Electrical properties of single crystal Yttrium Iron Garnet ultra-thin films at high temperatures

Abstract : We report a study on the electrical properties of 19 nm thick Yttrium Iron Garnet (YIG) films grown by liquid phase epitaxy. The electrical conductivity and Hall coefficient are measured in the high temperature range [300,400]~K using a Van der Pauw four-point probe technique. We find that the electrical resistivity decreases exponentially with increasing temperature following an activated behavior corresponding to a band-gap of $E_g\approx 2$ eV, indicating that epitaxial YIG ultra-thin films behave as large gap semiconductor, and not as electrical insulator. The resistivity drops to about $5\times 10^3$~$\Omega \cdot \text{cm}$ at $T=400$ K. We also infer the Hall mobility, which is found to be positive ($p$-type) at 5 cm$^2$/(V$\cdot$sec) and about independent of temperature. We discuss the consequence for non-local transport experiments performed on YIG at room temperature. These electrical properties are responsible for an offset voltage (independent of the in-plane field direction) whose amplitude, odd in current, grows exponentially with current due to Joule heating. These electrical properties also induce a sensitivity to the perpendicular component of the magnetic field through the Hall effect. In our lateral device, a thermoelectric offset voltage is produced by a temperature gradient along the wire direction proportional to the perpendicular component of the magnetic field (Righi-Leduc effects).
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-01614816
Contributor : Olivier Klein <>
Submitted on : Wednesday, October 11, 2017 - 2:26:42 PM
Last modification on : Thursday, April 4, 2019 - 5:10:03 PM

Links full text

Identifiers

  • HAL Id : hal-01614816, version 1
  • ARXIV : 1709.07207

Citation

Nicolas Thiéry, Vladimir V. Naletov, Laurent Vila, Alain Marty, Ariel Brenac, et al.. Electrical properties of single crystal Yttrium Iron Garnet ultra-thin films at high temperatures. Physical Review B : Condensed matter and materials physics, American Physical Society, 2018, 97, pp.064422. ⟨DOI: 10.1103/PhysRevB.97.064422⟩. ⟨hal-01614816⟩

Share

Metrics

Record views

483