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Fig. 1. An example of hierarchical video segmentation obtained by our proposed method

AbstractÐHierarchical video segmentation provides region-
oriented scale-space,i.e., a set of video segmentations at different
detail levels in which the segmentations at ®ner levels are nested
with respect to those at coarser levels. Hierarchical methods have
the interesting property of preserving spatial and neighboring
information among segmented regions. Here, we transform the
hierarchical video segmentation into a graph partitioning prob-
lem in which each part will correspond to one region of the
video. Thus, we propose a new methodology for hierarchical
video segmentation which computes a hierarchy of partitions
by a reweighting of original graph in which a segmentation
can be easily infered. The temporal coherence is given, only,
by color information instead of more complex features. We
provide an extensive comparative analysis, considering both
quantitative and qualitative assessments showing ef®ciency, ease
of use, and temporal coherence of our methods. According to
our experiments, the hierarchy infered by our two methods,
p-HOScale and cp-HOScale, produces good quantitative and
qualitative results when applied to video segmentation. Moreover,
unlike other tested methods, our methods are not in¯uenced by
the number of supervoxels to be computed, as shown in the
experimental analysis, and present a low space cost.

Keywords-Hierarchical video segmentation; Edge-weighted
graph; Partition; Observation scale.

I. I NTRODUCTION

Image segmentation is the process of grouping perceptually
similar pixels into regions. A hierarchical image segmentation
is a set of image segmentations at different detail levels
in which the segmentations at coarser detail levels can be
produced from simple merges of regions from segmentations at

®ner detail levels. Therefore, the segmentations at ®ner levels
are nested with respect to those at coarser levels. Hierarchical
methods have the interesting property of preserving spatial
and neighboring information among segmented regions. Hi-
erarchical video segmentation generalizes these concepts in
order to consider spatiotemporal regions exhibiting in both
appearance and motion. According to [1], the three major
challenges for developing methods of video segmentation
comprise: (i) temporal coherence; (ii) automatic processing;
and (iii) scalabity. Nevertheless, hierarchical video segmenta-
tion methods cope very well with these challenges. However,
some methods for video segmentation, such as those presented
in [2] ignore temporal coherence. On the other hand, several
video segmentation methods, such as the ones in [1], [3], [4],
[5], may be considered as image segmentation extensions,
in which the inclusion of temporal coherence (according
to criteria of intensity, color and texture) is not a trivial
task. Usually, methods for preserving temporal coherence will
identify spatiotemporal video segments which are represented
by supervoxels.

In this work, the hierarchical video segmentation is trans-
formed into a graph partitioning problem in which each part
will correspond to one region of the video. Thus, a new
methodology for hierarchical video segmentation is proposed
which computes a hierarchy of partitions by a reweighting
of the original graph in which a segmentation can be easily
infered, and the temporal coherence is related to the graph
transformation used, which, in this case, will consider only



color information. In Fig. 2, we illustrate the main steps
of our methodology: (i) graph creation; (ii) computation of
hierarchical scales; and (iii) inference of a video segmentation
using thresholding.

Any hierarchy can be represented by a tree, specially, a
minimum spanning tree. The ®rst appearance of this tree in
pattern recognition dates back to the seminal work of Zahn
[6]. Lately, its use for image segmentation was introduced
by Morris et al. [7] in 1986 and popularized in 2004 by
Felzenszwalb and Huttenlocher [8]. In [9], [10], the authors
studied some optimality properties of hierarchical segmenta-
tions. Considering that, for a given image, one can tune the
parameters of the well-known method proposed in [8] for
obtaining a reasonable segmentation of this image. According
to [8], the main parameterk is named as the observation scale.
However, the region-merging method [8] does not provide a
hierarchy and, consequently, it faces two major issues:

� ®rst, the number of regions may increase when the value
of parameterk increases. This should not be possible if
k was a true scale of observation: indeed, it violates the
causality principleof multi-scale analysis, which states
that a contour present at a scalek1 should be present at
any scalek2 < k 1 [11];

� second, even when the number of regions decreases,
contours are not stable: they can move when the value of
parameterk varies, violating thelocation principle.

Following [11], we believe that, in order for the parameter
k to be a true observation scale, we have to satisfy both the
causality principle and the location principle, which leads to
work with a hierarchy of segmentations. In [12], it is proposed
the ®rst algorithm to produce a hierarchy of segmentations
based on region-merging method [8]. However, this method
is an iterative version of the one proposed in [8] that uses
a threshold function, and requires the tuning of a threshold
parameter.

The methods based on Nystrom [4] and segmentation by
weighted aggregation (so-called SWA) [5], [13], both optimize
the same normalized cut criterion. In [4], the Nystrom approx-
imation was proposed to solve the eigenproblem, showing that
it is possible to use this method for relatively low-resolution
and short videos. The approach based on SWA proposed by
[5], [13] computes iteratively the hierarchy considering for
high hierarchical levels the previous ones. Moreover, it used an
algebraic multigrid solver to ef®ciently compute the hierarchy.
The mean shift segmentation (so-called MeanShift) which was
proposed in [14] for image segmentation, it was applied to
temporal sequences in [3]. Moreover, this work also introduced
the Morse theory to interpret mean shift as a topological
decomposition of the feature space into density modes. A
hierarchical video segmentation is created by using topological
persistence.

For video segmentation, the method proposed by [1] (so-
called GBH) taking into account the same criterium of [8] (so-
called GB) iteratively computes different hierarchical levels,
using an adjacency region graph. The ®rst step of this method
is to compute an oversegmented image that will be used as

®rst level of the hierarchy. It then iteratively constructs a region
graph over the obtained segmentation, and forms a bottom-up
hierarchical tree structure of the region (segmentation) graphs,
unlike [8], the regions are described by localLab histograms.
To compute each hierarchical level, an edge-weighted graph
is created in which the weights are the distance between
the Lab histograms of the connected regions. Even though
this method presents high quality segmentations with a good
temporal coherence and with stable region boundaries, for
computing a video segmentation according to a speci®ed level,
it is necessary to compute all lower (®ner) segmentations.
Here, we consider that when the scales increase the number
of supervoxels decreases. Moreover, since Felzenszwalb and
Huttenlocher's method [8] is not hierarchical, some regions
may be merged (as illustrated in [15]) and some computer
vision operations may become too dif®cult.

Following [15], in this paper, we provide a hierarchical
version of the method proposed by Felzenszwalb and Hut-
tenlocher applied to the hierarchical video segmentation that
removes the need for parameter tuning and for the computation
of video segmentation at ®ner levels. In other words, the
proposed video segmentation is not dependent on the hier-
archical level, and consequently, it is possible to compute any
level without computing the previous ones, thus the time for
computing a segmentation is almost the same for any specifed
level (as will be shown at the experimental analysis).

Contributions. The main result of this paper is an ef®-
cient hierarchical video segmentation algorithm based on the
dissimilarity measure proposed in [8]. Our algorithm has a
computational time cost similar to [1] and lower computational
space cost, regarding the same problem, but it provides all
scales of observations instead of only one segmentation level.
Since it is a hierarchical method, its result satis®es both the
locality principle and the causality principle. Namely in our
approach, and in contrast to what happens with [8], the number
of regions decreases when the scale parameter increases, and
the contours do not move from one scale to another, and unlike
the results of [1], it is not dependent on the ®rst segmentation.

This work is organized as follows. Section II presents
fundamental concepts that are useful to this work and to some
related works. In Section III, our approach for hierarchical
video segmentation is presented along with simple examples to
better explain how it really works. Then, experimental results
are presented in Section IV together with a detailed quantita-
tive and qualitative analysis. Finally, Section V presents ®nal
remarks and discusses possible research lines for future works.

II. SOME FUNDAMENTAL CONCEPTS

First, we de®ne a supervoxel according to [16]. Given a 3D
lattice� 3 (the voxels in the video), a supervoxelsv is a subset
of the latticesv � � 3 such that the union of all supervoxels
comprises the lattice and they are pairwise disjoint:

S
i sv =

� 3 andsvi
T

svj = ; ; 8i; j pairs.
Let V be a set. We denote byP(V ) the set of all subsets

of V . Let x be an element ofV andPx (V ) be the set of all
subsets ofV which contains the elementx. A subsetP �
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Fig. 2. Outline of our method. The method can be divided in three main steps: in step 1, the video is transformed into a video graph; in step 2, the hierarchy
is computed from the video graph; and ®nally, in step 3, the identi®cation of video segments is made from hierarchy.

P(V ) is called apartition (of V ) if the intersection of any
two distinct elements ofP is empty and if the union of all
elements inP is equal toV . If P is a partition, each element
of P is called aregion (or class)of P. The set of all partitions
of V is denoted by� V . Let P and P 0 be two partitions of
V . We say thatP 0 is a re®nementof P if any region ofP 0 is
included in a region ofP. A set H = f P � 2 � V j � 2 Ng
of (indexed) partitions is called a(indexed) hierarchyif for
any two positive integers� 1 and � 2 such that� 1 � � 2, the
partition P � 2

is a re®nement ofP � 1
.

We de®ne a (undirected)graph as a pairG = ( V; E)
where V is a ®nite set andE is composed of unordered
pairs ofV , i.e., E is a subset offf x; yg � V j x 6= yg. Each
element ofV is called avertex or a point ofG, and each
element ofE is called anedge ofG. A (simple) path in
a graph is a sequence of edges which connects a sequence
of vertices. A graph is said to beconnectedif every pair of
vertices in the graph is connected. Anedge-weighted graphis
a pairW = ( G; w) whereG is a graph andw is a map from
E(G) into N. A treeis a graphT = ( V; E) which is connected
and has onlyjV j ! 1 edges. Aspanning treeof a connected,
undirected graphG = ( V; E) is a tree T = ( V 0; E 0) in
which V 0 = V and E 0 � E . For an edge-weighted graph
W = ( G; w) one associates anedge-weighted spanning tree
U = ( T; w) in which T is a spanning tree andw is a map
from E(T) into N. This map could be used to assign a weight
to a spanning tree by computing the sum of the weights of all
edges in that spanning tree. Aminimum spanning tree(MST)
(or minimum weight spanning tree) is then a spanning tree
with weight less than or equal to the weight of every other
spanning tree.

Let us remember some de®nitions of region-merging cri-
terion. The criterion for region-merging in [8] measures the
evidence for a boundary between two regions by comparing
two quantities: one based on intensity differences across the
boundary, and the other based on intensity differences between
neighboring pixels within each region. More precisely, in order
to know whether two regions must be merged, two measures
are considered. Theinternal differenceInt (X ) of a region
X is the highest edge weight among all the edges linking two
vertices ofX in the MST. ThedifferenceDi� (X; Y ) between

two neighboring regionsX andY is the smallest edge weight
among all the edges that linkX to Y . Then, two regionsX
andY are merged when:

Di� (X; Y ) � min f Int (X ) +
k

jX j
; Int (Y ) +

k

jY j
g (1)

wherek is a parameter used to prevent the merging of large
regions (i.e., largerk forces smaller regions to be merged).

The merging criterion de®ned by Eq. (1) depends on the
scalek at which the regionsX and Y are observed. More
precisely, let us consider the(observation) scaleSY (X ) of X
relative to Y as a measure based on the difference between
X andY , on the internal difference ofX and on the size |X |
of X :

SY (X ) = ( Di� (X; Y ) ! Int (X )) � j X j: (2)

Then, thescaleS(X; Y ) is simply de®ned as:

S(X; Y ) = max( SY (X ); SX (Y )) : (3)

Thanks to this notion of a scale, Eq. (1) can be written as:

k � S(X; Y ): (4)

Let T = ( V; E) be a tree andU = ( T; w) an edge-weighted
tree. LetP V be a partition ofV and letX be a region ofP V .
The internal difference ofX in U, denoted byInt U (X ),
is the highest weight of an edge inE(T) that links two
elements ofX (i.e., Int U (X ) = max f w(f x; yg) j f x; yg 2
E(T); x 2 X; y 2 X g). Let Y be another region ofP. We
say thatX and Y are two adjacent regionsif there exists an
edgef x; yg of T such thatx belongs toX and y belongs
to Y ; in this case, we also say that the edgef x; yg links X
and Y . If X and Y are adjacent, thedifference betweenX
and Y ± Di� U (X,Y) ± is the lowest weight of an edge
that links X and Y . Furthermore, ifX and Y are adjacent,
the (observation) scaleSU

Y (X ) of X relative to Y in U is
given by SU

Y (X ) = ( Di� U (X; Y ) ! Int U (X )) � j X j and
the scale ofX and Y in U, denoted bySU (X; Y ), is given
by SU (X; Y ) = max( SU

Y (X ); SU
X (Y )) .
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Fig. 3. Example for computing the hierarchical scale for an edge-weighted graph. For this example, we suppose that all scales for the regionsX andY are
already computed, and we will calculate the hierarchical scale for the edge connectingB andG.

III. A HIERARCHICAL VIDEO SEGMENTATION METHOD

Our method for hierarchical video segmentation, illustrated
in Fig. 2, is based on computation of (hierarchical) obser-
vation scales between any two adjacent regions. Following
[8], instead of computing these scales directly from the video,
our approach computes them on a graph generated from the
video. Note that the modeling used to transform the video into
an edge-weighted graph may in¯uence the calculation of the
scales (Step 1 in Fig. 2), and, consequently, it may modify the
results that will be obtained by our method (as will be dis-
cussed in more detail in Section IV). In this section, we focus
the discussion over the process for computing the hierarchical
scales from video graph (Step 2 in Fig. 2). This approach is
similar to the one proposed for image segmentation by [15],
in which the adjacent regions that are evaluated depend on
the order of the merging in the fusion tree (or simply, the
order of the connected component merging on the minimum
spanning tree of the original graph). As will be seen later, a
new edge-weighted tree is created from the MST in which
each edge weight corresponds to the scale from which two
adjacent regions connected by this edge are correctly merged,
i.e., there are no two sub-regions of these regions that might
be merged before these regions. In fact, instead of computing
the hierarchy of partitions, a weight map is produced from
which the desired hierarchy can be inferred (Step 3 in Fig. 2),
e.g., by removing from those edges whose weight is greater
than the desired scale.

Our method described by Algorithm 1 (hereafter called
HOScale) for computing the weight map is based on the
analysis of a fusion tree oriented by merging of regions
according to non-decreasing edge weight,i.e., the MST of
original graph is used for orienting these fusions. The kernel of
our methodology is presented in Algorithm 2, since it identi®es
the smaller scale value that can be used to merge the largest
region to another region while guaranteeing that the internal
differences of these merged regions are larger than the value
calculated for the smaller scale.

a) Algorithm 1: Compute the observation scale between
X and Y . Let T = ( V; E) be a tree. LetG = ( V 0; E 0) be
a graph, in whichV 0 = V and E 0 = ; . Let U = ( T; w) be
an edge-weighted tree. LetU0 = ( G; w0) be an edge-weighted
graph.
(i) SortE (T) into � = ( o1; � � � ; om ) by non-decreasing edge

weights.
(ii) Let P V 0

= ff vi g j vi 2 V 0g
(iii) Let x and y be two vertices ofV that are connected by

i -th non evaluated edgee in the ordering.
(iv) Find the regionX of P V 0

that containsx.
(v) Find the regionY of P V 0

that containsy.
(vi) Compute the hierarchical observation scale

w0
e = max f SY (X ); SX (Y )g

(vii) Insert an edgee0 = ( x; y) into E 0 and addw0
e to the edge

mapw0 associated with the new edgee0.
(viii) Let P V 0

= P V 0
n f X; Y g [ f Z j Z 2 X [ Yg

(ix) Repeat the steps (iii)-(viii) until there is no edge left.
b) Algorithm 2: Compute observation scale of a region

that containsx relative toY ± SY (X ). Here, we consider the
edge-weighted treeU = ( T; w) and the edge-weighted graph
U0 = ( G0; w0) as de®ned in Algorithm 1.
(1) Let P I

x (V 0) � P x (V 0) be the set of all subsets of
V 0 which contains the elementx in which each subset
induces a connected graph.

(2) Find the largest set,X 2 P I
x (V 0), in terms of size, in

which SU
Y (X ) � Int U 0

(X ), i.e.

SU
Y (X ) � Int U 0

(X ) and j X j � j X 0 j; 8X; X 0 2 P I
x (V 0)

(3) ComputeC = f Ci 2 P I
x (V 0) j X � Ci g.

(4) If C = ; then SY (X ) = SU
Y (X ) else SY (X ) =

minf minf Int U 0

(Ci ) j Ci 2 Cg; SU
Y (X )g.

(5) ReturnSY (X ).
We will explain the steps of our algorithms using an

example. Let us illustrate the computation of a hierarchical
observation scale on the graph of Fig. 3(a). To this end, we
consider the iteration of the algorithm at which the edgee
linking B to G is analyzed. At this step, the edges of the
MST of weight beloww(e) = 10 have been already processed.
Therefore, the hierarchical observation scale of these edges
(depicted by continuous lines in the ®gure) is already known
as shown in Fig. 3(b). The regionsX and Y obtained at
Steps (iv) and (v) are set tof A; B; C; D; E g andf F; G; H; I g
respectively. Then, in order to ®nd the valuew0

e at Step (vi)
of the Algorithm 1, all partitions (for each region) must be
considered.

Firstly, let us analyse the region X of Fig. 3(b). The
set of all subsets ofX which contains the elementx and



the induced graph has only 1 (one) connected component
which is P I

x (V 0) = ff B g; f B; C g; f A; B; C; D; E gg. In Step
2 (Algorithm 2), we look for the largest set in which the
hierarchical observation scale is greater than or equal to the
internal difference of the new re-weighted tree. Thus, suppose
that X = f A; B; C; D; E g, as SU

Y (X ) = (10 ! 9) � 5 = 5
is smaller thanInt U 0

(X ) = 21 (which is the highest edge
weight of X ), then it is necessary to verify for another set.
Now, for X = f B; C g, the SU

Y (X ) = (10 ! 1) � 2 = 18 is
greater than or equal toInt U 0

(X ) = 1 , then SY (X ) = 18 ,
which is the minimum between 18 and 21 (steps 3 and 4
of Algorithm 2). The same process is made forSX (Y ). The
set of all subsets ofY which contains the elementy and
the induced graph has only 1 (one) connected component,
which is P I

y (V 0) = ff Gg; f G; H; I g; f F; G; H; I gg, here
SX (Y ) = 12 , which is the minimum between 12 and 18.
Finally, the hierarchical observation scale ofX and Y is 18
(= max f SY (X ); SX (Y )g = max f 18; 12g).

IV. EXPERIMENTAL ANALYSIS

In order to provide a comparative analysis, we take into
account the benchmark and library LIBSVX proposed in [16],
since the implemented methods are the state of the art for early
hierarchical video segmentation. The benchmark is composed,
among others, by:

� two datasets with groundtruth - Chen Xiph.org [17], Seg-
Track [18]. The Chen's dataset Xiph.org is composed by
eight videos which are densely labeled, with an average
of 85 frames-per-video (fpv), a minimum of 69 fpv and
a maximum of 86 fpv, leading to a total of 639 annotated
frames. The dataset SegTrack is composed by six videos,
with an average of 41 fpv, a minimum of 21 fpv and a
maximum of 71 fpv, leading to a total of 244 annotated
frames. It is important to note that the groundtruth of
the second dataset, SegTrack, is composed by only one
segmented object. Moreover, the video databases are not
splitted into training/testing data sets;

� implementations of the methods GB ([8]), GBH ([1]),
MeanShift ([3]), Nystrom ([4]) and SWA ([13]) applied
to video segmentation.

As can be seen in Fig. 2 and discussed at the beginning
of Section III, the method HOScale computes a new weight
map from a video graph, however there are several ways for
transforming a video into a video graph. Here, we will consider
only two:

� the underlying graph is the one induced by the
26-adjacency pixel relationship, where the edges are
weighted by a simple color gradient computed by the
Euclidean distance in the RGB space, so this method is
calledp-HOScale (wherep stands for pixel relationship);

� the underlying graph is the one induced by the 26-
adjacency pixel relationship together with the 10 nearest
neighbors in RGBXYZ space, where the edges are again
weighted by a simple color gradient computed by the
Euclidean distance in the RGB space, this method is

called cp-HOScale (wherec and p stand for color and
pixel relationship, respectively).

The GTech dataset [1] is also used in our qualitative
analysis. Moreover, in our experiments, we consider the real
size of the videos, in terms of frame size, instead of rescaling
(as proposed in [16]).

A. Implementation issues

To ef®ciently implement our methods, we use some data
structures similar to the ones proposed in [15]; in particular,
the management of the collection of partitions is made using
Tarjan's union-®nd and Fredman and Tarjan's Fibonnacci
heaps. Furthermore, we made some algorithmic optimizations
to speed up the computations of the hierarchical observation
scales. So, in order to create the video graphs, and when it is
necessary, we employ a KD-tree for identifying the K-nearest
neighbors. Our method is implemented in C++. We ran all
experiments in a Quad-Core Intel Xeon E5620 2.4Ghz 24GB
RAM with Ubuntu 12.04.1 LTS.

Regarding computational cost, both methods, p-HOScale
and cp-HOScale, outperform all tested methods in space cost
(as illustrated in Fig. 4). This metric is important if we consider
applications in environments without enough RAM memory,
like ultrabooks. For example, we do not plot SWA information
since, according to our experiments, it consumes about 45 GB
for a video with 100 frames.

B. Quantitative analysis

Using the library LIBSVX, developed by [16], it is pos-
sible to compute, among others, the following metrics: (i)
3D boundary recall; (ii) 3D segmentation accuracy; (iii) 3D
undersegmentation errors; (iv) explained variation; and (v)
mean duration. The 3D boundary recall assesses the qual-
ity of the spatiotemporal boundary detection, while the 3D
segmentation accuracy quanti®es what fraction of groundtruth
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Fig. 4. A comparison between our methods, p-HOScale and cp-HOScale,
and the methods GB and GBH when applied to Chen's (a) and SegTrack
(b) datasets. The comparison is based on the following metrics (from left to
right): (i) space cost; (ii) total time for all methods.
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Fig. 5. A comparison between our methods, p-HOScale and cp-HOScale, and the methods GB, GBH, SWA, MeanShift and Nystrom when applied to
Chen's dataset. The comparison is based on the following metrics: (i) 3D segmentation accuracy; (ii) 3D boundary recall; (iii) 3D F-measure; (iv) 3D
undersegmentation error; (v) explained variation and (vi) mean duration.

segments is correctly classi®ed. The 3D undersegmentation
error measures what fraction of voxels exceeds the volume
boundary of the groundtruth region and the explained variation
is a human independent measure assessing spatiotemporal
uniformity. Finally, the mean duration quanti®es the average
duration, in terms of number of frames, of the video segments
(or supervoxels). Here, we also compute a 3D F-measure
which is a harmonic mean that measures how good is a
segmentation regarding both 3D boundary recall and 3D
segmentation accuracy.

Fig. 5 and Fig. 6 illustrate the average values of computed
metrics for Chen's dataset and SegTrack dataset varying the
number of desired supervoxels between 200 and 900, in which
the parameters for our methods are tunned per dataset, like
in GB, SWA and Meanshift, exporting out the best obtained
results. For GB and Nystrom, the parameters are tunned per
video. The strategy for ®ltering out small regions is the same
adopted in [16], in which the size of the regions to be ®ltered
out increases, by a constant value, when the number of super-
voxels decreases. Note that, unlike GBH, SWA and MeanShift,
our methods have an exact control on the desired number of
video segments (or supervoxels). For the Chen's dataset, we
can observe that cp-HOScale presents similar results when
compared to the best one (SWA for explained variation and
GBH for another measures). For SegTrack dataset, the same
behavior is observed except for mean duration in which cp-
HOScale ourperfoms the best one. According to [19], the
mean duration of segments is a more important metric, as
it measures the temporal coherence of a segmentation method
more directly, and as one can see in Fig. 5 and Fig. 6, cp-
HOScale outperforms all other methods for SegTrack dataset,

and it is equivalent to the best one for Chen's dataset. In
both datasets, the 3D segmentation accuracy presents similar
results with respect to GBH and SWA, however this metric is
quite constant for all number of supervoxels, representing its
stability.

Considering total time, our methods outperform GBH when
we compute a small number of video segments. As one can
see, in Fig. 4, our methods have a constant time for computing
any hierarchical level while GBH has an increasing time
when the number of supervoxels decreases. Remember that
the scales increase when the number of supervoxels decreases.
It is important to note that the method p-HOScale, when
compared to its non-hierarchical version GB, outperforms it
for all metrics. Thus, it is not easy to conclude what method
is better with respect to the others. However, we outperform
the other methods (in different datasets) in several cases, and
in the cases that our method (cp-HOScale) is not the best, it
presents similar results to the best ones. Moreover, despite the
initialization time of our method, the time for computing every
segmentation is constant.

C. Qualitative analysis

Despite the quantitative results, we also compared visually
some of the tested methods in order to illustrate the behavior
when we varied the number of video segments (50 and 100) to
be computed. In Fig. 7 and Fig. 8, we illustrate results obtained
when we apply the methods GB, GBH, SWA, p-HOScale
and cp-HOScale for videos extracted from GTech and Chen's
datasets, respectively. Note that, unlike cp-HOScale and p-
HOScale, there is no guarantee that the three other methods
will obtain the speci®ed number of video segments, thus we



200 300 400 500 600 700 800 900
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Supervoxels

3D
 S

eg
m

en
ta

tio
n 

A
cc

ur
ac

y

SWA
GB
GBH
Meanshift
NystrBom
p-HOScale
cp-HOScale

200 300 400 500 600 700 800 900
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Supervoxels

3D
 B

ou
nd

ar
y 

R
ec

al
l

SWA
GB
GBH
Meanshift
NystrBom
p-HOScale
cp-HOScale

200 300 400 500 600 700 800 900
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Supervoxels

3D
 F

!m
ea

su
re

SWA
GB
GBH
Meanshift
NystrBom
p-HOScale
cp-HOScale

200 300 400 500 600 700 800 900
5

10

15

20

25

30

35

40

Number of Supervoxels

3D
 U

nd
er

se
gm

en
ta

tio
n 

E
rr

or

SWA
GB
GBH
Meanshift
NystrBom
p-HOScale
cp-HOScale

200 300 400 500 600 700 800 900
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of Supervoxels

E
xp

la
in

ed
 V

ar
ia

tio
n

SWA
GB
GBH
Meanshift
NystrBom
p-HOScale
cp-HOScale

200 300 400 500 600 700 800 900
16

18

20

22

24

26

28

30

Number of Supervoxels

M
ea

n 
D

ur
at

io
n

SWA
GB
GBH
Meanshift
NystrBom
p-HOScale
cp-HOScale

Fig. 6. A comparison between our methods, p-HOScale and cp-HOScale, and the methods GB, GBH, SWA, MeanShift and Nystrom when applied to
SegTrack dataset. The comparison is based on the following metrics:(i) 3D segmentation accuracy; (ii) 3D boundary recall; (iii) 3D F-measure; (iv) 3D
undersegmentation error; (v) explained variation and (vi) mean duration.

(a) (b)

Fig. 7. Examples of video segmentations for a video extracted of the GTech. The original frames are illustrated in the ®rst row. The following rows, from
top to bottom, illustrate the results obtained by GB, GBH, p-HOScale, cp-HOScale and SWA, respectively. The parameters were tunned to obtain about (a)
50 and (b) 100 video segments.

compute a segmentation containing a number of regions, as
close as possible, for the speci®ed threshold.

Regarding the segmentation for each frame, we may ob-
serve that our methods present goods results when visually
compared to the other methods. Moreover, cp-HOScale is
subjectively better than p-HOScale. The same behavior may be
observed for temporal coherence. Despite the good quantitative
results obtained by SWA, its results are not visually as good
as GBH and our methods.

V. CONCLUSIONS ANDFUTURE WORKS

In this work, we proposed a method for early hierarchical
video segmentation based on computation of hierarchical
observation scales. Our method can be divided into 3 (three)
main steps: (i) graph creation; (ii) computation of hierarchi-
cal scales; and (iii) inference of video segmentation using
thresholding. We studied two possibilities for producing the
video graph in order to verify the in¯uence of color and
pixel location. To compute our hierarchical scales, we propose
a methodology for reweighting the minimum spanning tree



(a) (b)

Fig. 8. Examples of video segmentations for a video extracted of the Chen's dataset. The original frames are illustrated in the ®rst row. The following rows,
from top to bottom, illustrate the results obtained by GB, GBH, p-HOScale, cp-HOScale and SWA, respectively. The parameters were tunned to obtain about
(a) 50 and (b) 100 video segments.

computed from the video graph based on a criterion that
measures the evidence for a boundary between two regions
by comparing the intensity differences across the boundary
and the intensity difference between neighboring voxels within
each region. Finally, the partitioning of the graph, after the
reweighting, is based on removing the edges whose weights
(which represent the scales) are greater than or equal to a
speci®ed scale. Each graph region represents a video segment.
According to our experiments, the hierarchies infered by
our two methods, p-HOScale and cp-HOScale, produce good
quantitative and qualitative results when applied to video
segmentation. Moreover, unlike other tested methods, our
methods are not in¯uenced by the number of supervoxels
to be computed, as shown in the experimental analysis, and
present a low space cost. For further works, we will study
different ways for computing the video graph, mainly, in order
to decrease the time for its creation and assess its impact on
video segmentation results. Moreover, we will study how to
extend our method for streaming video segmentation.
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