B. , H. M. Coutanceau, M. Dennis, S. C. Ménard, and C. , Unsteady flow past a rotating circular cylinder at Reynolds numbers 10 3 and 10 4, J. Fluid Mech, vol.220, pp.459-484, 1990.

B. , P. W. Gartshore, I. S. Maull, D. Parkinson, and G. V. , Experiments on flow-induced vibration of a square-section cylinder, J. Fluids Struct, vol.1, issue.1, pp.19-34, 1987.

B. , R. E. Hassan, and A. Y. , The lift and drag forces on a circular cylinder in a flowing fluid, Proc. R. Soc. Lond. A 277, pp.32-50, 1964.

H. M. Blackburn and R. D. Henderson, A study of two-dimensional flow past an oscillating cylinder, Journal of Fluid Mechanics, vol.385, pp.255-286
DOI : 10.1017/S0022112099004309

R. D. Blevins, Flow-Induced Vibration, 1990.

B. , R. Lo-jacono, and D. , Flow-induced vibrations of a rotating cylinder, J. Fluid Mech, vol.740, pp.342-380, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00947888

C. , J. Sheridan, J. Rockwell, and D. , Forces and wake modes of an oscillating cylinder, J. Fluids Struct, vol.15, issue.1, pp.523-532, 2001.

C. , R. M. Parkinson, and G. , 1988 A model of the combined effects of vortex-induced oscillation and galloping, J. Fluids Struct, vol.2, issue.3, pp.203-220

C. , M. &. Ménard, and C. , Influence of rotation on the near-wake development behind an impulsively started circular cylinder, J. Fluid Mech, vol.158, pp.399-446, 1985.

D. , J. Godoy-diana, R. Wesfreid, and J. , 2015 Centrifugal instability of Stokes layers in crossflow: the case of a forced cylinder wake, Proc. R. Soc. Lond. A 471, 20150011.

D. , J. Hover, F. Triantafyllou, M. Dong, S. Karniadakis et al., Resonant vibrations of bluff bodies cause multivortex shedding and high frequency forces, Phys. Rev. Lett, issue.14, pp.99-144503, 2007.

D. Hartog and J. P. , Transmission Line Vibration Due to Sleet, Transactions of the American Institute of Electrical Engineers, vol.51, issue.4, pp.1074-1076, 1932.
DOI : 10.1109/T-AIEE.1932.5056223

E. Akoury, R. Braza, M. Perrin, R. Harran, G. Hoarau et al., The three-dimensional transition in the flow around a rotating cylinder, Journal of Fluid Mechanics, vol.607, pp.1-11, 2008.
DOI : 10.1017/S0022112093002368

URL : https://hal.archives-ouvertes.fr/hal-00368762

F. , A. Lo-jacono, D. Hourigan, and K. , Target-free stereo PIV: a novel technique with inherent error estimation and improved accuracy, Exp. Fluids, vol.44, issue.2, pp.317-329, 2008.

G. , R. Williamson, and C. H. , Modes of vortex formation and frequency response of a freely vibrating cylinder, J. Fluid Mech, vol.420, pp.85-130, 2000.

G. , O. M. Skop, R. A. Koopmann, and G. H. , The vortex-excited resonant vibrations of circular cylinders, J. Sound Vib, vol.31, issue.2, pp.235-249, 1973.

H. , J. Glowinski, R. Metcalfe, R. Nordlander, A. Periaux et al., Active control and drag optimization for flow past a circular cylinder, J. Comput. Phys, vol.163, pp.83-117, 2000.

H. , P. Lumley, J. L. Berkooz, G. Rowley, and C. W. , 2012 Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge Monographs on Mechanics

J. , N. Williamson, and C. H. , The effect of two degrees of freedom on vortex-induced vibration at low mass and damping, J. Fluid Mech, vol.509, pp.23-62, 2004.

K. , S. Choi, H. Lee, and S. , Laminar flow past a rotating circular cylinder, Phys. Fluids, vol.11, issue.11, pp.3312-3321, 1999.

K. , A. Williamson, and C. H. , Fluid forces and dynamics of a hydroelastic structure with very low mass and damping, J. Fluids Struct, vol.11, pp.973-982, 1997.

K. , A. Williamson, and C. H. , Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping, J. Fluids Struct, vol.13, pp.813-851, 1999.

L. , M. Nogueira, J. Tachibana, S. Lecuona, A. Nauri et al., Flow temporal reconstruction from non time-resolved data. Part II: Practical implementation, methodology validation, and applications, Exp. Fluids, vol.51, pp.861-870, 2011.

L. Jacono, D. Leontini, J. S. Thompson, M. C. Sheridan, and J. , Modification of three-dimensional transition in the wake of a rotationally oscillating cylinder, Journal of Fluid Mechanics, vol.643, pp.349-362, 2010.
DOI : 10.1017/S0022112093002794

L. , D. Triantafyllou, and M. S. , Parametric study of a two degree-of-freedom cylinder subject to vortex-induced vibrations, J. Fluids Struct, vol.24, pp.1284-1293, 2008.

M. , S. Kumar, and B. , Flow past a rotating cylinder, J. Fluid Mech, vol.476, pp.303-334, 2003.

M. , T. L. Williamson, and C. H. , Prediction of vortex-induced vibration response by employing controlled motion, J. Fluid Mech, vol.634, pp.5-39, 2009.

N. , E. Rockwell, and D. , Flow-Induced Vibrations: An Engineering Guide, 2005.

N. , A. Zhao, J. Lo-jacono, D. Sheridan, and J. , The interaction between flow-induced vibration mechanisms of a square cylinder with varying angles of attack, J. Fluid Mech, vol.710, pp.102-130, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00752464

P. , J. O. Brandt, L. Giannetti, and F. , Instability and sensitivity of the flow around a rotating circular cylinder, J. Fluid Mech, vol.650, p.513, 2010.

P. , J. O. Giannetti, F. Brandt, and L. , 2013 Three-dimensional instability of the flow around a rotating circular cylinder, J. Fluid Mech, vol.730, pp.5-18

R. , A. Thompson, M. C. Rao, A. Hourigan, K. Sheridan et al., 2013 Experimental evidence of new three-dimensional modes in the wake of a rotating cylinder, J. Fluid Mech, vol.734, pp.567-594

R. , A. Leontini, J. Thompson, M. C. Hourigan, and K. , Three-dimensionality in the wake of a rotating cylinder in a uniform flow, J. Fluid Mech, vol.717, pp.1-29, 2013.

R. , A. Radi, A. Leontini, J. S. Thompson, M. C. Sheridan et al., 2015 A review of rotating cylinder wake transitions, J. Fluids Struct, vol.53, pp.2-14

S. , B. Modarres-sadeghi, and Y. , An experimental investigation of vortexinduced vibration of a rotating circular cylinder in the crossflow direction, Phys. Fluids, vol.27, issue.6, p.67101, 2015.

S. , M. Nemes, A. Lo-jacono, D. Blackburn, H. M. Sheridan et al., The interaction of helical tip and root vortices in a wind turbine wake, Phys. Fluids, vol.25, issue.11, p.117102, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00913622

S. Stojkovi´c, D. Breuer, M. &. Durst, and F. , Effect of high rotation rates on the laminar flow around a circular cylinder, Physics of Fluids, vol.14, issue.9, pp.3160-3178, 2002.
DOI : 10.1007/978-3-642-97651-3

S. Stojkovi´c, D. Schön, P. Breuer, M. &. Durst, and F. , On the new vortex shedding mode past a rotating circular cylinder, Physics of Fluids, vol.5, issue.5, pp.1257-1260, 2003.
DOI : 10.1137/0705044

W. M. Swanson, The Magnus Effect: A Summary of Investigations to Date, Journal of Basic Engineering, vol.83, issue.3, p.461, 1961.
DOI : 10.1115/1.3659004

T. , O. K. Prandtl, and L. , Rotating cylinder and magnus effect, Applied Hydroand Aeromechanics: Based on Lectures of L. Prandtl, pp.82-85, 1957.

T. , P. T. Dimotakis, and P. E. , Rotary oscillation control of a cylinder wake, J. Fluid Mech, vol.224, issue.1, pp.77-90, 1991.

J. Venning, D. Lo-jacono, D. Burton, M. C. Thompson, and J. Sheridan, The effect of aspect ratio on the wake of the Ahmed body, The effect of aspect ratio on the wake of the Ahmed body, p.126, 2015.
DOI : 10.1016/j.jfluidstructs.2005.03.006

URL : https://hal.archives-ouvertes.fr/hal-01167075

W. , C. H. Govardhan, and R. , Vortex-induced vibrations, Annu. Rev. Fluid Mech, vol.36, issue.1, pp.413-455, 2004.

W. , C. H. Roshko, and A. , Vortex formation in the wake of an oscillating cylinder, J. Fluids Struct, vol.2, issue.4, pp.355-381, 1988.

X. , Q. Zhu, and Q. , 2014 A review on flow energy harvesters based on flapping foils, J. Fluids Struct, vol.46, pp.174-191

Y. , J. Lai, J. C. Platzer, and M. F. , 2014 A review of progress and challenges in flapping foil power generation, Prog. Aerosp. Sci, vol.67, pp.2-28

Z. , J. Leontini, J. S. Lo-jacono, D. Sheridan, and J. , Fluid?structure interaction of a square cylinder at different angles of attack, J. Fluid Mech, vol.747, pp.688-721, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01092016

M. Zhao, L. Cheng, and L. Lu, Vortex induced vibrations of a rotating circular cylinder at low Reynolds number, Physics of Fluids, vol.26, issue.7, p.73602
DOI : 10.1016/0889-9746(92)90054-7