Skip to Main content Skip to Navigation
Conference papers

Multicriteria 3D PET image segmentation

Abstract : The analysis of images acquired with Positron Emission Tomography (PET) is challenging. In particular, there is no consensus on the best criterion to quantify the metabolic activity for lesion detection and segmentation purposes. Based on this consideration, we propose a versatile knowledge-based segmen-tation methodology for 3D PET imaging. In contrast to previous methods, an arbitrary number of quantitative criteria can be involved and the experts behaviour learned and reproduced in order to guide the segmentation process. The classification part of the scheme relies on example-based learning strategies, allowing interactive example definition and more generally incremental refinement. The image processing part relies on hierarchical segmentation, allowing vectorial attribute handling. Preliminary results on synthetic and real images confirm the relevance of this methodology, both as a segmentation approach and as an experimental framework for criteria evaluation.
Complete list of metadata

Cited literature [22 references]  Display  Hide  Download
Contributor : Laurent Najman <>
Submitted on : Monday, October 16, 2017 - 9:11:08 PM
Last modification on : Saturday, June 19, 2021 - 3:49:28 AM



Francisco Javier Alvarez Padilla, Eloïse Grossiord, Barbara Romaniuk, Benoît Naegel, Camille Kurtz, et al.. Multicriteria 3D PET image segmentation. Image Processing Theory, Tools and Applications (IPTA), 2015, Orléans, France. pp.346-351, ⟨10.1109/IPTA.2015.7367162⟩. ⟨hal-01616446⟩



Record views


Files downloads