Is Euler's constant a value of an arithmetic special function?

Abstract : Euler's constant γ is one of the mathematical constants with the most different analytic representations, probably on par with π. Yet, none of these representations proves that γ is a value of an E-function, a G-function or an M-function at an algebraic point. In fact, it is plausible that no such representation of γ exists with these three arithmetic special functions, and thus the arithmetic nature of γ might not be determined by the powerful Diophantine theorems of Siegel-Shidlovsky, Chudnovsky and Nishioka. Nonetheless, we explain here why certain of these representations show that γ is not far from being a special value of both E-functions and M-functions, while a similar connection to G-functions is still elusive. We also present a new family of series summing to γ, which generalize an identity of Vacca.
Type de document :
Pré-publication, Document de travail
IF_PREPUB. 2017
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01619235
Contributeur : Tanguy Rivoal <>
Soumis le : mercredi 20 décembre 2017 - 15:05:56
Dernière modification le : dimanche 18 mars 2018 - 21:12:07

Fichier

cteuler.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01619235, version 2

Collections

Citation

Tanguy Rivoal. Is Euler's constant a value of an arithmetic special function?. IF_PREPUB. 2017. 〈hal-01619235v2〉

Partager

Métriques

Consultations de la notice

84

Téléchargements de fichiers

116