
HAL Id: hal-01615830
https://hal.science/hal-01615830

Submitted on 12 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Satisfiability Modulo Theories and Assignments
Maria Paola Bonacina, Stéphane Graham-Lengrand, Natarajan Shankar

To cite this version:
Maria Paola Bonacina, Stéphane Graham-Lengrand, Natarajan Shankar. Satisfiability Modulo The-
ories and Assignments. CADE 2017 - 26th International Conference on Automated Deduction, Aug
2017, Gothenburg, Sweden. �10.1007/978-3-319-63046-5_4�. �hal-01615830�

https://hal.science/hal-01615830
https://hal.archives-ouvertes.fr

Satisfiability Modulo Theories and Assignments

Maria Paola Bonacina1, Stéphane Graham-Lengrand2,3, and Natarajan
Shankar2

1 Università degli Studi di Verona, Verona, Italy
2 SRI International, Menlo Park, USA

3 CNRS - INRIA - École Polytechnique, Palaiseau, France

Abstract. The CDCL procedure for SAT is the archetype of conflict-
driven procedures for satisfiability of quantifier-free problems in a single
theory. In this paper we lift CDCL to CDSAT (Conflict-Driven Satisfia-
bility), a system for conflict-driven reasoning in combinations of disjoint
theories. CDSAT combines theory modules that interact through a global
trail representing a candidate model by Boolean and first-order assign-
ments. CDSAT generalizes to generic theory combinations the model-
constructing satisfiability calculus (MCSAT) introduced by de Moura
and Jovanović. Furthermore, CDSAT generalizes the equality sharing
(Nelson-Oppen) approach to theory combination, by allowing theories
to share equality information both explicitly through equalities and dis-
equalities, and implicitly through assignments. We identify sufficient con-
ditions for the soundness, completeness, and termination of CDSAT.

Keywords: Theory combination· Conflict-driven decision procedures · Model
building· Satisfiability modulo assignment

1 Introduction

A growing trend in automated deduction is the generalization of conflict-driven
reasoning from propositional to first-order logic (cf. [2] for a brief coeval survey).
For propositional satisfiability (SAT), the conflict-driven clause learning (CDCL)
procedure works by guessing assignments to variables, propagating their conse-
quences through clauses, and learning new clauses, or lemmas, when assignments
lead to conflicts [14]. The conflict-driven paradigm has been extended to decide
the T -satisfiability of sets of literals when T is one of several fragments of arith-
metic [4,7,10,11,12,15,17,18]. Key features of such conflict-driven T -satisfiability
procedures are the use of assignments to first-order variables and the explanation
of conflicts with lemmas, which may contain atoms that are not in the input.
We illustrate these features by an example. Consider the following set of literals,
which is unsatisfiable in Linear Rational Arithmetic (LRA):

R = {l0 : (−2 ·x− y < 0), l1 : (x+ y < 0), l2 : (x < −1)}.
A conflict-driven LRA-satisfiability procedure attempts to build a model by
guessing a value for one of the variables, say y←0. This lets l0 yield the lower

bound x > 0. Given the upper bound l2, the space of possible values for x is
empty, revealing that the guess and the constraints are in conflict. The procedure
explains the conflict by the new atom l3 : (−y < −2), the linear combination of
l0 and l2 that eliminates x. This excludes not only y←0, but also all assignments
y←c where c ≤ 2. Suppose the procedure retracts the assignment y←0 and tries
y←4. This lets l1 yield the upper bound x < −4, and l0 the lower bound x > −2.
The procedure explains this conflict by the new atom l4 : (y < 0), the linear
combination of l0 and l1 that eliminates x. As l4 is violated by the assignment
y←4, the procedure retracts y←4. Then no assignment to y can satisfy both l3
and l4. This third conflict is explained by the linear combination of l3 and l4 that
eliminates y, namely 0 < −2, which is also a new atom. Since this consequence
of the original problem is a contradiction, the procedure returns unsatisfiable.

Applications typically require deciding the satisfiability of arbitrary quanti-
fier-free formulae, or, equivalently, sets of ground clauses, in a combination T
of theories T1, . . . , Tn. The DPLL(T) approach [1, 13] combines a CDCL-based
SAT-solver with a T -satisfiability procedure, obtained from Ti-satisfiability pro-
cedures by the equality sharing method [16], assuming that the theories Ti are
disjoint and stably infinite: they do not share symbols other than equality and
admit countably infinite models. The Ti-satisfiability procedures are combined as
black-boxes that only propagate equalities between shared variables. DPLL(T)
uses their combination as a black-box that only detects T -conflicts and propa-
gates T -lemmas, while the SAT-solver tries assignments and builds a candidate
model. If conflict-driven Ti-satisfiability procedures were integrated in this man-
ner, the combination would not be conflict-driven. To make it conflict-driven,
the Ti-satisfiability procedures need to cooperate to build a model, sharing as-
signments and exporting lemmas to explain conflicts, possibly using new atoms.

MCSAT, for Model-Constructing Satisfiability, is a paradigm for integrating
a CDCL-based SAT-solver with a conflict-driven T -satisfiability procedure [5].
MCSAT uses first-order assignments on a par with Boolean ones, coordinates the
conflict explanation mechanisms at the Boolean and theory levels in a unified
manner, and incorporates the capability of creating new atoms. MCSAT lifted
CDCL to SMT in the sense of satisfiability modulo a single theory T , which was
instantiated to the theory of bit-vectors [19] and to non-linear integer arithmetic
[8]. A version of MCSAT was also given for the specific combination of LRA and
Equality with Uninterpreted Function symbols (EUF) [9], but the conflict-driven
combination of a generic range of theories remained an open problem.

In this paper we generalize conflict-driven reasoning to generic combinations
of disjoint theories, solving the problem of combining multiple conflict-driven
Ti-satisfiability procedures into a conflict-driven T -satisfiability procedure. We
introduce a new method for theory combination, called CDSAT for Conflict-
Driven Satisfiability. For example, it decides the satisfiability of problems in the
combination of LRA, EUF and the theory of arrays, such as

P = {f(select(store(a, i, v), j))' w, f(u)' w−2, i' j, u' v}.
CDSAT treats propositional and theory reasoning uniformly: formulae are terms
of sort prop (for proposition); propositional logic is one of the theories T1, . . . , Tn;

2

and CDCL is one of the Ti-satisfiability procedures to be combined. With formu-
lae reduced to terms, assignments become the data manipulated by inferences.
CDSAT combines Ti-inference systems, called theory modules [6], rather than Ti-
satisfiability procedures. Ideally, a Ti-satisfiability procedure, like any reasoning
procedure, is defined by an inference system and a search plan. Since all conflict-
driven procedures have the same conflict-driven search plan, what needs to be
combined are the inference systems, while the common conflict-driven control is
factored out and handled centrally by CDSAT. We prove that CDSAT is sound,
complete, and terminating, identifying the sufficient conditions that theories and
theory modules need to fulfill for these properties to hold.

We believe that the abstraction of viewing combination of theories as com-
bination of inference systems, rather than procedures, allows us to bring sim-
plicity and elegance to theory combination. A Ti-satisfiability procedure that is
not conflict-driven can still be integrated in CDSAT by treating it as a theory
module whose only inference rule invokes the Ti-satisfiability procedure to de-
tect the Ti-unsatisfiability of a set of assignments. Therefore CDSAT subsumes
both MCSAT and equality sharing. CDSAT reduces to MCSAT, if there are
only propositional logic with CDCL and another theory T with a conflict-driven
T -satisfiability procedure. CDSAT reduces to equality sharing, if none of the
theories has a conflict-driven T -satisfiability procedure.

2 Preliminaries

We assume the basic definitions of multi-sorted first-order logic. A signature
Σ = (S, F) consists of a set S of sorts, including prop, and a set F of symbols,
including a collection 'S of equality symbols 's : (s×s)→prop for every s ∈ S.
Sorts can be omitted when clear from context. The other symbols in F may be
constant, function, and predicate symbols, as well as logical connectives such as
∧, ∨, and ¬. Given a class V = (Vs)s∈S of sets of sorted variables, Σ[V]-terms are
defined as usual, and formulae are terms of sort prop. We use l for formulae and
t and u for terms of any sort. Formulae in the standard sense are obtained as the
closure of our formulae under quantifiers and logical connectives; Σ-sentences
are those with no free variables.

A Σ[V]-interpretation M interprets each sort s in S as a non-empty set
sM with propM = {true, false}; each symbol f : (s1× · · ·×sm)→ s in F as a
function fM : sM1 × · · ·×sMm → sM with 'Ms returning true if and only if its
arguments are identical; and each variable v ∈ Vs as an element vM ∈ sM. The
interpretation M(t) of a Σ[V]-term t is defined as usual. Σ[∅]-interpretations,
known as Σ-structures, suffice for Σ-sentences.

A theory T on signature Σ is defined axiomatically as a set of Σ-sentences,
called its axioms, or model-theoretically as the class of Σ-structures, called T -
models, that satisfy the axioms of T . A T [V]-model is any Σ[V]-interpretation
whose underlying Σ-structure is a T -model.

Let T1, . . . , Tn be disjoint theories with signatures Σ1=(S1, F1),. . . ,
Σn=(Sn, Fn): they do not share symbols other than equality, but can share

3

sorts, meaning that Fi∩Fj = ('Si∩Sj
) for i6=j. Let T∞ be their union, with sig-

nature Σ∞=(S∞, F∞) for S∞=
⋃n
k=1 Sk and F∞=

⋃n
k=1 Fk, and axiomatization

given by the union of those of T1, . . . , Tn. We fix a global collection of variables
V∞ = (Vs∞)s∈S∞ , use variables for variables in V∞, and terms for Σ∞[V∞]-terms.

Example 1. Problem P from Sect. 1 is written in the signatures
ΣLRA = ({prop,Q}, '{prop,Q} ∪ {0, 1:Q, +:Q×Q→Q} ∪ {q · :Q→Q | q ∈ Q})
ΣEUF = ({prop,Q, V }, '{prop,Q,V } ∪ {f :V→Q})
ΣArr = ({prop, V, I, A}, '{prop,V,I,A} ∪ {select :A×I→V, store :A×I×V→A})

where Q and Q are the sort and the set of the rationals, q · is scalar multiplication,
and A, I, and V are the sorts of arrays, indices, and values.

3 Assignments and Theory Modules

CDSAT solves T∞-satisfiability problems presented as assignments of values to
terms. For example, a set of formulae {l1, . . . , lm} is represented as the assign-
ment {l1←true, . . . , lm←true}. The input assignment may contain terms of any
sort. Assignments are public, meaning visible to all Tk-inference systems.

3.1 Assignments

We need to identify the language of values that the system can assign to terms,
besides true and false. Assignable values are not necessarily in the theories’ sig-
natures (e.g., consider x←

√
2 for the sort of the reals). Therefore, we intro-

duce for each theory Tk, 1≤ k≤n, a conservative extension T +
k with signature

Σ+
k = (Sk, F+

k), where F+
k is the extension of Fk with a possibly empty set

of new constant symbols called T +
k -values. An extension is conservative if any

T +
k -unsatisfiable set of Σk[V]-formulae is also Tk-unsatisfiable. This ensures that

reasoning in the extension does not change the problem: if CDSAT discovers T +
k -

unsatisfiability, the problem is Tk-unsatisfiable; if the problem is Tk-satisfiable,
there is a T +

k -model that CDSAT can build. A sort s ∈ Sk with at least one
T +
k -value is called Tk-public, as a term of sort s may be assigned a T +

k -value. A
sort s may be Ti-public and Tj-public for i6=j. We stipulate that sort prop is Tk-
public for all k, with T +

k -values true and false, which are valid and unsatisfiable,
respectively, in T +

k . We use b for true or false. We assume that the extended
theories are still disjoint except for the two Boolean values true and false.

Example 2. Let RA be the theory of real arithmetic with sorts {R, prop} and
symbols '{R,prop} ∪ {0, 1 :R; +,−, · : R×R→R}. RA+ adds a new constant for
every real number, so R is RA-public. The axioms of RA+ are the formulae that
hold in the standard model of the reals interpreting every RA+-value as itself.

Extending the signature with names that denote all individuals in the domain
of a Tk-model is a standard move in automated reasoning, where models need
to be built out of syntax, and especially when Tk has an “intended model” as
in arithmetic. In such cases a T +

k -value is both the domain element and the
constant symbol that names it.

4

t1←c1, t2←c2 ` t1's t2 if c1 and c2 are the same T +-value of sort s
t1←c1, t2←c2 ` t1 6's t2 if c1 and c2 are distinct T +-values of sort s

` t1's t1
t1's t2 ` t2's t1

t1's t2, t2's t3 ` t1's t3

Fig. 1. Equality inference rules: t1, t2, and t3 are terms of sort s

Definition 1 (Assignment). Given a theory T with extension T +, a T -assign-
ment is a set of pairs t←c, where t is a term and c is a T +-value of the same sort.
Term t and all its subterms are said to occur in the assignment. An assignment
is plausible if it does not contain both l←true and l←false for any formula l.

For example, {x←
√

2, x + y←
√

3} and {f(x)←
√

2, (1·x' x)←true} are
RA-assignments. If for all pairs t←c the sort of t and c is s, the T -assignment
is of sort s, and if s = prop it is Boolean. A first-order T -assignment is a
T -assignment that is not Boolean. We use J for generic T -assignments, A for
singleton ones, and L for Boolean singletons. We abbreviate l←true as l, l←false
as l, and t's u ←false as t 6's u. The flip L of L assigns to the same formula
the opposite Boolean value. The union of T +

1 , . . . , T +
n is an extension T +

∞ of
T∞, with signature Σ+

∞ = (S∞, F+
∞) for F+

∞ =
⋃n
k=1 F

+
k . We use H for T∞-

assignments, called assignments for short. Plausibility does not forbid an as-
signment {t← 3.1, u← 5.4, t← red, u← blue}, where the first two pairs are T1-
assignments and the last two are T2-assignments; the sort of t and u is both
T1-public and T2-public. When building a model from this assignment, 3.1 will
be identified with red and 5.4 with blue.
Definition 2 (Theory view). Let T and S be either T∞ and S∞, or Tk and
Sk for 1≤ k≤n. The T -view of an assignment H is the T -assignment HT =

{ t←c | t←c is a T -assignment in H } ∪⋃n
k=1({ t1's t2 | t1←c, t2←c are Tk-assignments in H of sort s∈S\{prop} } ∪
{ t1 6's t2 | t1←c1, t2←c2 are Tk-assignments in H of sort s∈S\{prop}, c1 6=c2}).

HT contains the T -assignments of H, plus all equalities and disequalities induced
by the Tk-assignments in H, 1≤ k≤n. We introduce next theory modules, the
abstract counterpart of theory solvers or theory plugins [9].

3.2 Theory Modules
A theory module I for theory T is an inference system whose inferences, called
I-inferences and written J `I L, derive a singleton Boolean assignment L from
a T -assignment J . Since all theories include equality, all theory modules include
the equality inference rules of Fig. 1. The following inferences are IRA-inferences:

(x←
√

2), (y←
√

2) `IRA (x·y' 1+1)
(y←
√

2), (x←
√

2) `IRA (y' x)
(y←
√

2), (x←
√

3) `IRA (y 6' x)

5

I-inferences only derive Boolean assignments because CDSAT does not jus-
tify first-order assignments by inferences, not even when a first-order assignment
is forced by others (e.g., y←2 by x←1 and (x+y)←3). We assume we have theory
modules I1, . . . , In for T1, . . . , Tn. We now define acceptability and relevance.

Definition 3 (Acceptability). Given Tk-assignments t←c and J , t←c is ac-
ceptable for J and Ik, if (i) J does not assign a value to t and (ii) either t←c
is Boolean or there are no Ik-inferences J ′, (t←c) `Ik

L with J ′, L ⊆ J .

When adding t ← c to J , acceptability prevents repetitions (cf. Condition
(i)) and contradictions: if t← c is Boolean, its flip should not be in J , preserv-
ing plausibility (cf. Condition (i)); if t ← c is first-order, and therefore has no
flip, so that plausibility does not apply, acceptability ensures that none of the
consequences one inference step away has its flip in J (cf. Condition (ii)).

Definition 4 (Relevance). A term is Tk-relevant for an assignment H, if ei-
ther (i) it occurs in H and has a Tk-public sort, or (ii) it is an equality t1's t2
whose terms t1 and t2 occur in H and whose sort s ∈ Sk is not Tk-public.

Relevance organizes the division of labor among modules. For instance in the
assignment {x←

√
5, f(x)←

√
2, f(y)←

√
3}, x and y of sort R are RA-relevant,

not EUF-relevant, assuming R is not EUF-public, while x'R y is EUF-relevant,
not RA-relevant. Each theory has a mechanism to fix and communicate equalities
between terms of a known sort, such as x and y: EUF does it by assigning a truth-
value to x'R y; RA does it by assigning values to x and y.

4 Examples of Theory Modules

In this section we give theory modules for several theories. We may use⊥ to stand
for the assignment (x'prop x)←false for an arbitrary variable x. For brevity, we
omit equality symbols from signatures and equality inference from modules.

4.1 A Module for Propositional Logic

ΣBool has only the sort prop and the symbols ¬ : prop → prop, and ∨,∧ :
(prop×prop)→prop. Let Bool+ be the trivial extension with only {true, false} as
Bool+-values. IBool features an evaluation inference rule that derives the truth
value b of formula l, given truth values b1, . . . , bm of subformulae l1, . . . , lm, and
then, from left to right, two rules for negation, two rules for conjunction elimi-
nation, and two rules for unit propagation:

l1←b1, . . . , lm←bm `Bool l←b

¬l `Bool l l1 ∨ · · · ∨ lm `Bool li l1 ∨ · · · ∨ lm, {lj | j 6= i} `Bool li
¬l `Bool l l1 ∧ · · · ∧ lm `Bool li l1 ∧ · · · ∧ lm, {lj | j 6= i} `Bool li

where 1 ≤ j, i ≤ m, and, for the first rule, l must be in the closure of l1, . . . , lm
with respect to the ΣBool-connectives. Although the evaluation rule alone is suf-
ficient for completeness (cf. Sect. 6.3), the other six rules, including in particular
unit propagation as in CDCL, are obviously desirable.

6

4.2 A Theory Module for LRA

Let ΣLRA be as in Example 1 and LRA+ be the extension that adds a constant
q̃ and the axiom q̃'Q q ·1 for each rational number q ∈ Q. Here too, the first
rule of ILRA is an evaluation inference rule that derives the value b of formula l,
given values q̃1, . . . , q̃m of subterms t1, . . . , tm of sort Q:
Evaluation t1←q̃1, . . . , tm←q̃m `LRA l←b
Positivization t1 < t2 `LRA t2 ≤ t1

t1 ≤ t2 `LRA t2 < t1
Equality elimination t1'Q t2 `LRA ti ≤ tj with {i, j} = {1, 2}
Disequality elimination (t1 ≤ x), (x ≤ t2), (t1'Q t0), (t2'Q t0), (x 6'Q t0) `LRA ⊥
Fourier-Motzkin resolution (t1 l1 x), (xl2 t2) `LRA (t1 l3 t2)

where t0, t1, t2, and x are terms of sort Q; x is a ΣLRA-variable that is not
free in t0, t1, t2 (cf. Sect. 6); l1,l2,l3 ∈ {<,≤} and l3 is < if and only
if either l1 or l2 is <. For the first rule, l must be a formula whose normal
form is in the closure of t1, . . . , tm with respect to the symbols of FLRA. For
example, w−2'Q w can be normalized to −2'Q 0 and evaluates to false. In the
last two rules, each formula l appearing on the left stands for any formula that
can be normalized to l. For instance, Fourier-Motzkin (FM) resolution applies
to y−x < 2 ·y and 2 ·x < 3 yielding −y < 3

2 . The three linear combinations of
constraints in the solution of problem R in Sect. 1 are instances of FM resolution,
as a linear combination e1+z<c1, e2−z<c2 ` e1+e2<c1+c2 is expressed as an
FM resolution e2−c2<z, z<c1−e1 `LRA e2−c2<c1−e1.

4.3 A Theory Module for EUF

For a signature ΣEUF = (S, 'S ∪ F), IEUF may include
(ti' ui)i=1...m, f(t1, . . . , tm) 6' f(u1, . . . , um) `EUF ⊥

(ti' ui)i=1...m `EUF f(t1, . . . , tm)' f(u1, . . . , um)
(ti' ui)i=1...m,i 6=j , f(t1, . . . , tm) 6' f(u1, . . . , um) `EUF tj 6' uj

for all symbols f ∈ F . The first rule alone is sufficient for completeness: it cap-
tures a lazy approach that does not propagate anything before equalities between
existing terms are found to be in contradiction with a congruence axiom [9]. The
other two rules can be used directly for eager congruence propagation. Since IEUF
does not use first-order assignments, no sort needs to be EUF-public, and the
only assignments assign truth values to equalities. Alternatively, one may make
the sorts in S EUF-public, with a countably infinite collection of EUF+-values
in each sort and no axioms about them. Equality inferences can employ assign-
ments of EUF+-values to determine whether terms are equal, using EUF+-values
as identifiers for equivalence classes of terms. For example, assume that c1, c2,
and c3 are distinct EUF+-values. The assignment {x←c1, y←c1, f(x)←c2} places
x and y in the equivalence class c1, and f(x) in class c2. If f(y)←c3 is added
to the assignment, two equality inferences and an application of the first rule of
IEUF expose a conflict in the above-mentioned lazy style.

7

4.4 A Theory Module for Arrays

The array sort constructor builds from an index sort I and a value sort V the
sort I⇒V of arrays with indices in I and values in V . Consider a signature
ΣArr = (S, F), where S is the free closure of a set of basic sorts with respect to
the array sort constructor, and F is

{selectI⇒V : (I⇒V)×I→V | (I⇒V) ∈ S}
∪ {storeI⇒V : (I⇒V)×I×V→(I⇒V) | (I⇒V) ∈ S}
∪ {diffI⇒V : (I⇒V)×(I⇒V)→I | (I⇒V) ∈ S},

where diffI⇒V is the Skolem function symbol that arises from clausifying the
extensionality axiom for array sort I⇒V . For brevity, subscripts are omitted,
select(a, i) is written as a[i], and store(a, i, v) as a[i]:=v. Module IArr features the
following rules, where a, b, c, d are variables of any I⇒V sort, u, v are variables
of sort V , and i, j, k of sort I:

a' b, i' j, a[i] 6' b[j] `Arr ⊥
a' b, i' j, u' v, (a[i]:=u) 6' (b[j]:=v) `Arr ⊥

b' (a[i]:=u), i' j, b[j] 6' u `Arr ⊥
b' (a[i]:=u), i 6' j, j' k, a[j] 6' b[k] `Arr ⊥

a 6' b `Arr a[diff (a, b)] 6' b[diff (a, b)]
a' c, b' d, diff (a, b) 6' diff (c, d) `Arr ⊥

The first two inference rules capture the congruence axioms for select and store.
The third and fourth rules correspond to the read-over-write axioms. The fifth
rule corresponds to the clausal form of the extensionality axiom; it is the only
rule that can produce new terms. The last rule states the congruence axiom for
diff . These rules are triggered by the truth-values of equalities. As with IEUF,
in order to determine whether equalities hold, one has the option of declaring
all sorts to be Arr-public, with infinitely many Arr+-values used as identifiers of
equivalence classes. One can also add rules for eager propagations of equalities.

4.5 Generic Theory Modules for Equality Sharing

Assume T is a stably infinite theory with signature Σ = (S, F) and equipped
with a T -satisfiability procedure. Its inference module IT comprises the rule

l1←b1, . . . , lm←bm `T ⊥
that fires when the conjunction of the literals corresponding to the Boolean as-
signments on the left is T -unsatisfiable. Unlike the previous ones, this module
is coarse-grained, in the sense that a single application of its inference rule re-
quires the execution of a T -satisfiability procedure. As with EUF and Arr, one
has the option of declaring non-Boolean sorts T -public to determine equalities.
If the T -satisfiability procedure can produce unsatisfiable cores, we can restrict
the above rule so that the assignment on the left is an unsatisfiable core. This
provides a more precise conflict resolution mechanism, which leads us to Sect. 5.

8

5 The CDSAT Inference System

In this section we present CDSAT and exemplify its features by applying it to
problems R and P in the introduction. A CDSAT derivation transforms a state
consisting of a trail Γ . A trail is a sequence of distinct singleton assignments
that are either justified assignments, denoted H`A, or decisions, denoted ?A.
The justification H in H`A is a set of singleton assignments that appear before
A in the trail. For instance, a theory inference J `Ik

L for some k, 1≤ k≤n, can
justify adding J`L to the trail. A decision is written ?A because it is generally a
guess. A trail can be used as an assignment by ignoring order and justifications.

Phase 1
id trail items just lev
0 −2 ·x− y < 0 {} 0
1 x+ y < 0 {} 0
2 x < −1 {} 0
3 y←0 1
4 − y < −2 {0, 2} 0

conflict E1: {3, 4} 1

Phase 2
id trail items just lev
0 −2 ·x− y < 0 {} 0
1 x+ y < 0 {} 0
2 x < −1 {} 0
3 − y < −2 {0, 2} 0
4 y←4 1
5 y < 0 {0, 1} 0

conflict E2: {4, 5} 1

Phase 3
id trail items just lev
0 −2 ·x− y < 0 {} 0
1 x+ y < 0 {} 0
2 x < −1 {} 0
3 − y < −2 {0, 2} 0
4 y < 0 {0, 1} 0
5 0 < −2 {3, 4} 0

conflict E3: {5} 0

Fig. 2. CDSAT derivation in one theory (LRA)

The evolution of the trail for problem R is described in three successive phases
in Fig. 2. The input is shown above the horizontal line of Phase 1. In each pro-
ceeding phase, the assignments above the horizontal line are those inherited from
the previous phase. Assignments are numbered in chronological order, and their
numbers, shown in the first column, are used as identifiers. For every justified
assignment, the justification is shown as a set of identifiers in the third column.
In the sequel, Amn is the assignment with identifier n in phase m. For example,
the justification of A1

4 is {0, 2}, because A1
4 is derived by the FM resolution rule

of ILRA from A1
0 and A1

2. The last column shows the level of A as defined next.

Definition 5 (Level). Given a trail Γ with assignments A0, . . . , Am,

levelΓ (Ai) =
{

1 +max{levelΓ (Aj) | j < i} if Ai is a decision,
levelΓ (H) if Ai has justification H;

Given a T∞-assignment H ⊆ Γ ,

levelΓ (H) =
{

0 if H = ∅,
max{levelΓ (A) | A ∈ H} otherwise.

The restriction of a trail Γ to its elements of level at most m is written Γ≤m.
The rules of the CDSAT inference system, given in Fig. 3, comprise search

rules, whose application is denoted by −→, and conflict resolution rules, whose
application is denoted by =⇒, with transitive closure =⇒∗. The system is pa-
rameterized by a set B of terms, called global basis, used to limit the range of
terms that CDSAT may generate, in order to ensure termination (cf. Sect. 6.2).

9

Search rules
Decide Γ −→ Γ, ?A if A is a Tk-assignment for a Tk-relevant term of Γ

that is acceptable for ΓTk and Ik, with 1≤ k≤n
The next three rules share the conditions:
J ⊆ Γ , (J `Ik L), and L 6∈ Γ , for some k, 1 ≤ k ≤ n.
Deduce Γ −→ Γ, J`L if L 6∈ Γ , and L is of the form l←b for some l ∈ B
Fail Γ −→ unsat if L ∈ Γ and levelΓ (J, L) = 0
ConflictSolve Γ −→ Γ ′ if L ∈ Γ , levelΓ (J, L) > 0, and 〈Γ ; J, L〉 =⇒∗ Γ ′
Conflict resolution rules
Undo
〈Γ ;E,A〉 =⇒ Γ≤m−1 if A is a first-order decision of level m > levelΓ (E)

Backjump
〈Γ ;E,L〉 =⇒ Γ≤m,E`L if levelΓ (L) > m, where m = levelΓ (E)

Resolve
〈Γ ;E,A〉 =⇒ 〈Γ ;E ∪H〉 if H`A is in Γ and H does not contain a

first-order decision whose level is levelΓ (E,A)
UndoDecide
〈Γ ;E,L,L′〉 =⇒ Γ≤m−1, ?L if H`L and H′`L

′ are in Γ and H ∩H ′ contains a
first-order decision of level m = levelΓ (E,L,L′)

Fig. 3. The CDSAT inference system

The global basis is fixed throughout a CDSAT derivation but depends on the
input problem. We describe next the CDSAT rules, beginning with the search
rules. The Decide rule extends a trail Γ with a theory assignment A without
justifying it by a theory inference: it is a decision. A assigns a value to a relevant
term, and is acceptable for the theory view of the trail and the theory module
(cf. Definitions 2, 3 and 4). In Fig. 2, y is the relevant term in A1

3 and A2
4.

The Deduce rule extends a trail Γ with an assignment L justified by a theory
inference J `Ik

L. In Fig. 2, Deduce infers A1
4 from {A1

0, A
1
2}, A2

5 from {A2
0, A

2
1},

and A3
5 from {A3

3, A
3
4}, by using the FM resolution rule of ILRA.

Rules Fail and ConflictSolve apply to a trail Γ that is conflicting because
a theory inference J `Ik

L contradicts an assignment L already present in Γ .
The set J ∪ {L} is the conflict. Its level is denoted levelΓ (J, L). If it is 0, rule
Fail returns unsat (e.g., E3 in Fig. 2). If it is greater than 0 (e.g., E1 and E2 in
Fig. 2), rule ConflictSolve triggers a series of conflict resolution steps transforming
Γ into a trail Γ ′ where the conflict is solved. In all three conflicts in Fig. 2, the
inferences that expose the conflict are applications of the evaluation rule of ILRA:
y←0 ` −y < −2 for E1, y←4 ` y < 0 for E2, and ∅ ` 0 < −2 for E3.

We now describe the conflict resolution rules, referring to Fig. 2 and 4 for their
application to problems R and P , respectively. Conflict resolution rules operate
on pairs 〈Γ ;E〉, where Γ is a trail and E is a set of assignments in Γ termed
conflict. If the conflict contains a first-order decision A, whose level n is greater
than that of the rest of the conflict, rule Undo removes A and all assignments of
level greater than or equal to n. In Fig. 2, rule Undo solves conflicts E1 and E2.

10

Phase 1
id trail items just lev
0 f((a[i]:=v)[j])' w {} 0
1 w−2' f(u) {} 0
2 i' j {} 0
3 u' v {} 0
4 u←c 1
5 v←c 2
6 (a[i]:=v)[j]←c 3
7 w←0 4
8 f((a[i]:=v)[j])←0 5
9 f(u)←−2 6

10 u' (a[i]:=v)[j] {4, 6} 3
11 f(u) 6' f((a[i]:=v)[j]) {8, 9} 6

conflict E1: {10, 11} 6

Phase 2
id trail items just lev
0 f((a[i]:=v)[j])' w {} 0
1 w−2' f(u) {} 0
2 i' j {} 0
3 u' v {} 0
4 u←c 1
5 v←c 2
6 (a[i]:=v)[j]←c 3
7 u' (a[i]:=v)[j] {4, 6} 3
8 f(u)' f((a[i]:=v)[j]) {7} 3
9 f(u)' w {0, 8} 3

10 w−2' w {1, 9} 3
conflict E2

1 : {10} 3
conflict E2

2 : {1, 9} 3
conflict E2

3 : {0, 1, 8} 3
conflict E2

4 : {0, 1, 7} 3Phase 3
id trail items just lev
0 f((a[i]:=v)[j])' w {} 0
1 w−2' f(u) {} 0
2 i' j {} 0
3 u' v {} 0
4 u 6' (a[i]:=v)[j] {0, 1} 0
5 u←c 1
6 v←c 2
7 (a[i]:=v)[j]←d 3
8 v 6' (a[i]:=v)[j] {6, 7} 3

conflict E3: {2, 8} 3

Phase 4
id trail items just lev
0 f((a[i]:=v)[j])' w {} 0
1 w−2' f(u) {} 0
2 i' j {} 0
3 u' v {} 0
4 u 6' (a[i]:=v)[j] {0, 1} 0
5 v' (a[i]:=v)[j] {2} 0

conflict E4: {3, 4, 5} 0

Fig. 4. CDSAT derivation in three theories (LRA, EUF, and Arr)

The Backjump rule is similar in that the conflict contains an assignment
whose level is greater than that of all others. Backjump applies if this assignment
is a Boolean assignment L; its flip L is justified by the rest of the conflict E.
Therefore we backjump to the level of E, and add E`L to the trail. Assignment
L is a Unique Implication Point [14]. We see an application of this rule in Fig. 4.
Phase 1 starts with a series of decisions, from A1

4 through A1
9, where c is an

Arr+-value of sort V , and A1
5 is the only acceptable choice given A1

3 and A1
4.

Then Deduce generates A1
10 and A1

11 by equality inferences (cf. Fig. 1), and
ConflictSolve applies, as E1 `IEUF ⊥ by the first inference rule of IEUF. Rule Undo
does not apply to E1, because E1 does not contain first-order decisions, but
rule Backjump does apply, with A1

11 playing the role of L. CDSAT jumps back
to level 3, the level of A1

10, and places A1
11 on the trail with justification A1

10,
named A2

7 in Phase 2. Deduce places A2
9 and A2

10 on the trail by transitivity of
equality (cf. Fig. 1). ConflictSolve applies as ∅ `LRA w−2 6' w.

11

The Resolve rule unfolds a conflict by replacing an assignment A in the con-
flict with its justification H, provided H does not introduce a first-order decision
of the same level as that of the conflict. Starting from E2

1 in Fig. 4, three Resolve

Phase 1
id trail items just lev
0 (x>1) ∨ (y<0) {} 0
1 (x<−1) ∨ (y>0) {} 0
2 x←0 1
3 x>1 {2} 1
4 x<−1 {2} 1
5 y<0 {0, 3} 1
6 y>0 {1, 4} 1
7 0<0 {5, 6} 1

conflict E1: {7} 1
conflict E2: {5, 6} 1

conflict E3: {0, 3, 6} 1
conflict E4: {0, 1, 3, 4} 1

Phase 2
id trail items just lev
0 (x>1) ∨ (y<0) {} 0
1 (x<−1) ∨ (y>0) {} 0
2 x>1 1
3 x←2 2
4 x<−1 {3} 2
5 y>0 {1, 4} 2
6 y←1 3
7 y<0 {6} 3

Fig. 5. CDSAT derivation in
two theories (Bool and LRA)

steps yield conflict E2
4 . Resolve does not apply to

A2
7 because its justification contains A2

6. Backjump
solves E2

4 by jumping back to level 0 and flipping
A2

7 into A3
4. Then CDSAT guesses A3

5 through A3
7,

where A3
6 is forced by A3

3 and A3
5. For A3

7, an-
other Arr+-value d of sort V is used, since A3

4
and A3

5 prevent assigning c to (a[i]:=v)[j]. Deduce
generates A3

8 by an equality inference, and con-
flict E3 arises as (i' j), (v 6' (a[i]:=v)[j]) `Arr ⊥.
Backjump solves E3 by jumping back to level 0
and flipping A3

8 into A4
5. The final conflict E4 vio-

lates transitivity of equality, and because E4 is at
level 0, rule Fail closes the derivation.

The UndoDecide rule corresponds to T-
backjump-decide [5] and semantic split [9]. It ap-
plies when the conflict contains two assignments
L and L′ whose justifications include a first-order
decision of maximal level in the conflict. Rule
Resolve is barred from replacing L or L′ by their
justification, so the only way to solve the conflict
is to trade the first-order decision for a Boolean
decision on the flip of L or L′. In Fig. 5, conflict E4
is solved by UndoDecide, as both A1

3 and A1
4 are

justified by the first-order decisionA1
2. UndoDecide

arbitrarily chooses to flip A1
3, and then values can

be found for variables without raising a conflict:
the problem is satisfiable.

6 Soundness, Termination, and Completeness of CDSAT

In this section we establish soundness, termination, and completeness of CDSAT.
The proofs of these theorems can be found in the technical report [3]. The key
point is to reduce such global properties to theory-local requirements for the
theory modules involved in the combination. In other words, we need to discover
sufficient conditions whose fulfillment by all theory modules I1, . . . , In ensures
soundness, termination, and completeness of the combined system.

This reduction raises the issue of how to handle the fact that assignments
contain symbols unknown to a theory. For the combination of theory modules
to be truly modular, Ik treats as a variable any subterm whose root is a symbol
foreign to Tk. Formally, if Σ = (S, F) is a signature included in Σ∞, the free Σ-
variables fvΣ(t) of a term t are the maximal subterms of t, in the subterm ordering
C, whose root is not in F . For a set X of terms, fvΣ(X) = {u | u ∈ fvΣ(t), t ∈ X},

12

and for an assignment H, fvΣ(H) = {u | u ∈ fvΣ(t), t←c ∈ H}. For problem P
in Sect. 1, signatures ΣLRA, ΣEUF, ΣArr of Example 1 define for instance:

fvΣLRA
(P) = { f(select(store(a, i, v), j)), w, f(u), i' j, u' v }

fvΣEUF
(P) = { select(store(a, i, v), j), w, u, w−2, i' j, v }

fvΣArr
(P) = { f(select(store(a, i, v))j)' w, f(u)' w−2, i, j, u, v }

In the next two definitions, T and Σ stand for either T∞ and Σ∞ or Tk and
Σk, 1≤ k≤n. The identification of sufficient conditions for soundness and com-
pleteness and their proofs demand that we relate the assignments manipulated
by CDSAT to models. This is the purpose of the notion of endorsement:

Definition 6 (Endorsement). A T +[V]-model M endorses a T -assignment
J , such that fvΣ(J) ⊆ V , if for all t←c in J , M(t) = cM.

For Boolean assignments, it means that formulae are interpreted with the
correct truth values. Definition 6 uses T +-models, because assignments contain
T +-values (e.g.,

√
2), and therefore we need models that interpret T +-values,

and interpret them consistently with the axioms (e.g.,
√

2·
√

2 = 2).

Definition 7 (View endorsement). A T +[V]-model M view-endorses a T∞-
assignment H with fvΣ(H) ⊆ V , if it endorses its T -view HT .

This definition combines endorsement and view (cf. Definition 2) because CD-
SAT works with T∞-assignments, which mix Tk-assignments for any k, 1≤ k≤n.
If H is Boolean, view endorsement collapses to endorsement.

6.1 Soundness

The sufficient condition for soundness is that for every theory module Ik, for all
Ik-inferences J `Ik

L, and all V such that fvΣk
(J ∪ {L}) ⊆ V , every T +

k [V]-
model that view-endorses J endorses L. Under this assumption, we prove that
CDSAT is sound, by showing that each transition rule produces a trail whose
restriction to level 0 is equisatisfiable to the input assignment.

Theorem 1 (Soundness). For all input assignments H, if a CDSAT deriva-
tion from H reaches state unsat, no T +

∞ [V]-model with fvΣ∞
(H) ⊆ V view-

endorses H; if H is Boolean, no T∞[V]-model with fvΣ∞
(H) ⊆ V endorses H.

All theory modules in Sect. 4 satisfy the soundness requirement.

6.2 Termination l0 :−2 ·x− y < 0
l1 : x+ y < 0
l2 : x < −1
l3 : −y < −2 (l0 + 2l2)
l4 : x < −2 (l1 + l3)
l5 : −y < −4 (l0 + 2l4)
l6 : x < −4 (l1 + l5)
l7 : −y < −8 (l0 + 2l6)
. . .

Fig. 6. Divergence

As CDSAT allows the introduction of terms that
are not in the input problem (cf. Deduce), termi-
nation is imperiled. For instance, applying the FM
resolution rule of ILRA to problem R from Sect. 1,
one can infer the formulae of Fig. 6. Such diver-
gence is prevented by imposing finiteness of the
global basis B, that is the source of new terms in
a CDSAT derivation.

13

Theorem 2 (Termination). If the global basis B is finite, every CDSAT
derivation is guaranteed to terminate.

Then the issue is to give sufficient conditions for the existence of a global
basis B, that is finite, and yet sufficiently rich for CDSAT to be complete. To
address this question at the combination level we begin by imposing a similar
requirement at the single theory level. We require that each theory module comes
with a function basisk, called local basis, that maps any finite set X of terms to a
finite set of terms basisk(X), and has the following properties: it is (i) extensive
(X ⊆ basisk(X)), (ii) monotone (X ⊆ Y implies basisk(X) ⊆ basisk(Y)), (iii)
idempotent (basisk(basisk(X)) = basisk(X)), (iv) downward-closed with respect
to the subterm ordering (if t C u and u ∈ basisk(X) then t ∈ basisk(X)), (v)
closed with respect to equality (if t, u ∈ basisk(X), of a sort s different from
prop, then (t's u) ∈ basisk(X)), and (vi) does not introduce foreign symbols
(fvΣk

(basisk(X)) ⊆ fvΣk
(X) ∪ V∞).

Intuitively, basisk(X) is the supply of terms that Ik is allowed to introduce
during a derivation from an input problem whose terms are in X. However,
basisk(X) is not pre-computed. Furthermore, basisk should provide enough terms
to make Ik complete, according to a notion of completeness of a theory module
defined in the sequel in terms of both Ik-inferences and basisk.

The divergence in Fig. 6 involves only ILRA. It can be avoided by assuming a
fixed arbitrary order ≺ on ΣLRA-variables [9], and defining basisLRA as the func-
tion that saturates its argument with the terms introduced by all positivization
inferences and by the FM resolution inferences (t1 l1 x), (xl2 t2) `LRA (t1 l3 t2)
where x is the ≺-greatest ΣLRA-variable in both t1l1x and xl2 t2. For Fig. 6, as-
sume that y ≺ x. Then l3, generated by (−y < 2 ·x), (2 ·x<−2) `LRA (−y <−2),
is in the local basis, whereas l4, generated by (x<−y), (−y <−2) `LRA (x<−2),
is not, so that the series of inferences halts.

6.3 Completeness

As theory modules are used to extend the trail and reveal conflicts, the aim for
completeness is that whenever no theory module can extend the trail, then the
trail provides enough information to build a T +

∞ -model of the input problem. We
begin by formalizing the concept that a theory module can extend an assignment.

Definition 8 (Assignment extension). Module Ik with local basis basisk can
extend a Tk-assignment J if
– Either there exists a Tk-assignment t←c, for a Tk-relevant term t of J , that

is acceptable for J and Ik;
– Or there exist a Tk-assignment J ′ ⊆ J , a formula l ∈ basisk(J), and an
Ik-inference J ′ `Ik

(l← b) such that (l← b) 6∈ J .

The first case is used for a Decide step and the second one for a Deduce, Fail,
or ConflictSolve step. A module Ik is said to be complete, if for all plausible Tk-
assignments J that Ik cannot extend, there exists a T +

k [fvΣk
(J)]-modelM that

14

view-endorses J . However, when no theory module can extend its view of a trail
Γ , the existence of a theory-specific model for Γ for each theory does not imply
the existence of a model for the combination of the theories. As in the equality-
sharing method [16], these models need to agree on equalities between shared
variables and on cardinalities of shared sorts. If all theories are stably infinite,
the common cardinality is countably infinite. Nonetheless, there are interesting
combinations that involve finite cardinalities, such as combining a theory with
finite sorts and the theory of arrays with extensionality. CDSAT can handle such
cases, if one of the combined theories, say T1, knows all the sorts (i.e., S1 = S∞)
and offers information about their cardinalities. A combination of stably infinite
theories is the instance of this scheme where T1 is a theory TN whose models
interpret every sort in S∞\{prop} as a countably infinite set.

The theory-specific requirements for completeness of CDSAT are that I1 is
complete, and all other modules are complete relative to T1. The latter notion,
that we call T1-completeness, in turn relies on T1-compatibility, defined below.

Definition 9 (T1-compatibility). A Tk-assignment J is T1-compatible with
T +
k , sharing a set of terms G, if for any T +

1 [fvΣ1
(J ∪G)]-model M1 that view-

endorses J , there exists a T +
k [fvΣk

(J ∪G)]-model M that view-endorses J , such
that for all sorts s ∈ Sk,

∣∣sM∣∣=∣∣sM1
∣∣, and for all terms t and t′ in G of sort s,

M(t) =M(t′) if and only if M1(t) =M1(t′).

A module Ik is T1-complete, if for all plausible Tk-assignments J that Ik
cannot extend, J is T1-compatible with T +

k , sharing all terms that occur in J .
Then, the global basis B is stable, if basisk(B) ⊆ B holds for all k, 1≤ k≤n.

Theorem 3 (Completeness). For all input assignments H, if the global basis
B is stable and contains all terms that occur in H, whenever a CDSAT derivation
from H reaches a state Γ other than unsat such that no CDSAT inference applies,
there exists a T +

∞ [fvΣ∞
(Γ)]-model that view-endorses Γ and H contained in Γ .

The proof of this theorem [3] relies on the following:

Lemma 1 (Model glueing). Let H be an assignment and G be the collection
of shared terms inductively defined by:
(t←c)∈H
t ∈ G

u, u′ ∈ G t ∈ fvΣi
(u)∩ fvΣj

(u′) i6=j
t ∈ G

u ∈ G t ∈ fvΣk
(u)\V∞

t ∈ G
If there exists a T +

1 [fvΣ1
(H)]-model that view-endorses H, and such that for all

k, 2≤ k≤n, the Tk-view HTk
is T1-compatible with T +

k sharing G, then there
exists a T +

∞ [fv(H)]-model that view-endorses H.

A derivation can reach a state satisfying the hypotheses of Lemma 1 long
before it reaches a state that no module can extend. An implementation of a
module could notify the main algorithm when the trail becomes T1-compatible
with its theory. In this sense, Theorem 3 covers the worst-case scenario. A
stable global basis can be obtained by taking B= basisπ(k)(. . . basisπ(1)(X)),
where X is the set of terms occurring in the input assignment and π is a

15

permutation of {1, . . . , k} that satisfies the following property: if i < j then
basisπ(i)(basisπ(j)(X)) ⊆ basisπ(j)(basisπ(i)(X)). A syntactic criterion on the lo-
cal bases implies this permutability property [3].

For all theory modules of Sect. 4, except ILRA, we can define a local ba-
sis that makes them TN-complete (cf. [3] for stronger completeness properties).
For ILRA, the local basis basisLRA given above makes the module TN-complete
only under the strategy that assigns ΣLRA-variables in ≺-increasing order. Oth-
erwise, considering again problem R and the ordering y ≺ x, the LRA-assignment
l0, l1, l2, l3, (x←0) cannot be extended by ILRA even though it is LRA-unsatisfiable.
Indeed, the obvious FM resolution combining l1 and l3 would eliminate y, which
is not maximal in l1, as required by basisLRA. An additional inference rule can
be added to ILRA to make it complete regardless of strategy [3].

7 Discussion

In this paper we introduced CDSAT, a conflict-driven system for deciding the
satisfiability of quantifier-free problems in the union of disjoint theories. CDSAT
combines theory inference systems, termed theory modules. We presented several
theory modules, including one for arrays which is the first integration of this the-
ory in a conflict-driven combination. CDSAT lifts CDCL to SMT in the sense of
satisfiability modulo multiple theories. Since it accepts input problems contain-
ing Boolean and first-order assignments, CDSAT solves a class of problems that
extends SMT and that we call SMA for Satisfiability Modulo Assignments. For
such problems, the input format presupposes the theory extensions (cf. Sect. 3).

CDSAT generalizes MCSAT [5,8,9,19] to theory combinations. Furthermore,
CDSAT solves the hitherto open problem of integrating conflict-driven proce-
dures and the black-box solvers used in the equality sharing method [16]. CD-
SAT generalizes equality sharing itself, which corresponds to the case where all
theories are stably infinite, all theory modules are black-boxes (cf. Sect. 4.5),
and CDSAT decisions are limited to equalities between shared variables.

Clause learning, including theory lemmas, can be easily added to the version
of CDSAT presented here [3]. Directions for future work include: the generation
of proofs, by composition of theory inferences; efficient techniques to detect the
applicability of theory inference rules and determine whether an assignment is
acceptable (e.g., watched variables [9]); and heuristic strategies to make decisions
and prioritize theory inferences.

Acknowledgments The authors thank Dejan Jovanović for fruitful discussions.
Part of this research was conducted while the first author was an international
fellow at the Computer Science Laboratory of SRI International, whose support
is greatly appreciated. This research was funded in part by NSF grants 1528153
and CNS-0917375, by DARPA under agreement number FA8750-16-C-0043, and
by grant “Ricerca di base 2015” of the Università degli Studi di Verona. The
views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of NSF, DARPA, or the U.S. Government.

16

References

1. Barrett, C., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Splitting on demand in
SAT modulo theories. In: Hermann, M., Voronkov, A. (eds.) Proceedings of the
Thirteenth International Conference on Logic for Programming, Artificial Intelli-
gence, and Reasoning (LPAR). Lecture Notes in Artificial Intelligence, vol. 4246,
pp. 512–526. Springer (2006) 2

2. Bonacina, M.P.: On conflict-driven reasoning. In: Dutertre, B., Shankar, N. (eds.)
Proceedings of the Sixth Workshop on Automated Formal Methods (AFM), at
the Ninth NASA Formal Methods Symposium (NFM). pp. 1–9. To appear (2017),
http://fm.csl.sri.com/AFM17/ 1

3. Bonacina, M.P., Graham-Lengrand, S., Shankar, N.: A model-constructing frame-
work for theory combination. Tech. Rep. 99/2016, Dipartimento di Informatica,
Università degli Studi di Verona, Verona, Italy, EU (November 2016), https:
//hal.archives-ouvertes.fr/hal-01425305, also Technical Report of SRI In-
ternational and INRIA - CNRS - École Polytechnique; revised April 2017 12, 15,
16

4. Cotton, S.: Natural domain SMT: A preliminary assessment. In: Chatterjee, K.,
Henzinger, T.A. (eds.) Proceedings of the Eighth International Conference on For-
mal Modeling and Analysis of Timed Systems (FORMATS). Lecture Notes in
Computer Science, vol. 6246, pp. 77–91. Springer (2010) 1

5. de Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In: Gia-
cobazzi, R., Berdine, J., Mastroeni, I. (eds.) Proceedings of the Fourteenth Inter-
national Conference on Verification, Model Checking and Abstract Interpretation
(VMCAI). Lecture Notes in Computer Science, vol. 7737, pp. 1–12. Springer (2013)
2, 12, 16

6. Ganzinger, H., Rueß, H., Shankar, N.: Modularity and refinement in inference sys-
tems. Tech. Rep. CSL-SRI-04-02, Computer Science Laboratory, SRI International,
Menlo Park, CA, USA (2004) 3

7. Haller, L., Griggio, A., Brain, M., Kroening, D.: Deciding floating-point logic with
systematic abstraction. In: Cabodi, G., Singh, S. (eds.) Proceedings of the Twelfth
International Conference on Formal Methods in Computer Aided Design (FM-
CAD). ACM and IEEE (2012) 1

8. Jovanović, D.: Solving nonlinear integer arithmetic with MCSAT. In: Bouajjani,
A., Monniaux, D. (eds.) Proceedings of the Eighteenth International Conference
on Verification, Model Checking and Abstract Interpretation (VMCAI). Lecture
Notes in Computer Science, vol. 10145, pp. 330–346. Springer (2017) 2, 16

9. Jovanović, D., Barrett, C., de Moura, L.: The design and implementation of the
model-constructing satisfiability calculus. In: Jobstman, B., Ray, S. (eds.) Proceed-
ings of the Thirteenth Conference on Formal Methods in Computer Aided Design
(FMCAD). ACM and IEEE (2013) 2, 5, 7, 12, 14, 16

10. Jovanović, D., de Moura, L.: Cutting to the chase: solving linear integer arithmetic.
In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) Proceedings of the Twenty-Third
International Conference on Automated Deduction (CADE). Lecture Notes in Ar-
tificial Intelligence, vol. 6803, pp. 338–353. Springer (2011) 1

11. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) Proceedings of the Sixth International Joint Conference on
Automated Reasoning (IJCAR). Lecture Notes in Artificial Intelligence, vol. 7364,
pp. 339–354. Springer (2012) 1

17

http://fm.csl.sri.com/AFM17/
https://hal.archives-ouvertes.fr/hal-01425305
https://hal.archives-ouvertes.fr/hal-01425305

12. Korovin, K., Tsiskaridze, N., Voronkov, A.: Conflict resolution. In: Gent, I.P. (ed.)
Proceedings of the Fifteenth International Conference on Principles and Practice
of Constraint Programming (CP). Lecture Notes in Computer Science, vol. 5732,
pp. 509–523. Springer (2009) 1

13. Krstić, S., Goel, A.: Architecting solvers for SAT modulo theories: Nelson-Oppen
with DPLL. In: Wolter, F. (ed.) Proceedings of the Sixth International Symposium
on Frontiers of Combining Systems (FroCoS). Lecture Notes in Artificial Intelli-
gence, vol. 4720, pp. 1–27. Springer (2007) 2

14. Marques Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers.
In: Biere, A., Heule, M., Van Maaren, H., Walsh, T. (eds.) Handbook of Satisfia-
bility, Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 131–153.
IOS Press (2009) 1, 11

15. McMillan, K.L., Kuehlmann, A., Sagiv, M.: Generalizing DPLL to richer logics.
In: Bouajjani, A., Maler, O. (eds.) Proceedings of the Twenty-First International
Conference on Computer Aided Verification (CAV). Lecture Notes in Computer
Science, vol. 5643, pp. 462–476. Springer (2009) 1

16. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems 1(2), 245–257 (1979) 2, 15,
16

17. Wang, C., Ivančić, F., Ganai, M., Gupta, A.: Deciding separation logic formulae
by SAT and incremental negative cycle elimination. In: Sutcliffe, G., Voronkov, A.
(eds.) Proceedings of the Twelfth International Conference on Logic for Program-
ming, Artificial Intelligence, and Reasoning (LPAR). Lecture Notes in Artificial
Intelligence, vol. 3835, pp. 322–336. Springer (2005) 1

18. Wolfman, S.A., Weld, D.S.: The LPSAT engine and its application to resource
planning. In: Dean, T. (ed.) Proceedings of the Sixteenth International Joint Con-
ference on Artificial Intelligence (IJCAI). vol. 1, pp. 310–316. Morgan Kaufmann
Publishers (1999) 1

19. Zeljić, A., Wintersteiger, C.M., Rümmer, P.: Deciding bit-vector formulas with
mcSAT. In: Creignou, N., Le Berre, D. (eds.) Proceedings of the Nineteenth Inter-
national Conference on Theory and Applications of Satisfiability Testing (SAT).
Lecture Notes in Computer Science, vol. 9710, pp. 249–266. Springer (2016) 2, 16

18

	Satisfiability Modulo Theories and Assignments

