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ABSTRACT

Many applications fields deal with multivariate long-memory time series. A challenge is to estimate the
long-memory properties together with the coupling between the time series. Real wavelets procedures
present some limitations due to the presence of phase phenomenons. A perspective is to use analytic
wavelets to recover jointly long-memory properties, modulus of long-run covariance between time series
and phases. Approximate wavelets Hilbert pairs of Selesnick (2002) fullfilled some of the required prop-
erties. As an extension of Selesnick (2002)’s work, we present some results about existence and quality of
these approximately analytic wavelets.

Keywords: Complex wavelets, multivariate time series

1. INTRODUCTION

An analytic wavelet is a complex wavelet such that its Fourier transform is null for negative frequency. By
the Paley-Wiener theorem, it is impossible to find wavelets with both Fourier transform with null negative
frequency and compact support. Indeed, compact support is an important property that is usually desirable
in practice for wavelets. Moreover, the analyticity property enables to capture information for the phase
and not only the module.1 Previous approaches have been developped by constructing approximately ana-
lytic wavelets.1 An example of such wavelets is based on Hilebert-pairs constructed using a common-factor
design.2, 3 Despite their usefulness in practice, few theoretical results have been described. In particular,
to our knowledge, their existence is not proved. These wavelets depend on two integer parameters L and
M that correspond respectively to the order of the analytic approximation and the number of null moments.

Our contribution in this paper is to demonstrate that the construction of such wavelets is valid by prov-
ing their existence for any parameters L, M > 1. In addition, an exact formula is obtained with an explicit
expression. This expression allows us to evaluate the analyticity approximation of the wavelets, i.e. to con-
trol the presence of the negative frequency with respect to the parameters L and M.

After the description of the theoretical aspects of common-factor wavelets, their practical use is illus-
trated for the analysis of multivarite time series with long memory effect. Such data are found in a large
number of applications, for example finance,4, 5 internet traffic analysis,6 physical sciences,7, 8 geosciences9

and neuroimagery.10 In multivarite time series, a phase phenomenon occurs, which plays a crucial role in
the modeling of interdependence between the components.

In addition, when dealing with long memory processes, frequency analysis using periodogram or scalo-
gram is particularly adequate for second order stationary processes.6, 11 These analyses are usually using
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low frequencies and the phase is not studied. However, few papers12, 13 showed that the phase is important
even for low frequencies. In this context, an approach based on (approximately) analytic wavelets may be
useful. Indeed we illustrate the ability of (approximately) analytic wavelets to capture the phase in a simple
example.12

The paper is organised in two parts. The first part is dedicated to the construction of approximately ana-
lytic wavelets by common-factor design. The existence of the construction is detailled by giving an explicit
expression of the common-factor. In addition, this allows us to quantify the analytic approximation. The
second part presents the good behaviour of this approach when dealing with multivariate long-memory
model M(d).12, 14

2. CONSTRUCTION AND EXISTENCE OF THE WAVELET BASIS

The challenging problem in the construction of a wavelet basis is the impossibility to get a Hilbert pair
with finite response filters (FIR). A choice is to relax the analyticity and search for an approximation of the
Hilbert-pair condition.1 Based on the common-factor design,1 we detail the construction in this part.

2.1 Definition
Define ψG and ψH two real wavelets functions. They form a Hilbert pair when their Fourier transforms,
denoted respectively ψ̂G and ψ̂H , satisfy

ψ̂G(ω) = −i sign(ω)ψ̂H(ω) . (1)

Let g0 and h0 denote the pass-band filters associated to ψG and ψH . Introduce G0 and H0 the transfer
functions of g0 and h0 obtained by a z-transform; for example, G0(z) = ∑n g0nz−n. The property (1) cannot
be satisfied with FIR filters.15 The only choice is then to define FIR filters that verifies approximately (1),
that is,

G0(eiω) ∼ H0(eiω)e−iω/2 when ω → 0 . (2)

Such a construction has already been proposed,15 where the practical construction of the wavelets is
described but the existence is not acquired. Hence the quality of approximation in (2) is not explicit. Our
contribution is to derive these two points in the following of the paper.

2.2 Construction with common factor
The solution15 consists in constructing G0 and H0 following these expressions

H0(z) = (1 + 1/z)MQL,M(z)DL(z) , (3)

G0(z) = (1 + 1/z)MQL,M(z)DL(1/z)z−L . (4)

The term in (1+ 1/z)M is controling the number of null moments for the filters equal to M. The factor DL
is the z-transform of a FIR causal filter of size L, DL(z) = 1+∑L

`=1 dL(`)z−`. This term controls the property
of quasi-analyticity. Then DL is chosen such that the wavelets satisfy approximation (2). A possible solution
is given15

e−iωLDL(e−iω)

DL(eiω)
= e−iω/2 + oω→0(|ω|2L+1) . (5)



An explicit expression of the coefficients dL(`), ` = 1, . . . , L is easily obtained.15 In the following propo-
sition, an explicit and simple expression of DL is derived.

PROPOSITION 2.1. Let L be a positif integer and let define DL(z) = 1 + ∑L
`=1 dL(`)z−` satisfying (5). Then, for all

z ∈ C∗,

DL(z) =
z−L

4L + 2

[
(1 +

√
z)2L+1 + (1−

√
z)2L+1

]
, (6)

where
√

z is one of the complex root of z.

Proof. [Proof of Proposition 2.1] Notice that d(L)−1zLDL(z) = ∑L
n=0

d(L−n)
d(L) zn and that for all n =

0, . . . , L− 1,

d(L− n)
d(L)

=

(
L
n

) L−1

∏
`=L−n

2`+ 3
2L− 2`− 1

=

(
L
n

)( n

∏
k=1

(2k− 1)

)−1 L

∏
`=L−n+1

(2`+ 1)

=
L!

n!(L− n)!
2nn!
(2n)!

(2L + 1)!
2LL!

2L−n(L− n)!
(2L− 2n + 1)!

=

(
2L + 1

2n

)
It is then easy to check that

d(L)−1zLDL(z) =
1
2

(
(1 + z1/2)2L+1 + (1− z1/2)2L+1

)
.

The fact that d(L) = 1/(2L + 1) concludes the proof.

2.3 Existence
A desired property for wavelets may be the property of perfect reconstruction1 (and references therein).
For filters H0 and G0 defined by (3) and (4), the perfect reconstruction is satisfied if and only if

RL,M(z)SL,M(z) + RL,M(−z)SL,M(−z) = 2 , (7)
with RL,M(z) = QL,M(z)QL,M(1/z)

and SL,M(z) = (2 + z + 1/z)MDL(z)DL(1/z).

Our first contribution is to show that there exists a solution of (7), with the common-factor properties (3)-(4).

THEOREM 2.2. Let L and M be two positive integer. Then, there exists QL,M such that QL,M(1/z) is a real polynom
of z and such that RL,M(z) = QL,M(z)QL,M(1/z) is a solution of (7).

This theorem ensures the existence of a solution for the equations (3)-(4)-(7). Unfortunately, no explicit
formula of RL,M and QL,M is available. However, the proof is constructive and a numerical solution can be
derived. An algorithm is proposed,3 without guarantee of success.

2.4 Quality of the approximation
With the expression obtained in Proposition 2.1, an explicit expression is available to quantify the quality of
the analyticity approximation (1) for the pair (ψG, ψH). Let (φH(·), ψH(·)) be respectively the father and the
mother wavelets associated with the (low-pass) wavelet filter H0. And let (φG(·), ψG(·)) denote the father



and the mother wavelets associated with the wavelet filter G0. Recall that their Fourier transforms are given
by

φ̂H(ω) =
∞

∏
j=1

[
2−1/2H0(ei2−jω)

]
, (8)

ψ̂H(ω) = 2−1/2H1(ei ω/2) φ̂H(ω/2), (9)

where H1 is the corresponding high-pass filter transfer function defined by H1(z) = z−1H0(−z−1).15 Sim-
ilar equations hold for φ̂G and ψ̂G, using G0 and G1.15 The expression of the analyticity approximation is
given by the following proposition.

PROPOSITION 2.3. For all ω ∈ R,

φ̂G(ω) = e−iω/2eiβL(ω) φ̂H(ω)

ψ̂G(ω) = i e−iηL(ω) ψ̂H(ω) .

with

βL(ω) = 2(−1)L
∞

∑
j=1

atan
(

tan2L+1(ω2−j−2)
)

,

ηL(ω) = 2(−1)L atan
(

tan2L+1(ω/8 + π/4)
)
+ βL(ω/2) .

Consequently,
ψ̂H(ω) + i ψ̂G(ω) = uL(ω)ψ̂H(ω),

with uL(ω) = 1− e−iηL(ω).

Proof. [Proof of Proposition 2.3]

To prove proposition 2.3, it is sufficient to derive an explicit formula for the ratio DL(e−iω)
DL(eiω)

, for all z = eiω

with ω ∈ R

e−iωL DL(e−iω)

DL(eiω)
= e−iω/2+iαL(ω) , (10)

where αL is the function defined on R by αL(ω) = 2(−1)L atan
(
tan2L+1(ω/4)

)
.

By denoting z1/2 any of the two roots of z, we observe that, for all z ∈ C∗,

z−L DL(1/z)
DL(z)

= zL (1 + z−1/2)2L+1 + (1− z−1/2)2L+1

(1 + z1/2)2L+1 + (1− z1/2)2L+1 = z−1/2 (1 + z1/2)2L+1 + (z1/2 − 1)2L+1

(1 + z1/2)2L+1 − (z1/2 − 1)2L+1 .

Set now z = eiω. We deduce that

e−iωL DL(e−iω)

DL(eiω)
= e−iω/2 eiω(2L+1)/4 cos(ω/4)2L+1(1 + i(−1)L tan(ω/4)2L+1)

eiω(2L+1)/4 cos(ω/4)2L+1(1− i(−1)L tan(ω/4)2L+1)
.

The result then follows from the classical result 1+ia
1−ia = e2 i atan(a) with here a = (−1)L tan(ω/4)2L+1.

Figure 1 illustrates the behaviour of uL. On the intervals (−4π, 0) and (0, 4π), it is easy to show that
uL(ω) converges respectively to 0 and 2 when L goes to infinity.

The analyticity of the pair (ψ̂G, ψ̂H) is then obtained thanks to the behaviour of ψ̂H(ω). First, ψ̂H(ω)→ 0
when ω → 0 thanks to the property of the null moments given by (3)-(4). For |ω| > 4π, a decreasing prop-
erty of |ψ̂H(ω)| allows us to verify the analyticity approximation. This last point is verified numerically, as
illustrated in Figure 2.



Figure 1. Analytic approximation. The figure displays ω 7→ |uL(ω)| for L=2, 5, 10.
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Figure 2. Plot of |ψ̂H(λ)| for different values of M and L, with QL,M mid-phase factorisations of RL,M in Theorem 2.2.

3. APPLICATION TO MULTIVARIATE LONG MEMORY PROCESSES M(d)

In order to illustrate the usefulness of the approximately analytic wavelets with common factor, we choose
to show their behaviour for M(d) processes with different values of d. In particular, these wavelets extract
correlations that are cancelled by real wavelets. From now on, the parameters M and L are chosen such that
M = 4 et L = 2.

3.1 Definition of the model
As an example, we simulate a bivariate ARFIMA(0,d,0) process defined as

X`(k) = (1−L)−d`u`(k), ` = 1, 2, k ∈ Z ,



where L is a lag operator and
(

u1(k)
u2(k)

)
i.i.d. with law

N
((

0
0

)
, Ω

)
, avec Ω =

(
1 0.8

0.8 1

)
.

Using this model, the spectral density of (X1, X2) satisfies

f (λ) = Λ(d)ΩΛ(d)∗ where Λ(d) = diag((1− e−iλ)−d) .

A first order approximation is obtained, when λ→ 0+,

f (λ) ∼ Σ(λ)

Σ(λ) = Λ̃(d)∗ΩΛ̃(d) , with Λ̃(d) = diag(λ−de−iπd/2) ,

where the * exponent denotes the complex conjugate. When λ→ 0−, f (λ) ∼ Σ∗(λ).

Let ρ be the correlation coefficient of Σ(λ), ρ = Σ1,2(λ)/
√

Σ1,1(λ)Σ2,2(λ) = Ω1,2 eiπ(d1−d2)/2 (this does
not depend on λ).

In this particular case, the phase of the correlation in 0+ is equal to π(d1 − d2)/2. The discontinuity of
the spectral density in 0 perfectly justifies the use of analytic transforms for the identification of the phase.
Indeed, it is crucial to consider only the positive (or negative) frequency in order to keep the information
on the phase.

Define {Wj,k(`), j > 0, k ∈ Z} for ` = 1, 2 the wavelet coefficients of the process X` obtained from the
wavelet transform ψ:

Wj,k(`) =
∫
R

X̃`(t)ψj,k(t)dt j > 0, k ∈ Z,

where ψj,k(·) = 2−j/2ψ(2−j · −k) et X̃`(t) = ∑k∈Z X`(k)φ(t − k). Let θj denotes the empirical correlation
between {Wj,k(1), k ∈ Z} and {Wj,k(2), k ∈ Z}, that is,

θj = Cor({Wj,k(1), k ∈ Z}, {Wj,k(2), k ∈ Z})

for a given scale j > 0. The behaviour of θj when j → ∞ is intrisically linked to ρ. More precisely, when ψ

is real, Proposition 214 shows that asymptotically θj tends to the real part of ρ when j tends to infinity. In
particular, when the phase is equal to π/2, i.e. when d1 − d2 is close to 1 modulo 2, the correlation of the
real wavelet coefficients is equal to 0. When ψ is analytic, {θj, j > 0} are no more real and their imaginary
part can yield additional information about the phase. It is shown in this paper on simulations that ρ can
be recovered thanks to {θj, j > 0} when taking into account the imaginery part. An interesting perspective
is to build an estimation procedure of ρ based on this observation. In the following, Re indicates the real
part and Im is the imaginary part.

3.2 Numerical results
For the first simulation, the long memory parameter d is equal to (0.2, 0.2). The phase of the M(d) process
defined above, is equal to 0. Figure 3 displays {θj, j > 0} with real wavelets computed using time series
of size 212. 1000 simulations were repeated to obtain the boxplots. This figure is clearly showing that ρ
is recovered directly from the correlation of the wavelet coefficients. For the second simulation, the long
memory parameter d is equal to (0.2, 1.2). The phase is here equal to π/2 and the approximation of the
spectral density at the zero frequancy contains only the imaginary part. In this example, Figure 3 illustrates
the cancellation of the correlation of the wavelet coefficients and consequently the impossibility to identify
ρ. Indeed, only the imaginary part of f contains information in this example.

In the first simulation, with d1 = d2 = 0.2, when using an analytic wavelets, Figure 4 shows similar
results as for real wavelets. In addition, the imaginary part of the correlations {θj, j > 0} is equal to 0. In



Figure 3. Boxplot of the empirical correlations of the wavelet coefficients {θj, j > 0} for real wavelets in terms of the
scales. In red, the real part of the theoretical value of ρ of the ARFIMA model.
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Figure 4. Boxplot of the empirical correlations of the wavelet coefficients {θj, j > 0} for analytic wavelets in terms of
the scales. In red, the real part of the thoretical value of ρ of the ARFIMA model.
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the second simulation, when d1 = 0.2 et d2 = 1.2, Figure 4 reveals that the real part of the correlations
{θj, j > 0} is vanishing after a certain scale as it is observed with real wavelets. However, the imaginary
part of the wavelet coefficient correlations is, as expected in this case, converging in mean to ρ.

Other simulation studies bring to light a similar conlusion, that is, the empirical correlations of wavelet
coefficents based on approximately analytic wavelets enable to recover the quantity ρ. Considering both
real and imaginary parts of the quasi-analytic wavelet coefficients, it enables us to identify the modulus
and phase of the spectral density at the 0+ frequency. They are not presented in the paper for concision.



conclusion

In this paper, our first contribution is to show the existence of the approximately analytic wavelets using
a common-factor design.3 An example of the usefulness of analytic wavelets is described in the context
of analysing multivariate processes. The results presented in this paper suggest directions for future in-
vestigations. Theoretical results on the quality of the analytic approximation are needed (see the paper
in preparation?). Indeed, this is necessary to derive statistical properties of the estimation of the parame-
ters of the multivariate long-memory model.14 Also a numerical instability is observed when varying the
parameters L and M, this would be studied in a future work.
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