Multicriteria 3D PET image segmentation

Abstract : The analysis of images acquired with Positron Emission Tomography (PET) is challenging. In particular, there is no consensus on the best criterion to quantify the metabolic activity for lesion detection and segmentation purposes. Based on this consideration, we propose a versatile knowledge-based segmen-tation methodology for 3D PET imaging. In contrast to previous methods, an arbitrary number of quantitative criteria can be involved and the experts behaviour learned and reproduced in order to guide the segmentation process. The classification part of the scheme relies on example-based learning strategies, allowing interactive example definition and more generally incremental refinement. The image processing part relies on hierarchical segmentation, allowing vectorial attribute handling. Preliminary results on synthetic and real images confirm the relevance of this methodology, both as a segmentation approach and as an experimental framework for criteria evaluation.
Type de document :
Communication dans un congrès
Image Processing Theory, Tools and Applications (IPTA), 2015, Orléans, France. IEEE, 2016, 〈10.1109/IPTA.2015.7367162〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger
Contributeur : Laurent Najman <>
Soumis le : lundi 16 octobre 2017 - 21:11:08
Dernière modification le : jeudi 19 juillet 2018 - 15:34:01
Document(s) archivé(s) le : mercredi 17 janvier 2018 - 12:19:11


Alvarez Padilla IPTA 2015_VFin...
Fichiers produits par l'(les) auteur(s)



Francisco Javier Alvarez Padilla, Eloïse Grossiord, Barbara Romaniuk, Benoît Naegel, Camille Kurtz, et al.. Multicriteria 3D PET image segmentation. Image Processing Theory, Tools and Applications (IPTA), 2015, Orléans, France. IEEE, 2016, 〈10.1109/IPTA.2015.7367162〉. 〈hal-01616446〉



Consultations de la notice


Téléchargements de fichiers