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Abstract

How will countries harvesting mobile renewable resource react to the threat of climate
change? We address the non-cooperative exploitation of a migratory renewable resource
in the presence of possible regime shift that affects its movement. Motivated by
the anticipated effects of climate change, we model a regime shift that will alter
the spatial movement patterns of the resource at some point in the future. We
develop a stochastic spatial bioeconomic model to address the effects of this class of
regime shift on non-cooperative harvest decisions made by decentralized owners such
as countries exploiting a migratory fish or other natural resource stock. We find that
the threat of a future shift modifies the standard golden rule and may induce more
aggressive harvest everywhere, irrespective of whether the owner will be advantaged
or disadvantaged by the shift. We also identify conditions under which the threat
of regime shift induces owners to reduce harvest rates in advance of the shift. Our
analysis suggests that different property rights structures (single ownership vs common
property) or heterogenous growth can give rise to previously unexplored incentives and
can even reverse conventional wisdom about how countries will react to the threat of
environmental change.
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1 Introduction

Because renewable resources such as fish, water, game, and infectious diseases are mobile,

extraction and productivity in one location affect economic opportunities in other locations.

The resulting spatial externality can be dealt with by a central planner using a number

of instruments including spatial taxes, limits of extractive effort, or other means. But in

practice, many spatially connected renewable resources are managed via private property

rights where autonomous entities (such as countries, villages, cooperatives or individual

property right owners) choose their own extraction rates, taking as given the mobility of the

resource and the extraction of their competitors. Indeed spatial property rights are implicitly

the default approach for managing many renewable resources,1 despite their potential for

inducing spatial externalities driven by resource mobility. This general problem has become

a canonical model in spatial resource economics. The main finding from that literature is

that non-cooperative extraction will necessarily entail over-extraction (relative to a social

optimum) because no single owner is incentivized to account for the effects of her extraction

on others (Kaffine and Costello 2011; Fenichel et al. 2014). The aggregate effects of this

non-cooperation can range from extremely deleterious (see White and Costello (2014)) to

practically insignificant (see Gisser and Sanchez (1980)).2

This interesting and growing literature has evolved in a deterministic setting in which

productivity and dispersal functions are common knowledge and fixed over time. Rather, a

growing scientific literature suggests that global change may induce regime shifts that affect

resource dynamics, and thus may alter future economic incentives and returns. While there

are many types of documented (and speculated) regime shifts, they generally share three

common features. First, regime shifts tend to be abrupt - over a relatively short period

1For example, migratory waterfowl and fish are managed by the multiple countries whose boundaries
they traverse, groundwater is managed by overlying landowners, game is often managed by private wildlife
management areas or hunting clubs, and invasive species are controlled by adjacent landowners.

2See Stavins (2011) for empirical evidence on tragedies of the commons.
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of time they can shift the state of the world from one state to another state. Second, the

occurrence date of a regime shift is probabilistic - while scientists might have a sense of the

likelihood of a regime shift occurring, we do not know with certainty when it will occur.

Third, many regime shifts are thought to be irreversible - once the shift occurs, due to

hysteresis, it may be difficult to return to its pre-shift state (Scheffer et al. 2001).3

Facing this type of regime shift fundamentally alters the constraints and incentives faced

by property owners who extract mobile renewable resources. Yet the effects of spatial

regime shift on non-cooperative extractive behavior have not been completely analyzed.

As a prominent example of the kind of regime shift we tackle, consider effects of climate

change on the spatial range or dispersal of a migratory fish species such as tuna. Under

pre-shift parameters, suppose tuna tend to migrate equally between countries A and B. But

if a regime shift were to occur, the migratory pattern may shift to favor country A. If that

kind of shift were predictable, it would clearly alter the incentives of countries A and B:

Recognizing the improvement in future conditions, country A might be willing to forego

harvest today to build resource stocks and capitalize on improved future conditions.4 And

recognizing the deterioration of future conditions, country B would, intuitively, increase its

current extraction. These intuitive predictions of countries’ behaviors are consistent with

results in Hannesson (2007) and Diekert and Nieminen (2015), but they turn out to be

vulnerable to strategic interactions across players. This stylized example illustrates our key

inquiry: How will the presence of a possible future regime shift alter strategic interactions

of private property owners who extract a mobile natural resource? Will the threat of regime

shift always entail a loss of precaution by one agent and an increase in precaution by the

3Issues of uncertainty and irreversibility have been analyzed in the context of the timing of environmental
policy adoption (see Ulph and Ulph (1997) for an early contribution). They also matter significantly for
problems of voluntary contributions to global public goods (see Elsayyad and Morath (2016) for issues raised
by technology transfers, or Nordhaus (2015) and Harstad (2016) for discussions on the design of a climate
treaty).

4See Costello et al. (2001) and Carson et al. (2009) for aspatial models of resource management with
environmental predictions.
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other? We address these and related questions in this paper.

This paper builds on an emerging literature on natural resource management that addresses

related questions, but in a context where the random occurrence of a regime shift inflicts a

permanent loss to all harvesters. Polasky et al. (2011) and Ren and Polasky (2014) focus on

the optimal management whereas Fesselmeyer and Santugini (2013), Sakamoto (2014), Miller

and Nkuiya (2016), and Diekert (2017) analyze the strategic management of a common pool

resource. These contributions consider only scenarios in which all harvesters are identical

and do not explicitly take into account the spatial movement of the resource. But since

we are primarily interested in strategic interactions, our analysis investigates cases in which

regime shift will alter the distribution of resource stocks so as to create winners and losers.5

We thus explicitly take into account the spatial movement of the resource and consider

heterogenous harvesters subject to different, but connected, economic, environmental, and

biological conditions.

Our analysis contributes to an interesting class of economic papers addressing renewable

resource management under the prospect of regime shift in the resource distribution, which

advantages one patch and disadvantages it in the other patch. To gain traction on this

challenging problem, existing papers rely on fairly extreme assumptions: among others,

each patch is owned by a single agent and economic and biological conditions are identical

across patches.6 Prominent contributions include Diekert and Nieminen (2015) and Liu and

Heino (2013) that concentrate on deterministic regime shift processes with finite transitional

periods, and find that the harvester gaining the stock conserves it, whereas the one losing

the stock acts aggressively. Hannesson (2007) considers a random regime shift process and

exogenously assumes that escapement is constant within each environmental regime. He

5For example, climate change may irreversibly trigger local scarcity or extinction in the sub-polar regions
and invasion in the arctic for many species of fish (Cheung et al. 2009).

6In reality, habitat, salinity, water currents, nutrients, oxygen concentration and extraction costs may
vary across patches leading to heterogenous biological, economic, and environmental conditions.
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finds that the stock cannot go extinct whenever the intrinsic growth parameter is not too

low (and smaller than one) and the shares of the stock are sufficiently heterogenous. In this

paper, we consider the strategic interactions across agents and adopt a feedback approach

such that in a given period, escapement endogenously depends on environmental conditions

and the resource stock. To the best of our knowledge, this setting is novel and delivers new

harvest incentives relative to the existing literature.

The simplest case is when marginal harvesting costs are constant. In that setting,

analytical findings reveal that harvesters in the advantaged patch conserve the resource

stock in the initial period whereas those in the disadvantaged patch increase initial harvest

in response to the possible future shift in the resource distribution. In the steady state,

we identify two opposing mechanisms through which uncertainty about the shift affects

harvest decisions. The first is a direct effect of the shift that tends to enhance harvest in the

disadvantaged patch (relative to the no-shift case). The second mechanism is the strategic

effect that tends to reduce harvest incentives in the disadvantaged patch because harvesters

in the advantaged patch conserve the resource stock in the short run. Surprisingly, we

find that each of these mechanisms can dominate the other depending on environmental,

biological, and economic conditions. To better understand the effects of uncertainty about

the shift, we also investigate the case in which harvesting costs decline as the resource stock

increases. We find that a stock effect plays a pivotal role in extraction incentives. When the

stock effect is sufficiently strong, we find that the conventional wisdom is weakened or even

reversed.

The paper unfolds as follows. Section 2 presents the model. Section 3 focuses on behavior

following the regime shift. Section 4 analyses harvesters’ incentives in anticipation of a future

regime shift. Section 5 extends the analysis to the case where each patch is itself common

property. Section 6 concludes.

5



2 The model

A renewable resource stock is distributed heterogeneously across an ecosystem consisting of

two areas or “patches,” A and B. Patches may differ in shape, size, environmental, and

economic characteristics; for example, patches may be countries, private lands, or communal

harvesting areas. The time index is denoted by t = 1, 2, 3, .... and hjt represents the

extraction in patch j during period t. The resource stock at the beginning of period t

in a given patch j is denoted by xjt while the remaining residual stock (or “escapement”) ejt

is defined as ejt ≡ xjt − hjt, which is the post-harvest stock at the end of period t. As such,

when there is no harvest, say, in patch j, the current escapement is equal to the current

resource stock: ejt = xjt.

Resource mobility will induce a spatial connection across patches. In period t, a fraction

Kijt of patch i’s resource stock moves to patch j, i 6= j while the fraction Kiit stays within

patch i. Therefore, Kijt + Kiit ≤ 1 for i, j ∈ {A,B} with i 6= j. In the case where this

inequality is not binding, a fraction of the resource population living in patch i moves out

of the system at date t. The current resource distribution across patches is determined by

the 2× 2 dispersal matrix Kt, whose element Kijt is a binomial random variable that either

takes the value Dij (before the shift), or Ds
ij (after the shift).

At the beginning of the initial period, dispersal is in its pre-shift form, so Kij0 = Dij.

Regime shift occurs at an unknown future date denoted by τ > 0 (that may be infinite), and

dispersal irreversibly shifts to regime s, characterized by a dispersal matrix with terms Ds
ij.

We assume that the shift will give a bio-physical advantage to region A and a disadvantage

to region B, so Ds
BA > DBA ≥ 0, DBB > Ds

BB ≥ 0, DAB > Ds
AB ≥ 0, and Ds

AA > DAA ≥ 0.

Figure 1 illustrates the pre-shift (top panel) and post-shift (bottom panel) migration patterns

where the arrow thickness and size of the patches indicate the strength of connectivity.

Dispersal is thus characterized as follows:
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Figure 1: Effects of the shift on the migration pattern.

Kijt =


Dij for t < τ,

Ds
ij for t ≥ τ for i, j = A,B.

The regime shift process described above can be represented by the stochastic process `t

that may either take the values I (for “initial”) or S (for “shift”) with transition probabilities

P (`t+1 = S|`t = S) = 1; P (`t+1 = S|`t = I) = λ, (1)

P (`t+1 = I|`t = I) = 1− λ. (2)

At the outset of the initial period, the resource stocks xA0 and xB0 in patches A and B

are known. In the absence of harvest, the resource stock grows according to the growth and
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dispersal equation

xjt+1 =
∑
i=A,B

gi(xit)Kijt, j = A,B, (3)

where gi(.) represents patch i’s growth function that satisfies standard conditions. It is

increasing, concave and twice continuously differentiable.

In the presence of harvest, growth depends on escapement, so the law of motion becomes

xjt+1 =
∑
i=A,B

gi(eit)Kijt, j = A,B. (4)

The evolution of the resource population is stochastically determined by harvest, growth,

and environmental conditions Kijt. The timing is thus: the present period stock (xjt) is

observed and then harvested (hjt) giving escapement (ejt), which then grows (gj(ejt)), and

disperses to itself (Kjjt) and to the other patch (Kjit).

Suppose now that each patch is owned by a single entity. For example, this could be a

Territorial User Right Fishery (TURF), a farm on which bees reside, or a country hosting

migratory fish, game, or waterfowl. We allow for, but do not require, prices and costs to be

patch specific. Denote by pj the unit price associated with patch j; costs may depend on

the stock size and are treated later in this section.

The harvester’s period-t harvest is (xjt − ejt) so, in the absence of harvesting costs, her

period-t profit is pj(xjt − ejt). In the presence of harvesting costs, the period-t profit for

harvester j is simply the integral of profit flows over the entire extractive period and can be

written as follows

πjt =

∫ xjt

ejt

[pj − cj(v)]dv. (5)

Here, the term cj(v) is the marginal harvesting cost when the available stock is v. The

integral
∫ xjt
ejt

cj(v)dv in Equation 5 represents the total cost of harvest during period-t, which

may be patch specific. We assume that c′j(v) ≤ 0, that is, the marginal cost decreases in
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the resource stock level. The rationale is that at a given date, a larger resource stock entails

a smaller marginal harvest cost. In the case where c′j(.) = 0, the profit in patch j is linear

in harvest; profit is strictly concave in harvest as long as c′j(.) < 0 (i.e. a stock effect is

present). To determine whether or not the marginal cost is constant is an empirical issue

(see for instance, Atewamba and Nkuiya (2017), for the case of non-renewable resources). We

will show that a sufficiently strong stock effect can fundamentally alter harvest incentives,

particularly in the presence of regime shift. We separately examine both cases below.

Prior to the shift, i.e. for any date t < τ , the present value payoff function in patch

j = A,B is given by

τ−1∑
k=t

δ(k−t)

[
pj(xjk − ejk)−

∫ xjk

ejk

cj(v)dv

]
+ δτ−tWj(x(τ)),

where Wj(x(τ)) represents the period-τ continuation value of the problem for that harvester

and δ is the discount factor. We next solve the post-shift problem and use its result to derive

the complete solution for the uncertain regime shift problem presented above.

3 The post-shift problem

In this section we examine the game between harvesters that will occur following the regime

shift. We follow the growing literature, starting with the seminal paper of Reed (1979), that

uses escapement as the control variable.7 In this setting, the patch-j harvester chooses

an escapement strategy to maximize her present discounted profits taking as given the

escapement strategy of her rival. Thus, immediately following the regime shift, the owner of

7This is a benign assumption because harvest and escapement are linked by the identity ht ≡ xt − et.
This approach has subsequently been adopted by numerous authors including Costello and Polasky (2008),
Costello et al. (2015), Kapaun and Quaas (2013), and many papers cited therein.
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patch j solves:

Wj(xτ ) = max
ejt,t≥τ

+∞∑
k=τ

δ(k−τ)[pj(xjk − ejk)−
∫ xjk

ejk

cj(v)dv],

subject to (4) with xτ ≡ (xAτ , xBτ ) given.

We seek a Markov Perfect Nash Equilibrium (MPNE), which will define the equilibrium

harvest decisions (eA(xA, xB), eB(xA, xB)) following the regime shift. The escapement decision

rule (eA(xA, xB), eB(xA, xB)) is a MPNE if, given the resource stock at the outset of period

τ (xτ ≡ (xAτ , xBτ )), at any date t ≥ τ , {ej(xAs, xBs), s ≥ t} is a solution to the optimization

problem above. The feedback Nash equilibrium is a MPNE and can be found by specifying

and manipulating the Bellman Equations for both players. The Bellman equation for the

harvester operating in patch j can be written as:

Wj(xt) = max
ejt

{
pj(xjt − ejt)−

∫ xjt

ejt

cj(v)dv + δWj(xt+1)

}
,

which is subject to (4) with the initial resource stock xτ ≡ (xAτ , xBτ ) given.

The first-order conditions require

pj = cj(ejt) + δ
∑
i=A,B

∂Wj

∂xit+1

(xt+1)g
′
j(ejt)D

s
ji, j = A,B. (6)

This equation states that patch J chooses her escapement level to equate the resource price

with its augmented marginal cost, which is the marginal cost, augmented by the value forgone

by harvesting today rather than keeping the resource for future harvests. The challenge is

that the form of the value function Wj(x) is unknown. However, its properties can be

derived given the structure of this problem. These derivations allow us to characterize the

equilibrium over the post regime shift phase, summarized as follows:

Lemma 1. Over the post regime shift phase, the following results hold.
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(i) Patch j is harvested down to the escapement level ej, which is stock independent and is

solution to

pj − cj(ej) = δDs
jj[pj − cj

(
gj(ej)D

s
jj + gi(ei)D

s
ij

)
]g′j(ej), i = A,B and i 6= j. (7)

(ii) Each patch’s equilibrium resource stock reaches its steady state in one period, and is

thereafter time-independent.

Proof. All proofs reside in the appendix.

Equation 7 implicitly defines harvester j’s best response function, ej(ei), and suggests

that her actions depend on the flow of the resource to her own patch (Ds
ij), but that ej(ei)

does not depend on Ds
ji nor Ds

ii, i 6= j, which are terms defining the resource flow to the

other patch. This is the case because harvester j does not ascribe any value to additional

resource stock located out of its boundaries (i.e.
∂Wj

∂xit
(xt) = 0 for i 6= j) because she knows

that the best response of her rival would be to harvest any additional stock that arrives.

Importantly, this is a result of the analysis, not an assumption. The equilibrium escapement

level corresponds to the intersection of best response functions eA(eB) and eB(eA). We can

also employ this analysis to identify the equilibrium escapement level of the no-shift case,

in which the resource distribution is deterministic and never shifts. We denote the no-shift

variables by a tilde (e.g. ẽjt). They can be retrieved from Condition 7 by replacing (for

i, j = A,B) Ds
ij by Dij and (xAτ , xBτ ) by (xA0, xB0). Because the no-shift case takes the

same form as the post shift case (albeit with different parameter values), the equilibrium

escapement level of the no-shift case is also time and stock independent (see Lemma 1). The

equilibrium resource stock outcome of the no-shift case converges to its steady state in the

second period of the game.

To better understand the effects of the shift, we next compare the outcomes of the post

regime shift case and the no-shift case.
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Proposition 1. Assume that marginal costs are constant (i.e., c′j(x) = 0 for all x, j = A,B).

Over the post regime shift phase, the following results hold.

(i) For j = A,B, ej is implicitly defined by:

g′j(ej) =
1

δDs
jj

. (8)

(ii) Relative to the no-shift case, the equilibrium escapement level in the post regime shift

problem is larger in patch A and smaller in patch B: eBt ≤ ẽBt and eAt ≥ ẽAt for all t ≥ τ .

(iii) At any date t ≥ τ + 1, the equilibrium resource stock (xjt) in patch j is greater relative

to the no-shift case (x̃jt) if and only if Ds
ij > D̄s

jx.

(iv) At any date t ≥ τ + 1, the equilibrium harvest rate (hjt) in patch j is larger relative to

the no-shift case (h̃jt) if and only if Ds
ij > D̄s

jh, where D̄s
jx and D̄s

jh depend only on δ, Ds
jj,

DAA, DBB and Dij, i = A,B, i 6= j, and are given in the appendix.

Result (i) of Proposition 1 suggests that harvester j = A,B chooses her escapement level to

equate the biological return of the resource discounted by the patch retention rate (Ds
jj) and

the financial rate of return. This is a non-cooperative “golden rule” for spatial growth models

(Kaffine and Costello 2011), where Ds
jj acts like an additional discount factor. Result (ii) of

Proposition 1 is driven by the facts that (a) in each patch, the equilibrium escapement level

and the patch retention rate are positively related; (b) patch B’s retention rate decreases

with the shift whereas this result is reversed for patch A. Results (iii) and (iv) of Proposition

1 lead to an unexpected outcome. Despite the fact that the shift inflicts biophysical damages

to patch B (i.e., Ds
AB < DAB and Ds

BB < DBB), the resource stock in patch B may be larger

depending on the resource growth and spatial characteristics. In addition, harvester B may

have incentives to increase her harvest compared to the no-shift case.

We have so far addressed the cases where the shift has already occurred and where the

shift will never occur. We next use these results to completely characterize the equilibrium
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behavior prior to the shift.

4 Non-cooperative behavior in advance of a regime

shift

We have focused on analyzing the deterministic spatial game induced either following an

irreversible regime shift or in the complete absence of regime shift. But our central research

question asks how harvesters interact under the threat of a possible regime shift in the future.

In this section, we focus on harvesters’ responses to the prospect of a future regime shift.

Taking the escapement strategy of the other harvester as given, harvester j = A,B chooses

the escapement strategy that maximizes her expected present discounted net profits

Vj(xt) = max
ejs,s≥t

E
+∞∑
k=t

δ(k−t)[pj(xjk − ejk)−
∫ xjk

ejk

cj(v)dv], (9)

which is subject to (4). We are interested in identifying a MPNE that we next derive using

the feedback Nash equilibrium approach. Harvester j’s value function given in (9) satisfies:

Vj(xt) = max
ejt

[pj(xjt − ejt)−
∫ xjt

ejt

cj(v)dv + δ(1− λ)Vj(xt+1) + δλWj(x
s
t+1)], (10)

subject to (4), where xsjt+1 = gj(ejt)D
s
jj + gi(eit)D

s
ij and xjt+1 = gj(ejt)Djj + gi(eit)Dij. The

first two terms on the right hand side of Equation 10 are just contemporaneous revenue and

cost from harvesting the resource in patch j. The third term is the discounted expected

value in the case where the regime shift does not occur at the end of period t (this occurs

with probability (1− λ)). The final term is the discounted expected value in the case where

regime shift does occur at the end of period t, in which case we invoke the value functions

from the post regime shift problem derived in Section 3 (this occurs with probability λ).
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To interpret Equation 10, it is instructive to rewrite it as follows:

Vj(xt) = max
ejt

[pj(xjt − ejt)−
∫ xjt

ejt

cj(v)dv + δ̃jVj(xt+1)], (11)

where δ̃j = δ + δλ[Wj(x
s
t+1) − Vj(xt+1)]/Vj(xt+1) can be thought of as a risk-adjusted

discount factor. Equation 11 can be interpreted as the Bellman equation associated with a

deterministic model in which the discount rate endogenously accounts for the possibility of

regime shift.

The first-order condition for this maximization problem can be written as

pj = cj(ejt)+δλg
′
j(ejt)

∑
i=A,B

∂Wj

∂xit+1

(xst+1)D
s
ji+δ(1−λ)g′j(ejt)

∑
i=A,B

∂Vj
∂xit+1

(xt+1)Dji, j = A,B.

Since xAt+1, xBt+1, x
s
At+1 and xsBt+1 depend on eAt, eBt and do not explicitly depend on xAt

and xBt, this optimality condition suggests that eAt and eBt are time and stock independent.

This intuition is verified in the following lemma.

Lemma 2. Prior to the spatial regime shift, the following results hold:

(i) The pair (eA, eB) constitutes a MPNE, where ej is implicitly defined as follows:

pj − cj(ej) = δλDs
jj[pj − cj

(
gj(ej)D

s
jj + gi(ei)D

s
ij

)
]g′j(ej) (12)

+ δ(1− λ)Djj[pj − cj (gj(ej)Djj + gi(ei)Dij)]g
′
j(ej), i 6= j.

(ii) ej is stock and time independent.

(iii) A given patch equilibrium resource stock is time dependent and reaches its steady state

in the second period.

Lemma 2 suggests that the MPNE in escapement has a simple structure that depends on

spatial characteristics, but is state independent. As such, the equilibrium escapement level in
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patch j is simply ej as defined in (12). In contrast to results obtained in Lemma 1, Equation

12 suggests that the escapement level in a patch depends on the probability of regime shift,

the patch’s self retention rate before and after the shift. Moreover, in (12), terms multiplying

λ capture harvester j’s strategic responses to the threat of regime shift. Interestingly, for

the particular case where λ = 0, (12) characterizes the equilibrium escapement levels for the

no-shift case. The outcome of Lemma 2 allows us to derive the following results.

Proposition 2. Assume that marginal costs are constant (i.e., c′j(x) = 0 for all x, j = A,B).

Over the pre-regime shift phase, the following results hold:

(i) The equilibrium escapement level in patch j = A,B, satisfies

g′j(ej) =
1

δ(λDs
jj + (1− λ)Djj)

. (13)

(ii) The equilibrium escapement level in
(

Patch A
Patch B

)
is
(

increasing
decreasing

)
in the likelihood of the shift:

∂eA
∂λ

> 0 and
∂eB
∂λ

< 0. (14)

Result (i) reveals that harvester j chooses her escapement to equate the financial rate of

return with the expected biological return, which is biological growth g′j(ej), discounted by

patch j’s expected retention rate, λDs
jj + (1 − λ)Djj. In other words, the non-cooperative

golden rule (13) obtained in the certainty case is modified in response to the threat of future

spatial regime shift. As the probability of the shift is raised, anticipating the shift, harvester

A adjusts her harvest decisions to increase escapement (to take advantage of improved future

conditions), while harvester B reduces her escapement in response to the threat (to extract

the resource before it shifts migration out of her region). Since the no-shift outcome is the

special case where λ = 0, result (ii) of Proposition 2 implies that over the pre-regime shift

phase, the equilibrium escapement level is lower in patch B and larger in patch A, compared

to the no-shift levels.
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These results provide a new perspective on the literature using escapement strategies as

control variable to address the management of a renewable resource. The seminal paper

by Reed (1979) established the optimality of constant escapement in a stochastic fishery

model. Extending that model, for example, Costello et al. (2015) examine the implications

of partial enclosure of a renewable common resource in a deterministic setting where the

resource distribution regime never shifts; and Costello and Polasky (2008) focus on the

effects of environmental variability on optimal spatial harvest responses. These papers find

that the optimal escapement level is time and state independent (and are thus constant). The

above results suggest that regime shift creates a discontinuity in the equilibrium escapement

levels, so optimal escapements shift in response to the regime shift. This is consistent with

previous analyses of optimal resource management of a single, a-spatial stock under cyclical

population dynamics (Carson et al. 2009) or with environmental predictions (Costello et al.

2001; Kennedy and Barbier 2013).

We have focused on the implications of spatial regime shift on escapement decisions. But

we can also analyze the effects of regime shift on harvest and resource stock. We summarize

these results as follows:

Proposition 3. Assume that marginal costs are constant (i.e., c′j(x) = 0 for all x, j = A,B).

Over the phase prior to the shift, the following results hold.

(i) hB0 > h̃B0 and hA0 < h̃A0.

(ii) At any date t ≥ 1, xBt > x̃Bt if and only if DAB > D̄x
B and xAt > x̃At if and only if

DBA < D̄x
A.

(iii) At any date t ≥ 1, hBt > h̃Bt if and only if DAB > D̄h
B and hAt > h̃At if and only if

DBA < D̄h
A, where D̄x

j and D̄h
j depend only on λ, δ, Dkk, D

s
kk, k = A,B and are given in the

Appendix.

At the initial date, anticipating that a shift may occur in the future, harvester B is more

aggressive (harvests more than she would in the no-shift case) while harvester A adopts
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precautionary behavior (reduces her harvest compared to the no-shift case), see Proposition

3i. This seems intuitive because harvester B stands to lose from the regime shift. In the

steady state, however, these strategic interactions may be altered to induce a larger or a

smaller harvest rate in each patch depending on the values of the spatial characteristics.

To better understand the intuition underpinning this result, it is instructive to decompose

the difference between the steady-state harvest rate for harvester B under the threat and

no-threat cases as follows:

hBt − h̃Bt = [gA(eA)− gA(ẽA)]DAB︸ ︷︷ ︸
Term 1>0

+ [(DBBgB(eB)− eB)− (DBBgB(ẽB)− ẽB)]︸ ︷︷ ︸
Term 2<0

.

This condition shows that the effect of the threat of regime shift on harvestB’s steady-state

harvest is driven by two opposite forces, captured by the two underbraced terms of the right

hand side. Harvests in the patches are linked: As harvester A reduces her initial harvest,

a larger stock will end up in patch B. Term 1 represents the strategic effect on resource

growth; it is positive by Proposition 2 and the fact that function gA is increasing. This force

tends to raise harvester B’s steady-state harvest rate under the threat. Term 2 represents

the direct effect of the threat and is negative because the function gB is increasing and due

to the modified golden rule defined in (13).8

As DAB is reduced, the former force becomes weaker and the latter force becomes

stronger. Thus, it is entirely possible that the prospect of a future shift (that will disadvantage

harvester B) will cause harvester B to decrease her own steady state harvest in advance of

the shift. Likewise, harvester A may actually increase her harvest as a consequence of the

threat, even though the future shift will advantage that harvester. More precisely, Result

(iii) of Proposition 3 provides conditions on DAB and DBA under which these interesting

8To formally see why Term 2 is negative, it can be shown by using (13) that DBBg
′
B(eB) − 1 > 0. For

the special case where λ = 0, we thus have DBBg
′
B(ẽB) − 1 > 0. Combining this result with the facts that

ẽB > eB and the function DBBgB(x)−x is concave, we conclude that DBBgB(eB)−eB < DBBgB(ẽB)− ẽB .
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results will hold.

For ease of exposition, we have primarily focused on the linear cost case. While this is a

common assumption in resource economics, and delivers intuitive results, it fails to capture

the stock effect under which the harvest cost increases as the resource stock tends to decline.

Such a stock effect is present whenever c′j(x) < 0. It turns out that the presence of a stock

effect can fundamentally alter strategic behavior across patches. We find here that these

altered strategic incentives can be sufficiently strong to reverse the conventional wisdom

about how harvesters will react to the threat of regime shift. The results are summarized in

the following proposition.

Proposition 4. In the case where the cost functions are non-linear, it is possible that eA < ẽA

and eB > ẽB.

This result suggests that despite the fact that the typical harvester inB will be disadvantaged

by the regime shift, she may increase escapement in the pre-regime phase.9 More precisely,

the escapement level in patch j under the threat is larger than under the no-threat case if

and only if

λDs
jj[pj − cj(xsj)]g′j(ej) + (1− λ)Djj[pj − cj(xj)]g′j(ej)

> Djj[pj − cj(x̃j)]g′j(ẽj), (15)

where xsj = gj(ej)D
s
jj + gi(ei)D

s
ij, xj = gj(ej)Djj + gi(ei)Dij, and x̃j = gj(ẽj)Djj + gi(ẽi)Dij.

Like the result in Proposition 2, this counterintuitive finding arises as a consequence of

strategic interactions, except that here, strategic interactions are being driven by the stock

effect. It is illustrative to consider the case of two countries harvesting a mobile fish stock.

9Using the growth functions defined in (18) along with the marginal costs cj(v) = θj/v, j = A,B and
the set of parameters δ = 0.95, xA0 = 0.84, xB0 = 0.8, DAA = 0.7, DBB = 0.77, DAB = 0.26, DBA = 0.22,
Ds

AA = 0.82, Ds
BB = 0.65, Ds

AB = 0.14, Ds
BA = 0.28, KA = 0.45, KB = 3, NA = 2 = NB , rA = 3.55,

rB = 3.45, we find numerically that eA and eB are both increasing in λ.
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When the stock effect is absent (so c′ = 0), there is no strategic feedback across countries.

In other words, while the countries’ harvest choices are inextricably linked, the escapement

choices are not; when c′ = 0, the escapement choice of country B has no impact on the

escapement choice of country A. In that setting, a country that stands to lose its stock in

the future is incentivized to leave fewer fish in the water and a country that stands to gain

its stock is incentivized to leave more fish in the water.

But when a stock effect is present (c′ < 0), the optimal escapement level of country B

does depend on the escapement level in country A. When country A leaves more fish in the

water, some of them swim to country B, so the stock of fish in B is larger. This lowers the

cost of fishing, and it turns out that this always leads country B to leave more fish in the

water. So, under the threat of regime shift such as climate change, there are two important

effects on country B. First, country B knows it will be disadvantaged by climate change,

so it tends to want to leave fewer fish in the water. But, because country A tends to leave

more fish in the water (for precisely the same reason), spatial movement means it is possible

that the stock of fish in country B will be larger, which tends to make country B want to

leave more fish in the water. Which effect dominates will depend on the relative magnitudes

of the two effects. Thus, it is quite possible that the country that will be disadvantaged by

climate change may leave more fish in the water than under the no-threat case.

5 An extension to common property

While patches act non-cooperatively over harvest, we have assumed that each individual

patch is harvested by a single owner. But in some settings, it is more realistic for patch j to

be common property, and is itself harvested by several non-cooperative agents. For example,

if patches are the exclusive economic zones of countries, then harvesters would be individual

fishing vessels within those territorial waters. The incentives engendered by this common
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property feature of non-cooperative spatial patches have not been analyzed previously. In

this section we explore the role of common property in determining harvest and conservation

incentives in anticipation of a regime shift.

To capture the common property feature, we generalize the previous model such that

patch j is now harvested by Nj ≥ 1 harvesters acting non-cooperatively in all periods.

Harvesters are identical within each patch, but we maintain the assumption that incentives

may differ across patches with respect to economic, environmental, and biological conditions.

As we assumed previously, we denote by pj and cj the unit price and marginal harvesting

cost function associated with patch j. Each of the Nj harvesters in patch j have access to an

equal fraction of the stock,
xjt
Nj

. This available stock will be extracted by harvester k down

to escapement level ξ
(k)
jt . Since harvesters are identical within each patch, the harvester’s

period-t harvest is (
xjt
Nj
− ξ

(k)
jt ) so, in the absence of harvesting costs, her period-t profit

is pj(
xjt
Nj
− ξ

(k)
jt ). In the presence of harvesting costs, the period-t profit for harvester k =

1, 2, ..., Nj associated with patch j can thus be written as

π
(k)
jt =

∫ xjt
Nj

ξ
(k)
jt

[pj − cj(v)]dv. (16)

Recall that we are interested in a Markov Perfect Nash Equilibrium (MPNE), which

determines the equilibrium escapement decision rules for all harvesters as functions of (xA, xB):

(ξ
(1)
A (xA, xB), ξ

(2)
A (xA, xB), ...., ξ

(NA)
A (xA, xB), ξ

(1)
B (xA, xB), ..., ξ

(NB)
B (xA, xB)). Since we are in a

two-patch setting and harvesters operating in a given patch are identical, from now on, we

concentrate on symmetric equilibria within each patch: ξA(.) = ξ
(k)
A (.) and ξB(.) = ξ

(`)
B (.)

for all k, `. Therefore, it suffices to find a pair of escapement strategies (eA(.), eB(.)) with

eA(.) = NAξA(.) and eB(.) = NBξB(.).

Lemma 3. Prior to the spatial regime shift, the following results hold:
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The pair (eA, eB) constitutes a MPNE, where ej is implicitly defined as follows:

pj − cj(
ej
Nj

) = δλDs
jj[pj − cj

(
gj(ej)

Ds
jj

Nj

+ gi(ei)
Ds
ij

Nj

)
]
g′j(ej)

Nj

(17)

+ δ(1− λ)Djj[pj − cj
(
gj(ej)

Djj

Nj

+ gi(ei)
Dij

Nj

)
]
g′j(ej)

Nj

, i 6= j.

This proposition provides an interesting characterization of the equilibrium strategic

behaviors. In particular, it reveals that the equilibrium escapement levels prior to the shift

depend on the biological return, Nj, economic and environmental conditions as well as the

probability of spatial regime shift. Because the common property case considered in this

section generalizes the model from Section 2 to Nj harvesters, a natural question is how the

number of harvesters affects strategic responses to the possible occurrence of the shift. We

formally address this and related questions below. For the sake of tractability, we restrict

our attention to the standard logistic growth function case, which can be written as follows

gj(ej) = ej + rjej(1−
ej
Kj

) for j = A,B, (18)

where Kj represents the carrying capacity and rj the intrinsic growth rate for patch j.

We first examine the effects on harvest decisions prior to the shift.

Proposition 5. Adopting gj as defined in (18) and provided marginal harvesting costs are

constant:

(i) Patch j’s equilibrium escapement, ej, is decreasing in Nj and satisfies

g′j(ej) =
Nj

δ(λDs
jj + (1− λ)Djj)

. (19)

(ii) Relative to the no-shift case, the threat of a shift increases the steady-state harvest rate

in patch A, but only if NA satisfies δ(1 + rA)DAA > NA > N̂A.
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(iii) Relative to the no-shift case, the threat of a shift reduces the steady-state harvest rate in

patch B, but only if NB satisfies δ(1 + rB)Ds
BB > NB > N̂B, where N̂A and N̂B are positive

numbers that depend on spatial characteristics and are given in the appendix.

In the above results, conditions δ(1+rA)DAA > NA and δ(1+rB)Ds
BB > NB respectively

ensure that resource stock in patch A (resp. B) is not harvested to extinction. These results

highlight the implications of having more than one harvester in a patch. For example, relative

to the no-shift case, Result (ii) of Proposition 5 reveals in the single harvester case that the

harvest rate in patch A is lower in the steady-state whenever min(N̂A, δ(1 + rA)DAA) > 1.

This result, however, is reversed when NA ≥ 2 and δ(1 + rA)DAA > NA > N̂A. Moreover,

Result (iii) of Proposition 5 highlights in the single harvester case that the steady-state

harvest rate in patch B is larger whenever min(N̂B, δ(1 + rB)DBB) > 1. This latter finding,

however, is reversed as long as NB ≥ 2 and δ(1 + rB)DBB > NB > N̂B. These findings show

the importance of the group size asymmetry (i.e., NA 6= NB). Whether NA or NB is small

or large, these findings reveal the existence of harvest responses to the threat that cannot

be captured by a model in which the number of players in both patches is identical (e.g.,

standard models in which there is a single agent in each patch).

It is also possible to derive the implications of considering common property vs. sole

ownership and heterogenous growth on conservation. Our findings are summarized in the

following proposition.

Proposition 6. Provided that c′j(.) = 0 and gj(.) is defined in (18).

(i) Patch j is harvested down to extinction, but only if Nj ≥ δ(1 + rj)(λD
s
jj + (1− λ)Djj).

(ii) In the case where rj ≤ 1, patch j is harvested down to extinction whenever Nj ≥ 2.

(iii) There is no stock extinction in patch j when Nj = 1, λDs
jj + (1− λ)Djj) > 1/δ(1 + rj),

and rj ≤ 1.

Our motivation for these extended results is that the related literature has focused only
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on the cases in which (i) the growth functions are logistic and identical with the intrinsic

growth rate smaller than one; (ii) each patch is owned by a single harvester. Relaxing

each of those assumptions yields novel equilibria. For example, Proposition 6 suggests that

different property rights structures may lead to different equilibrium states: extinction vs

no extinction. More precisely, patch j is harvested to extinction when rj ≤ 1, c′j(.) = 0,

and Nj ≥ 2. However, when the other patch is owned by a single agent and its expected

self-retention rate is large, Result (iii) shows that strategic harvest decisions do not drive

the resource stock extinct.

Moreover, we find that when patches have different growth functions, equilibria arise that

cannot be captured by models with identical growth functions. For instance, when Nj = 1

and cj = 0, extinction is the equilibrium outcome in both patches when rA = rB and

δ(1 + rj)×min(λDs
AA + (1− λ)DAA), λDs

BB + (1− λ)DBB) < 1.

However, only patch B is harvested to extinction when rA 6= rB, Nj = 1, cj = 0, and the

following conditions hold:

δ(1 + rA)× [λDs
AA + (1− λ)DAA)] > 1 and δ(1 + rB)× [λDs

BB + (1− λ)DBB] ≤ 1.

These findings illustrate potential biases that may arise when heterogeneity in property rights

structure or biological return exist, but are not taken into account.

Simultaneously accounting for common property and a stock effect on harvesting costs

quickly becomes analytically intractable. But one way to get traction in the case where

c′j < 0 is as follows. Let c′i = 0 and other model parameters be such that the optimal
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aggregate residual stock level ei does not depend on Nj and is characterized by

g′i(ei) =
Ni

δ (λDs
ii + (1− λ)Dii)

Assume that the other patch is such that c′j < 0 and initial model parameters (in particular

the size of the user group, denoted N0
j ) are such that the optimal aggregate residual stock

level ej is characterized by Condition 17. Assume moreover that pj − cj(0) > 0 and g′j(.) is

bounded from above. Then we have:

Proposition 7. There exists Ñj > N0
j such that the resource will be driven extinct in patch

j for any size of user group greater than or equal to Ñj.

This result reinforces the general intuition from above: Adding common property to the

regime shift game induces an extinction threat that could jeopardize the very existence of

the renewable resource.

6 Conclusion

One of the most widely anticipated effects of global environmental change is the shift in the

spatial distribution and migration of natural resource stocks. While effects will range from

moderate to severe, and are occasionally predictable, in most cases, the occurrence of these

shifts is uncertain. We have examined the effects of the threat of future spatial regime shift

on strategic interactions between spatial property rights owners harvesting a mobile natural

resource. Because our model allows for different economic returns, heterogenous growth,

stock effects on costs, and spatial migration of the resource, we have been able to extract

a number of novel and interesting results about how strategic behavior interacts with the

threat of spatial regime shift. Our main contribution is to examine how the prospect of a

spatial regime shift will affect non-cooperative incentives and equilibrium behavior across
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heterogeneous property owners. We considered as a baseline the no-shift case in which the

resource distribution is deterministic and never shifts; this amounts to a non-cooperative

spatial game in a deterministic environment. Then, introducing the possibility of a future

regime shift, we examined the non-cooperative behavior of competing spatial property rights

holders across a range of shift magnitudes. We modeled spatial regime shift as an abrupt

change in the biophysical conditions that govern dispersal of the resource. The shift confers

a clear advantage to one harvester and a clear disadvantage to the other. Our focus is on how

the harvesters compete prior to the shift (but with common knowledge about the likelihood

of the shift).

Our analysis allows for an arbitrary degree of regime shift. In the extreme, the shift could

irreversibly drive the entire resource population out of one of the patches and into the other.

In keeping with the literature, we call this the “complete shift” case, where Ds
BB = Ds

AB = 0

and Ds
BA = 1. Using methods similar to those in Propositions 3 and 4, our analysis yields

qualitatively similar results as for the partial regime shift case.

Whatever its magnitude, the threat of regime shift always increases initial harvest in

the disadvantaged patch when harvest costs are linear. But we also found that strategic

interactions can induce that patch to harvest less in steady state under the threat of regime

shift. Indeed, this finding can maintain even under the threat of complete shift. The

equilibrium escapement level in a patch depends on the resource price, marginal harvesting

costs, but only when a patch is common property. We find that strategic interactions can

even lead to complete extinction, provided the common property feature is sufficiently strong

relative to the growth of the resource. In the case where harvest costs are non-linear, new

strategic incentives arise; this effect can even reverse the conventional wisdom, so a patch

that will be advantaged by the regime shift may act more aggressively in advance of the

shift.

Our results may shed some light on an interesting economic literature examining renewable
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resource management under the threat of a doomsday event (see for instance, Polasky et al.

2011). When the probability of regime shift is exogenous and utility is linear in harvest, the

wisdom so far is that aggressive behavior always prevails prior to the shift. In this paper, the

probability of regime shift is exogenous and a harvester makes her harvest decisions under

the threat of the shift. In contrast to the aforementioned literature, we find conditions under

which such harvesters may be cautious in response to disadvantageous regime shifts.

These results also relate to an interesting emerging policy debate. Many resource stocks

such as marine fish, waterfowl, and some economically-significant game species migrate across

national or other jurisdictions. At the same time, these migratory patterns are expected

to change as a consequence of future climate change (Molinos et al. 2016). The results

in this paper help inform predictions about the behavioral responses of countries or other

jurisdictions in advance of shifts, and unveil some counterintuitive predictions arising from

strategic interactions to capture the resource. While informative in their own right, these

results could be leveraged to inform policy responses for managing transboundary resources

subject to possible future regime shift.
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Appendix

A Details for Section 3

Proof of Lemma 1

(i) The equilibrium value function can be written as

Wj(xt) = pj(xjt − ejt)−
∫ xjt

ejt

cj(v)dv + δWj(xt+1), (20)

Since in (4), xt+1 depends only on ei and ej, Condition 6 implies that ei and ej are stock

independent. Therefore,

∂Wj

∂xit
(xt+1) = 0, for all i, j ∈ {A,B}, i 6= j.

Combining this result along with (20), it follows that

∂Wj

∂xkt
(xt) =


pj − cj(xjt) if k = j,

0 if k 6= j.

Substituting this equation into (6), we conclude that stock independency holds.

(ii) This is a simple consequence of the fact that ei and ej are time and state independent.

Proof of Proposition 1

(i) In the case where c′j(x) = 0 for all x, j = A,B, Equation 7 yields

g′j(ej) =
1

δDs
jj

, g′j(ẽj) =
1

δDjj

. (21)
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(ii) Since Ds
AA > DAA and DBB > Ds

BB, it follows that g′A(eA) < g′A(ẽA) and g′B(eB) >

g′B(ẽB). Hence, ẽA < eA and ẽB > eB. This is the case because functions gj(.), j = A,B are

concave such that functions g′j(.), j = A,B are decreasing.

(iii) For t ≥ τ + 1:

xjt ≡ gj(ej)D
s
jj + gi(ei)D

s
ij > gj(ẽj)Djj + gi(ẽi)Dij ≡ x̃jt if and only if

Ds
ij > D̄s

jx ≡
gj(ẽj)Djj + gi(ẽi)Dij − gj(ej)Ds

jj

gi(ei)
.

(iv) For t ≥ τ + 1, the relation

hjt ≡ xjt − ejt = gj(ej)D
s
jj + gi(ei)D

s
ij − ejt > gj(ẽj)Djj + gi(ẽi)Dij − ẽjt = x̃jt − ẽjt ≡ h̃jt

holds if and only if

Ds
ij > D̄s

jh ≡
gj(ẽj)Djj + gi(ẽi)Dij − gj(ej)Ds

jj + (ej − ẽj)
gi(ei)

.

Equation21 suggests that for j = A,B, ej depends only on δ and Ds
jj whereas for j = A,B,

ẽj depends only on δ and Djj. As such, D̄s
jx and D̄s

jh depend only on δ,Ds
jj, DAA, DBB, and

Dij, i = A,B and i 6= j.

Proof of Lemma 2

Similar to the proof of Lemma 1.
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B Details for Section 4

Proof of Proposition 2

(i) In the case where c′j(.) = 0, Equation 7 simplifies to

g′j(ej) =
1

δ(λDs
jj + (1− λ)Djj)

. (22)

(ii) Using the implicit value theorem, ej is a continuously differentiable function of λ.

We then differentiate both sides of (22) with respect to λ. Rearranging the outcome yields

∂ej
∂λ

=
Djj −Ds

jj

g′′j (ej)[λDs
jj + (1− λ)Djj)]2

, for j = A,B.

Since g′′j (ej) < 0, DBB > Ds
BB and Ds

AA > DAA, the result follows.

Proof of Proposition 3

(i) Since eA0 ≡ xA0−hA0 > ẽA ≡ xA0− h̃A0, we necessarily have h̃A0 > hA0. Moreover, since

eB0 ≡ xB0 − hB0 < ẽB ≡ xB0 − h̃B0, we necessarily have h̃B0 < hB0.

(ii) Using the facts that xjt ≡ gj(ej)Djj +gi(ei)Dij, x̃jt = gj(ẽj)Djj +gi(ẽi)Dij, gA(eA) >

gA(ẽA), and gB(eB) < gB(ẽB), we get xBt > x̃Bt if and only if

DAB > D̄x
B ≡ DBB

gB(ẽB)− gB(eB)

gA(eA)− gA(ẽA)
.

Using a similar reasoning, we find that xAt > x̃At if and only if

DBA < D̄x
A ≡ DAA

gA(eA)− gA(ẽA)

gB(ẽB)− gB(eB)
.

(iii) Using a similar method as for the proof of result (ii) along with the fact that
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hj = xj − ej, j = A,B, we get

• hBt > h̃Bt if and only if

DAB > D̄h
B ≡

DBB(gB(ẽB)− gB(eB))− (ẽB − eB)

gA(eA)− gA(ẽA)
.

• hAt > h̃At if and only if

DBA < D̄h
A ≡

DAA(gA(eA)− gA(ẽA))− (eA − ẽA)

gB(ẽB)− gB(eB)
.

Notice that for j = A,B, D̄h
j and D̄x

j depend only on λ, δ,Dkk, and Ds
kk, k = A,B.

Proof of Proposition 4

Recall that for j = A,B, ej satisfies Equation 12. Hence, the left-hand side of Condition 15

is equal to pj − cj(ej) while the right-hand side corresponds to pj − cj(ẽj). So Condition 15

can be rewritten pj − cj(ej) > pj − cj(ẽj). Since function `j(x) = pj − cj(x) is increasing, we

conclude that Condition 15 holds if and only if ej > ẽj.

Proof of Lemma 3

Similar to the proof of Lemma 2.

Proof of Proposition 5

(i) In the case where c′j = 0, Condition (17) simplifies to (19). Using the fact that gj is

concave and partially differentiating both sides of (19) and rearranging, it can be shown

that ej is decreasing in Nj.
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Using (19) and (18), we derive

ej =
Kj

2rj
[1 + rj −

Nj

δ(λDs
jj + (1− λ)Djj)

]. (23)

Notice that eA > 0 if and only if δ(1 + rA)DAA > NA. Likewise, we have eB > 0, but only

when δ(1 + rB)Ds
BB > NB.

(ii) Denote by hsA, the steady-state total harvest for patch A. According to (4), we have

hsA = gA(eA)DAA + gB(eB)DBA − eA. Combining this result with (18) and (23), we derive

hsA − hsA|λ=0 = ηA(λDs
AA + (2− λ)DAA)N2

A − 2ηAδ(λD
s
AA + (1− λ)DAA)NA + ξA, (24)

where,

ξA = λDBAKBN
2
B

(Ds
BB −DBB)(λDs

BB + (2− λ)DBB)

rBδ2D2
BB(λDs

BB + (1− λ)DBB)2
< 0; ηA =

λKA(Ds
AA −DAA)

δ2DAArA(λDs
AA + (1− λ)DAA)2

> 0.

Denote by N̂A the unique positive root of (24). Clearly, hsA > hsA|λ=0 whenever NA > N̂A.

(ii) A similar reasoning as for the proof of Result (ii) suggests that hsB|λ=0 > hsB whenever

NB > N̂B, where N̂B is the unique positive root of the second degree polynomial:

−ηB(λDs
BB + (2− λ)DBB)N2

B + 2ηBδ(λD
s
BB + (1− λ)DBB)NB + ξB = 0,

where,

ξB = DABKAN
2
A

(Ds
AA −DAA)(λDs

AA + (2− λ)DAA)

rAδ2D2
AA(λDs

AA + (1− λ)DAA)2
> 0; ηB =

KB(DBB −Ds
BB)

δ2DBBrB(λDs
BB + (1− λ)DBB)2

> 0.
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Proof of Proposition 6

Using (19) and (18), it can be shown that if escapement for patch j is strictly positive, it is

necessarily given by (23).

(i) Using (23), we derive ej ≤ 0 iff Nj ≥ (1 + rj)(λD
s
jj + (1 − λ)Djj). The result then

follows.

(ii) Assume that Nj ≥ 2 and rj ≤ 1. These assumptions imply Nj ≥ (1 + rj)(λD
s
jj +

(1− λ)Djj) such that by Result (i), patch j is harvested down to extinction.

(iii) In the case where Nj = 1, we can verify that ej defined in (23) is strictly positive as

long as rj ≤ 1 and [λDs
jj + (1− λ)Djj)] > 1/δ(1 + rj). The result then follows.

Proof of Proposition 7

It suffices to show that ej cannot be positive for N0
j arbitrarily large. By Condition (17), if

ej > 0 we know that the following inequality holds:

pj − cj(
ej
N0
j

) = δλDs
jj[pj − cj

(
gj(ej)

Ds
jj

N0
j

+ gi(ei)
Ds
ij

N0
j

)
]
g′j(ej)

N0
j

(25)

+ δ(1− λ)Djj[pj − cj
(
gj(ej)

Djj

N0
j

+ gi(ei)
Dij

N0
j

)
]
g′j(ej)

N0
j

, i 6= j.

Since Ds
ij
gi(ei)

N0
j
→ 0 and

g′j(ej)

N0
j
→ 0 as N0

j gets arbitrarily large, the left hand side term

of equation (25) goes to zero. However, its right hand side term remains positive (as N0
j

gets arbitrarily large) because pj > cj(0) and cj is decreasing. Therefore, as N0
j becomes

arbitrary large, condition (25) (that characterizes interior solutions in escapement) cannot

hold. Hence, there exists Ñj such that patch j is driven to extinction as long as Nj ≥ Ñj.
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