerf(x− y) + (x+ y)e−(x−y)2.

Now noting z = x− y, w = x+ y, we have on the level F(x, y) = c

w = (c−√
πerf(z))ez

2

This function is never algebraic for c ∈ C as erf is not even elementary. Thus the
system does not admit a rational first integral. The function F is holomorphic
and thus all solution curves (outside the straight line at infinity) are levels of the
form F(x, y) = c ∈ C. As none of these curves are algebraic, the system does not
admit any Darboux polynomial. As the poles of a Darbouxian first integral are
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Darboux polynomials, a Darbouxian first integral should be a polynomial, which is
again not possible as there are no rational first integrals. Thus the system admits
a Liouvillian first integral but no first integrals of lower class.

Example 185 of Kamke is an Abel equation with a Liouvillian first integral

ẋ = −x7, ẏ = y2(5x3 + 2x2y + 2y).

Compute Liouvillian first integral gives in 55.9s with N = 7:

∂2F
∂y2

+
x6 + 7x3y + 6x2y2 + 6y2

2y(x6 + 2x3y + x2y2 + y2)

∂F
∂y

= 0.

This system admits a lower class first integral, a 4-Darbouxian first integral of
degree 32, which can be recovered by integration of this equation, giving

F̃(x, y) =

∫

y3/2
√
x(5x3 + 2x2y + 2y)

(x6 + 2x3y + x2y2 + y2)5/4
dx+

x15/2

(x6 + 2x3y + x2y2 + y2)5/4
√
y
dy.

7.4. The Riccati case. Example 43 of Kamke is an Abel equation, and with
a = 3, b = 17 admits a Riccati first integral

ẋ = 1, ẏ = −(9x2 + 36x+ 17)y3 − 3xy2.

Compute Riccati first integral gives in 390s with N = 9:

∂2F
∂y2

− 3P

4(9x2y + 36xy + 17y − 6)2y3
F = 0,

with

P = 81x4y3 + 648x3y3 − 18x3y2 + 1602x2y3 − 180x2y2

+1224xy3 + 3x2y − 466xy2 + 289y3 + 24xy − 204y2 + 36y − 2.

This equation together with the equation of the first integral defines a PDE
system with a two dimensional space of solutions. The first integral in Kamke’s
book is written using Bessel functions, thus the solutions of this PDE system can
be expressed in terms of Bessel functions here, but this is not an easy task.

In general, Abel equations are of the form

∂y

∂x
= f3(x)y

3 + f2(x)y
2 + f1(x)y + f0(x).

These can be seen as a generalization of the Riccati equation. However, in contrary
to the Riccati equation, they are not all solvable in algebraic-differential terms.
Still many integrable families are known, Abel integrability is typically searched
by looking into a known table list up to some transformations. Our algorithm can
detect any integrable cases, even belonging to an unknown new integrable family.

7.5. The generic case. In a generic situation a vector field has no symbolic first
integral. Let us now consider a random quadratic vector field

ẋ = 2x2 + xy − 2y2 − 1, ẏ = 2x2 − 2y2 + y − 3.

We do not find any Liouvillian nor Riccati first integrals (and thus neither Dar-
bouxian, 2-Darbouxian or rational first integral) up to degree 9, with the following



SYMBOLIC COMPUTATIONS OF FIRST INTEGRALS 55

timings.

N 1 2 3 4 5 6 7 8 9
Liouvillian 0.016 0.109 0.640 2.433 8.143 24.71 69.31 175.8 453.9
Riccati 0.031 0.125 0.671 2.543 8.439 25.93 72.04 177.6 563.3

7.6. Rational first integral with degree bigger than N . Let us consider the
following example

ẋ = λx3 − λxy2 − 2µy2 − λx, ẏ = λx2y − λy3 − 2µxy − λy

with λ, µ ∈ Z. This vector field always admits the first integral

I(x, y) = λ ln

(

x

y
−
√

x2 − y2

y

)

+ µ ln

(

x2 − y2 + 1

x2 − y2 − 1
− 2

√

x2 − y2

x2 − y2 − 1

)

which is a 2-Darbouxian first integral, which is of degree 8. Indeed, we have:
∂yI − F = 0, where F 2 = P/Q and

P = λ2x6 − 2λ2x4y2 + λ2x2y4 − 4λµx3y2 + 4λµxy4 − 2λ2x4 + 2λ2x2y2

+4µ2y4 + 4λµxy2 + λ2x2

Q = x6y2 − 3 x4y4 + 3 x2y6 − y8 − 2 x4y2 + 4 x2y4 − 2 y6 + x2y2 − y4.

As λ/µ ∈ Q, we can however build from this a rational first integral (with degree
depending on λ/µ). And this is also a particular case of a Liouvillian first integral,
which is then of degree 8. This kind of example is build by searching radical exten-
sion of K̄(x, y) with groups of unit of rank ≥ 2. The first integral is then a linear
combination of logs of these units.

For this example, we here display the timings in seconds of the algorithms
Rational, Darbouxian, Liouvillian and Ricatti first integrals with initial points
(2, 5), (2, 3). The degree columns are the minimum N for which the output is
not trivial.
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(λ, µ) Rat deg time D deg time L deg time Ric deg time
(1,0) 1 0.016 1 0.032 1 0.047 1 0.064
(0,1) 2 0.032 1 0.015 1 0.062 2 0.109
(1,1) 3 0.063 2 0.109 2 0.344 3 1.935
(2,1) 4 0.109 3 0.312 2 0.187 3 1.903
(1,2) 5 0.296 4 0.889 4 4.867 5 21.45
(3,1) 5 0.140 4 0.951 3 1.685 5 26.61
(1,3) 7 1.997 5 3.510 5 19.38 6 220.6
(4,1) 6 0.858 5 3.541 4 6.381 5 21.72
(3,2) 7 2.418 5 3.603 5 21.03 6 61.71
(2,3) 8 3.947 6 9.376 5 18.16 6 54.60
(1,4) 9 8.751 6 9.781 6 55.21 8 391.9
(5,1) 7 2.184 5 3.728 5 19.30 7 148.6
(1,5) 11 33.59 7 24.27 7 148.4 8 205∗

(6,1) 8 4.758 6 10.76 6 63.59 7 156.49
(5,2) 9 9.001 6 8.955 6 51.08 7 134.6
(4,3) 10 16.70 7 28.14 6 62.90 7 174.1
(3,4) 11 31.23 7 26.58 6 60.08 8 264∗

(2,5) 12 60.01 8 65.58 7 166.6 8 267∗

(1,6) 13 99.39 8 63.82 8 389∗ 8 232∗

In many cases (all except those with ⋆), Darbouxian, Liouvillian and Ricatti
algorithms have returned the rational first integral even if it is of degree larger than
N . Remark that degree cannot be higher than 8 for Liouvillian or Ricatti first
integrals, because the 2-Darbouxian first integral is always present and its degree
is not growing.
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