Fast atom diffraction inside a molecular beam epitaxy chamber, a rich combination - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Applied Surface Science Année : 2017

Fast atom diffraction inside a molecular beam epitaxy chamber, a rich combination

Résumé

Two aspects of the contribution of grazing incidence fast atom diffraction (GIFAD) to molecular beam epitaxy (MBE) are reviewed here: the ability of GIFAD to provide in-situ a precise description of the atomic-scale surface topology, and its ability to follow larger-scale changes in surface roughness during layer-by-layer growth. Recent experimental and theoretical results obtained for the He atom beam incident along the highly corrugated [1 ¯ 10] direction of the β 2 (2×4) reconstructed GaAs(001) surface are summarized and complemented by the measurements and calculations for the beam incidence along the weakly corrugated [010] direction where a periodicity twice smaller as expected is observed. The combination of the experiment, quantum scattering matrix calculations, and semiclassical analysis allows in this case to reveal structural characteristics of the surface. For the in situ measurements of GIFAD during molecular beam epitaxy of GaAs on GaAs surface we analyse the change in elastic and inelastic contributions in the scattered beam, and the variation of the diffraction pattern in polar angle scattering. This analysis outlines the robustness, the simplicity and the richness of the GIFAD as a technique to monitor the layer-by-layer epitaxial growth.
Fichier principal
Vignette du fichier
GIFAD_MBE.pdf (5.88 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01616599 , version 1 (13-10-2017)

Identifiants

Citer

M. Debiossac, P. Atkinson, A. Zugarramurdi, M. Eddrief, F. Finocchi, et al.. Fast atom diffraction inside a molecular beam epitaxy chamber, a rich combination. Applied Surface Science, 2017, 391, pp.53 - 58. ⟨10.1016/j.apsusc.2016.02.157⟩. ⟨hal-01616599⟩
239 Consultations
54 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More