Symbolic Computations of First Integrals for Polynomial Vector Fields

Abstract : In this article we show how to generalize to the Darbouxian, Liouvillian and Riccati case the extactic curve introduced by J. Pereira. With this approach, we get new algorithms for computing, if it exists, a rational, Darbouxian, Liouvillian or Riccati first integral with bounded degree of a polynomial planar vector field. We give probabilistic and deterministic algorithms. The arithmetic complexity of our probabilistic algorithm is in $\tilde{\mathcal{O}}(N^{\omega+1})$, where $N$ is the bound on the degree of a representation of the first integral and $\omega \in [2;3]$ is the exponent of linear algebra. This result improves previous algorithms. Our algorithms have been implemented in Maple and are available on authors' websites. In the last section, we give some examples showing the efficiency of these algorithms.
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01619911
Contributeur : Guillaume Chèze <>
Soumis le : mardi 18 décembre 2018 - 11:31:33
Dernière modification le : lundi 28 janvier 2019 - 16:56:29

Fichiers

cheze_combot_symb_first_int2.p...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01619911, version 2
  • ARXIV : 1710.08225

Citation

Guillaume Chèze, Thierry Combot. Symbolic Computations of First Integrals for Polynomial Vector Fields. 2018. 〈hal-01619911v2〉

Partager

Métriques

Consultations de la notice

46

Téléchargements de fichiers

25