Twists of non-hyperelliptic curves of genus 3

Abstract : In this paper we explicitly compute equations for the twists of all the smooth plane quartic curves defined over a number field k. Since the plane quartic curves are non-hyperelliptic curves of genus 3 we can apply the method developed by the author in a previous article. The starting point is a classification due to Henn of the plane quartic curves with non-trivial automorphism group up to C-isomorphism.
Type de document :
Article dans une revue
International Journal of Number Theory, World Scientific Publishing, 2018, 14 (6), pp.1785-1812. 〈10.1142/S1793042118501075〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01619330
Contributeur : Marie-Annick Guillemer <>
Soumis le : jeudi 19 octobre 2017 - 11:51:16
Dernière modification le : mercredi 29 août 2018 - 01:09:33

Lien texte intégral

Identifiants

Citation

Elisa Lorenzo García. Twists of non-hyperelliptic curves of genus 3. International Journal of Number Theory, World Scientific Publishing, 2018, 14 (6), pp.1785-1812. 〈10.1142/S1793042118501075〉. 〈hal-01619330〉

Partager

Métriques

Consultations de la notice

67