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a b s t r a c t

The steady liquid flow observed under ultrasonic emitters generating acoustic cavitation can be success-
fully predicted by a standard turbulent flow calculation. The flow is driven by the classical averaged vol-
umetric force density calculated from the acoustic field, but the inertial term in Navier–Stokes equations
must be kept, and a turbulent solution must be sought. The acoustic field must be computed with a real-
istic model, properly accounting for dissipation by the cavitation bubbles [Louisnard, Ultrason.
Sonochem., 19, (2012) 56-65]. Comparison with 20 kHz experiments, involving the combination of acous-
tic streaming and a perpendicular forced flow in a duct, shows reasonably good agreement. Moreover, the
persistence of the cavitation effects on the wall facing the emitter, in spite of the deflection of the stream-
ing jet, is correctly reproduced by the model. It is also shown that predictions based either on linear
acoustics with the correct turbulent solution, or with Louisnard’s model with Eckart–Nyborg’s theory
yields unrealistic results.

1. Introduction

The propagation of acoustic waves (and of ultrasound in partic-
ular) in fluids is accompanied by steady flows, known as ‘‘acoustic
streaming” [1–6]. The latter expression covers in fact various
mechanisms, which can be divided into twomain families, possibly
occurring together: streaming near a solid boundary and streaming
in unbounded fluid. The latter mechanism can be observed system-
atically in acoustic cavitation experiments, where a noticeable
jet-like flow appears, as if it were expelled from the transducer.

The velocity fields of such flows have been evaluated either by
visual observation [7], laser Doppler anemometry (LDA) [8,9], or
particle image velocimetry (PIV) [10–13]. Using the latter method,
Mettin and co-workers showed that the appearance of cavitation
increased 30-fold the streaming velocities [14]. The corresponding
flow was found to be turbulent, in agreement with the correspond-
ing Reynolds number. Dubus and co-workers [15] mentioned that
acoustic streaming currents generally hides the conical structure
[16–18] visible under sonotrodes. They managed to suppress
streaming by using pulsed ultrasound. Hihn and co-workers
explored the combination of upward acoustic streaming above a
transducer with a forced transverse horizontal flow in a rectangu-
lar duct [19,20]. They measured the deflection of the streaming jet
by PIV as the velocity of the forced transverse flow was increased.
Strangely enough, the authors found that even when the streaming

jet was strongly deflected by the forced flow, cavitation remained
active on the wall opposed to the transducer.

So far, no theory of acoustic streaming in presence of cavitation
has been developed. In particular, there is no theoretical result
available to quantitatively predict the velocities observed and
explain why they are much larger in presence of cavitation.

The aim of this paper is to propose such a model, or rather an
add-on to the model of wave propagation accounting for cavitation
presented in Ref. [21]. The latter was found to predict correctly
some yet incompletely explained bubble structures [18], and can
be easily implemented in any geometry using COMSOL [22], for
low frequency ultrasonics. It was shown in the latter references
that our model, contrarily to linear acoustics and earlier cavitation
models, correctly catches the strong wave attenuation near the
emitter observable in presence of cavitation. As acoustic streaming
is a matter of wave attenuation [6], it follows logically that a cor-
rect prediction of the latter is a pre-requisite for a viable evaluation
of the former. Our model will be shown to compare reasonably
well with the experiments reported in [20], and explains the per-
sistence of cavitation even when the streaming jet is deflected.

2. Acoustic streaming models

The most popular model of acoustic streaming is attributed to
Eckart [2], although Rayleigh [1], Westervelt [3] and Nyborg [4]
contributed to the same result, and even found more general ones.
As Eckart and Nyborg are names widely associated with streaming,
we will refer to these results as Eckart–Nyborg’s theoryE-mail address: louisnar@enstimac.fr



hereinafter. This model results from a regular perturbation proce-
dure on compressible Navier–Stokes equations and exhibits the
driving force for streaming as:

f ¼ "r ql0
u1 # u1

! "
; ð1Þ

where u1 is the primary acoustic velocity field, ql0
the liquid density

at rest, overlined symbols denote averaged quantities over one
acoustic period, and # is the dyadic product. The tensor in the
divergence operator is the analog of the so-called ‘‘Reynolds stress
tensor” in turbulence. In normal conditions (i.e. waves of moderate
amplitude and no cavitation), u1 can be calculated from the equa-
tions of linear acoustics. Physically, the force density f represents
an unbalance between the average (acoustic-induced) momentum
entering and outgoing a given fluid volume. This unbalance must
be compensated by a steady flow, which is precisely acoustic
streaming.

The perturbation method followed by Eckart and Nyborg on
mass and momentum conservation equations leads naturally to
the following ones, governing the streaming velocity field:

0 ¼ r & ðql0
umÞ þr & q1u1ð Þ; ð2Þ

0 ¼ f "rpm þ llr
2um; ð3Þ

where q1 is the density variation associated with the primary
acoustic field, all quantities with subscriptm denote the steady flow
defining acoustic streaming, ll is the liquid dynamic viscosity, and
the force density f is defined by Eq. (1).

It can be noted that Eq. (3) is nothing else that the momentum
equation of a creeping flow (driven by force f), that is the reduction
of Navier–Stokes equation to Reynolds numbers ( 1. Lighthill,
following this line of reasoning, argued that despite Eq. (1) is the
correct expression of the driving force, its use in Eq. (3) reduces
the applicability of Eckart–Nyborg’s theory to very low acoustic
intensities, for which the streaming velocities are low enough
to fulfill Re ( 1. Cavitation experiments involve Reynolds
numbers of several thousands [14], and lie therefore clearly
outside this range of applicability. As an numerical illustration,
consider for example a 10 mm sonotrode in water. A Reynolds
number of 1 would correspond to a streaming characteristic
velocity of 0.1 mm s"1, which is by far much lower than commonly
observed.

Lighthill suggested therefore that, rather than from Eq. (3), the
streaming velocity um should be calculated from the full steady
Navier–Stokes equation (written here in conservative form):

r ql0
um # um

! "
¼ f "rpm þ llr

2um: ð4Þ

This equation was first derived by Zarembo [5] and defines
what is generally termed as ‘‘Stuart streaming” [6,23], or ‘‘fast
streaming” [24] as opposed to ‘‘slow streaming” which refers to
Eckart–Nyborg’s results.

The present model is based on the following hypothesis:

1. The first crucial assumption is to use magenta Stuart-Lighthill
Eq. (4) rather than Eq. (3). Moreover, the acoustic streaming
flows observed under cavitation are not only far from creeping
flows, but are generally turbulent, as is clearly demonstrated in
Refs. [8,14]. Thus, one should solve Eq. (4) for a turbulent flow.
As is well-known, such flows presents small-scale eddies which
are difficult, if not impossible, to solve directly by Navier–
Stokes equations. Dedicated methods are therefore needed to
seek turbulent solutions of Eq. (4).

2. On the other hand, the intensity of acoustic streaming is
directly linked to the wave attenuation, as discussed in Ref.
[6], [Section 4]. In this regard, it was shown in Ref. [25] that

in presence of cavitation, the energy dissipated by the bubbles
was the essential contribution to wave attenuation. This energy
dissipation was calculated from numerically computed radial
dynamics of inertial bubbles, allowing to simplify the model
of Caflish et al. [26] into a nonlinear Helmholtz equation [21].
The resulting model was found to yield correct acoustic pres-
sure levels in some typical configurations. More importantly,
the strong wave attenuation was found to generate traveling
waves [18], which are the only way to explain bubble strong
ejection from the transducer [27]. The use of this realistic model
of wave propagation is the second crucial point to the success of
the present method.

Several theoretical predictions of acoustic streaming velocity
fields in cavitating liquids have been proposed in the literature,
either using Eckart–Nyborg Eq. (3) or Stuart-Lighthill Eq. (4). Most
models pre-calculate the acoustic field in order to evaluate the
driving force (1), generally by linear acoustics (possibly using a
uniform attenuation coefficient as a free parameter)
[28,29,10,11]. More complex but cavitation-unspecific acoustic
models have also been tried [30]. Sajjadi and co-workers [31,32]
derived simultaneously the acoustic and velocity fields from a
time-dependent resolution of a two-phase model [33] describing
the motion of a liquid containing vapor bubbles.1 Kumar and co-
workers [8,30] by-passed the computation of the acoustic field by
using experimental LDA measurements of velocities and turbulence
parameters as boundary conditions for the hydrodynamic problem.
Trujillo & Knoerzer [23] proposed two original methods to compute
the turbulent streaming jet without explicitly evaluating the acous-
tic field. The only input to their model is the input power, comple-
mented by a single fitting parameter in each case. The methods
follows closely Lighthill’s derivation of the turbulent jet properties
in the context of Stuart streaming, when either the driving force
(1) can be considered as concentrated in one point, or a damped
gaussian acoustic beam is considered. Surprisingly, these two simple
and elegant methods show remarkable agreement with the experi-
mental results of Kumar et al. [8].

The present model, even if it shares the use of Stuart-Lighthill
Eq. (4) with some earlier models, differs from the latter in that
our wave Eq. (5) accounts for the real energy disspation by an iner-
tial bubble, rather than setting an empirical value to wave
attenuation.

To conclude the discussion on acoustic streaming models, the
derivation of Eq. (4) deserves a few comments. On the one hand,
it requires a more subtle perturbation method than Eckart–
Nyborg’s theory, in order to avoid the natural disappearance of
the inertial term in the left hand side [5,24]. On the other hand,
there is no trivial justification of its validity within a cavitation
model, which involves a two-phase flow. In other words, whether
the driving force for streaming Eq. (1) is still valid with u1 calcu-
lated from our propagation model (which originates from Caflish
model [26]) may be questioned. We will not enter more deeply
in this discussion here, and it will be shown elsewhere that the
set constituted by Caflish equations, Stuart-Lighthill Eq. (4
divergence-less field equation r & um ¼ 0 instead of Eq. (2), can
be recovered by a perturbation method performed on the Van
Wijngaarden equations [35].

1 Singhal’s model [33] is a classical hydrodynamic cavitation model, normally
restricted to bubbly liquid containing only vapor bubbles, which allows a simple
closure of the two-phase equations. The assumptions made in this model normally
prohibit its use for inertial acoustic cavitation bubbles, in spite of its increasing
popularity in the latter context. Its use should be restricted to the special case
where the transducer tip is covered entirely by the gas/vapor phase for long time
intervals [34].



3. Simulation methods

The problem solved corresponds to the experiments described
in Refs [19,20] (Fig. 1). A rectangular duct
H ¼ 35 mm)W ¼ 40 mm)L ¼ 140 mmwas fed with water flow-
ing from left to right with an adjustable flow rate. The duct was
equipped with a 20 kHz titanium horn on its bottom side at mid-
length, emitting upwards in the duct. The horn section is a
22 mm )25 mm truncated disk. The velocity field of the acoustic
streaming superposed with the transverse forced flow was mea-
sured by PIV using a laser sheet illuminating the mid plane of
the duct.

In order to obtain reasonably short calculations allowing para-
metric studies, the problem was simplified by considering a 2D
geometry (Fig. 2), assuming infinite size in the z direction on
Fig. 1. The results obtained hereinafter should therefore be consid-
ered as what would be measured in the xy mid-plane of the duct
(containing the laser sheet).

The problem was then solved with COMSOL in two steps: the
first one solves for the acoustic field and the second uses this result
to calculate the force density (1) and solve Eq. (4) for the flow
velocity.

For the interested reader, the main steps of the computations
are summarized in Algorithm 1.

3.1. Acoustic field model

The model of acoustic waves propagation accounting for the
presence of inertial cavitation is described in Refs. [21,22]. Consid-
ering only the harmonic part of the acoustic pressure field
p1ðr; tÞ ¼ RðP1ðrÞeixtÞ, the complex amplitude P1ðrÞ is shown to
approximately fulfill a nonlinear Helmholtz equation:

r2P1 þ k2 jP1jð ÞP1 ¼ 0; ð5Þ

where the complex squared wavenumber k2 depends on the local
pressure amplitude jP1j, and is related to the energy dissipated by

bubbles because of viscous friction [25,21] (see also Ref. [36] for a
refinement of these results). The viscous dissipation function was
pre-calculated using the model of bubble radial dynamics of Ref.
[37] for R0 ¼ 5 lm air bubbles in water at ambient temperature,
driven at 20 kHz.

The inlet and outlet boundaries of the duct were assigned to the
impedance of pure water. The transducer displacement Y0 was
imposed and all other boundaries were considered as perfectly
hard.

The acoustic field was first calculated for a displacement of the
transducer Y0 ranging between 5 lm and 15 lm, and the resulting
acoustic power P across the transducer was calculated for each Y0.
From the resulting curve (Fig. 3), the transducer displacement
yielding the power reported in Ref. [20] (P ¼ 51 W) was calculated
Y0 ¼ 5:3 lm and used in subsequent computations.

3.2. Hydrodynamics model

From the acoustic field computed in the above conditions, the
volumetric force density (1) is evaluated and injected in Eq. (4),
assuming furthermore incompressible flow r & um ¼ 0.

Since the flow is expected to be turbulent, direct Navier–Stokes
equations cannot be solved directly. Instead, they are averaged and
the randomly fluctuating part of the field is recast into a couple of
additional continuous fields, supposed to represent the turbulence
characteristics. Several choices are possible for these two fields but
here, for simplicity, we chose the k" ! method which is computa-
tionally cheap and routinely used in engineering applications
[38,39].

The hydrodynamics boundary conditions (Fig. 4) are set to
imposed velocity Uf on inlet, default exit conditions at outlet,
and turbulent wall functions on solid walls and transducer face
[40]. The inlet velocity is varied in the range covered by experi-
ments [20] through the corresponding Reynolds number

Fig. 1. Simulated experimental configuration [19,20]. The laser sheet lies in the xy
plane. The transducer face lies in the xz plane and is flush with the internal face of
the duct bottom wall. The forced flow enters the tube perpendicular to yz plane.

Fig. 2. Simulated 2D geometry and boundary conditions for the acoustic simulation. The vertical black thin lines materialize the transducer diameter.

Fig. 3. Acoustic power transmitted to the liquid in function of the transducer
displacement. The circle symbol indicates the transducer amplitude Y0 ¼ 5:3 lm
for which the transmitted power is 51 W.



Re ¼ UfDh=m between 0 and 14000, where Dh ¼ 2WH=ðW þ HÞ is
the equivalent hydraulic diameter [41] of the rectangular duct,
and m is the kinematic viscosity of the liquid.

Algorithm 1.: Main steps of the computation.

4. Results

4.1. Acoustic field

The acoustic field obtained for Y0 ¼ 5:3 lm is presented on
Fig. 5. Two regions subject to large acoustic pressures appear.
One is located just above the transducer and correspond to damped
traveling waves, similarly to what happens in cone bubble struc-
tures [18]. The other is located near the solid wall facing the trans-
ducer and corresponds to the antinode of a standing wave. The
Blake threshold is materialized by a (blue online) thick solid line,
and all the enclosed regions may be assumed to be the locus of
bubble nucleation and subsequent inertial oscillations.

Since computation of acoustic streaming is generally associated
to the choice of a wave attenuation coefficient a ¼ "IðkÞ, we
extracted the latter from our computation. The evolution of a along
the vertical symmetry axis at x ¼ 0, and along the vertical line
materializing the transducer diameter x ¼ 1:25cm, is presented as
supplementary material (Fig. S1).

4.2. Velocity field

Fig. 6 displays the velocity fields obtained for increasing
Reynolds numbers of the transverse forced flow. The color level
represents the velocity amplitude.

In absence of forced flow (top graph), the acoustic streaming jet
flows upwards with two lateral vortices. The shape of the jet as
well as the order of magnitude of the jet velocity (typically

Fig. 5. (Color online) Acoustic field calculated from Eq. (5) for a transducer
displacement amplitude Y0 ¼ 5:3 lm. The color levels represent the acoustic
pressure amplitude jP1j non-dimensionalized by ambient pressure p0. The thin solid
lines are the contour curve corresponding to the color bar graduations and have
been included for better readability. The thick solid line (blue online) is the Blake
threshold locus. The vertical dashed lines materializes the transducer diameter.

Fig. 4. (Color online) Hydrodynamic boundary conditions for computation of the turbulent flow.

Fig. 6. (Color online) Velocity field for a Reynolds number of the forced flow Re = 0,
3000, 8000, 13000 (from top to bottom). The arrow have been normalized for better
readability and their length do not scale with the velocity amplitude. The latter is
represented by the color level in ms"1.



0.3 ms"1) agree remarkably well with the experimental results of
Refs. [19,20] 2

In presence of a transverse forced flow in the duct (three bottom
graphs on Fig. 6), the jet is increasingly deflected as the inlet veloc-
ity increases. Here again, the agreement with experimental results
is remarkable. A closer examination shows however that for a
given Reynolds of the transverse flow, the model slightly overesti-
mates the jet deflection. This suggests that our estimation of the
streaming velocity, and probably of the force density Eq. (1), are
slightly underestimated.

4.3. Bubble paths

In our earlier works [18,22], where the liquid was assumed
motionless, it was suggested that the paths followed by the bub-
bles could be equated to the streamlines of the primary Bjerknes
force field, which can be readily calculated once the amplitude
and phase of the acoustic field are known [42–44]. In the present
work, owing to acoustic streaming and to the transverse flow,
the liquid has a steady motion. The bubbles therefore suffer an
additional steady drag force, whose effect on their motion should
be quantified.

The general equation of motion of a bubble in the combined
velocity field u1 þ um would read [45–47], neglecting the bubble
inertia, weight and buoyancy:

0 ¼ 1
2
ql0

d½Vðum þ u1 " vÞ+
dt

þ 12pRll um þ u1 " vð Þ

" Vrðp1 þ pmÞ; ð6Þ

where v is the instantaneous velocity of the bubble, and V, R its
instantaneous volume and radius, respectively. The first RHS term
in Eq. (6) is the added-mass force [45], the second is the viscous
force [48] and the third is the generalized buoyancy force, which,
once averaged over one acoustic cycle, yields the well-known pri-
mary Bjerknes force. For simplicity we disregard the secondary
Bjerknes force here.

We emphasize that in Eq. (6), R;V ;u1, v and p1 are all periodic
functions of time. Because of that, time-average of their product
do not necessarily cancel. Thus, even in absence of steady flow,
averaging correctly Eq. (6) to get v is somewhat technical and
has been the matter of several studies (in absence of steady liquid
motion) [49–51]. As a consequence, calculating the velocity of a
bubble is a difficult matter, reinforced by the fact that the radial
and translational motion are in fact coupled [52,53]. As we are con-
cerned here only with orders of magnitude, we will assume that
Eq. (6) can be simply averaged into:

12p Rh ill vh i1 " um
# $

¼ "Vrp1h i; ð7Þ

where vh i1 is the terminal velocity of the bubble, Rh i is the bubble
radius averaged over one period, and the averaged quantity in the
right-hand side is the classical primary Bjerknes force FB [42,44].
Both quantities Rh i and FB are computed from separate bubble
dynamics simulations over a given range of acoustic pressures
[18, Section 2.2]. Eq. (7) finally yields the bubble terminal velocity:

vh i1 ¼ um þ FB

12p Rh ill
: ð8Þ

The physical meaning of this equation can be readily under-
stood by considering two extreme cases: where the Bjerknes force
is weak, the bubble will follow the steady flow ( vh i1 ¼ um). On the
contrary, for large values of the Bjerknes force, the bubble will be
mainly driven by the latter, irrespective of the liquid flow um.

This competition is illustrated on Fig. 7 which shows the
streamlines of the flow um (forced + acoustic streaming), and the
bubble paths calculated from Eq. (8), as the Reynolds of the trans-
verse flow is increased. The conditions are the same as in Fig. 6.
Bubbles are launched from a series of arbitrary points inside
regions where the acoustic pressure exceeds the Blake threshold
(see Ref. [18] for details).

Some bubble paths start from the transducer and converge
towards a hemispherical cap, which also attracts bubbles nucle-
ated above. Such structures are commonly found in experimen-
tal arrangements where the transducer area is at the same level
as a surrounding solid wall [54], and share some similarities
with cone bubble structures. It is clearly seen that the bubble
paths do not necessarily coincide with the liquid streamlines.
A similar observation can be found in Ref. [14]. Their slight
deflection by the stream is however visible, especially near
the Blake threshold locus.

A similar important feature caught by our model is the presence
of cavitation bubbles near the wall facing the transducer, resulting
from a pressure antinode in this zone. Since Bjerknes forces are
large there, the bubbles are attracted by the wall and form a strea-
mer, even for strong liquid flow perpendicular to the wave propa-
gation. Thus, contrarily to what the velocity fields of Fig. 6 or [20],
[Fig. 3] might intuitively suggest, bubbles always remain close to
the wall facing the transducer. This feature has been indeed
observed experimentally in this setup, and electrochemical mea-
surements confirmed a cavitational activity on the wall facing
the transducer even for strong transverse flow [19,20]. This allows
an efficient ultrasonic cleaning of this surface (for example a boat
hull) even in presence of a perpendicular flow whose function is
to suck the dirt removed [55].

5. Models yielding unrealistic predictions

As mentioned in Section 2, the two key features of our model
are a realistic prediction of the acoustic field, and solving the full
equation of fluid motion for a turbulent flow. To reinforce this
assertion, it is instructive to examine how do the above predictions
evolve when one of these assumptions is relaxed.

5.1. Linear acoustics

Instead of the model presented in Ref. [21], we use the equa-
tions of linear acoustics, keeping the same displacement amplitude
of the transducer as above. The resulting acoustic pressure is
shown on Fig. 8. It is seen that the acoustic pressure reaches unre-
alistic huge values. This was already demonstrated in Ref. [21], and
is the consequence of disregarding dissipation by cavitation bub-
bles. Similar results were obtained in Ref. [56], with a different
approach (see their Fig. 6 and the discussion in appendix of
Ref. [22]).

The corresponding velocity field in absence of forced flow is
presented on Fig. 9. Despite the range of velocities is in agreement
with experiments, their spatial distribution is wrongly predicted.
In particular the velocities inside the jet are clearly
underestimated.

5.2. Eckart–Nyborg’s model

Finally, we turn back to our nonlinear propagation model
Eq. (5), but evaluate the streaming velocity field by
Eckart–Nyborg’s Eq. (3) instead of the Stuart-Lighthill Eq. (4).
As mentioned above, this reverts to neglect the inertial term in
Navier–Stokes equation and assume that the flow is in the
creeping regime, that is Re ( 1.

2 For brevity, we do not reproduce the cited experimental results here. The reader
is referred to Ref. [20, Fig. 3].



The result is displayed on Fig. 10 and shows a large discrep-
ancy with the experimental one, not only in shape, but also in
magnitude. Eckart–Nyborg’s theory overestimate velocities by
one order of magnitude (with a maximum around 10 ms"1).

In fact, this failure could be easily expected, since the presence
of a jet with marked boundaries, as commonly observed in
many cavitation experiments [12,14,20], is contradictory with
the definition of a creeping flow. Indeed, in the latter, momen-
tum transport is governed by diffusion only, which would
smooth out any sharp velocity gradient. This is a well-known
result covered by any textbook of Fluid Mechanics, and a nice
visual illustration can be found in the film of US National Com-
mittee for Fluid Mechanics Films [57], Chap. ‘‘Low Reynolds
number flows”.

Fig. 7. (Color online) From top to bottom Re = 0, 3000, 8000, 13000. Thin lines (black online): streamlines of the flow. Thick lines attached to top and bottom walls (blue
online): predicted path of the bubbles, under the common action of the flow and Bjerknes forces. As in Refs. [18,22], the bubbles are launched arbitrarily from any point where
the acoustic pressure exceeds 0:95 )the Blake threshold. The latter is materialized by thick dashed lines (red online). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 8. (Color online) Acoustic field calculated from linear acoustics, for a
transducer displacement amplitude Y0 ¼ 5:3 lm. The color levels represent the
acoustic pressure amplitude jP1j non-dimensionalized by ambient pressure p0. The
thin solid lines are the contour curve corresponding to the color bar graduations
and have been included for better readability. The thick solid line (blue online) is
the Blake threshold locus. The vertical dashed lines materializes the transducer
diameter. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 9. (Color online) Velocity field in absence of forced flow with acoustic field
calculated from linear acoustics.



6. Summary and conclusions

1. We have shown that a reasonably good quantitative prediction
of acoustic streaming in presence of cavitation can be obtained
by seeking the turbulent solution of the incompressible Navier–
Stokes equations, driven by the volumetric force Eq. (1), pro-
vided the acoustic field injected in the latter is calculated by
Louisnard’s model [21].

2. The model catches the fact that bubbles are not necessarily
dragged by the steady flow, and that they follow the primary
Bjerknes force field in regions of high acoustic fields, as if the
liquid were at rest. This explains why cavitational activity is still
observed in front of the transducer in experiments of Refs.
[19,20]

3. Linear acoustics on one hand, and Eckart–Nyborg’s theory on
the other hand, have been shown to yield unrealistic results.
As this model implicitly assumes a creeping flow, it is anyway
unable to represent turbulent jets classically observed in cavita-
tion experiments.

These results can be refined in several ways, first by performing
full 3D simulations. Second, the use of k" !method to solve for the
turbulent flow can be easily replaced by more elaborate turbulent
numerical methods [30]. Then, the simulation of other experimen-
tal configurations is under consideration.

Additionally, it will be shown elsewhere how the equations
used in the present work (Caflish model and streaming equations)
can be derived jointly from van Wijngaarden equations [35].
Finally, Louisnard’s model of wave propagation [21] can still be
enhanced, especially to account for poly-disperse bubble sizes
and bubble densities varying with the local acoustic pressure. A
more rigorous calculation of bubble paths is also under
consideration.
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Fig. 10. (Color online) Velocity field in absence of forced flow, following Eckart–
Nyborg’s theory. The color level represents the velocity in ms"1


