T. Spatzal, M. Aksoyoglu, L. Zhang, S. L. Andrade, E. Schleicher et al., Evidence for interstitial carbon in nitrogenase FeMo cofactor, Science, vol.334, issue.6058, p.940, 2011.

J. A. Wiig, Y. Hu, C. C. Lee, and M. W. Ribbe, Radical SAM-dependent carbon insertion into the nitrogenase M-cluster, Science, vol.337, issue.6102, pp.1672-1675, 2012.

G. N. George, I. J. Pickering, E. Y. Yu, R. C. Prince, S. A. Bursakov et al., A novel protein-bound coppermolybdenum cluster, J. Am. Chem. Soc, vol.122, issue.34, pp.8321-8322, 2000.

M. S. Carepo, S. R. Pauleta, A. G. Wedd, J. J. Moura, and I. Moura, Mo-cu metal cluster formation and binding in an orange protein isolated from Desulfovibrio gigas, J. Biol. Inorg. Chem, vol.19, pp.605-614, 2014.

S. Leimkühler and C. Iobbi-nivol, Bacterial molybdoenzymes: old enzymes for new purposes, FEMS Microbiol. Rev, vol.40, issue.1, pp.1-18, 2016.

R. Hille, J. Hall, and P. Basu, The mononuclear molybdenum enzymes, Chem. Rev, vol.114, issue.7, pp.3963-4038, 2014.

B. Schoepp-cothenet, R. Van-lis, P. Philippot, A. Magalon, M. J. Russell et al., The ineluctable requirement for the trans-iron elements molybdenum and/or tungsten in the origin of life, Sci Rep, vol.2, p.263, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01608654

A. Kletzin and M. W. Adams, Tungsten in biological systems, FEMS Microbiology Reviews, vol.18, pp.5-63, 1996.

M. J. Pushie, J. J. Cotelesage, and G. N. George, Molybdenum and tungsten oxygen transferases -structural and functional diversity within a common active site motif, Metallomics, vol.6, issue.1, pp.15-24, 2014.

G. B. Seiffert, G. M. Ullmann, A. Messerschmidt, B. Schink, P. M. Kroneck et al., Structure of the non-redox-active tungsten/[4Fe:4S] enzyme acetylene hydratase, Proc. Natl Acad. Sci. USA, vol.104, issue.9, pp.3073-3077, 2007.

S. Grimaldi, B. Schoepp-cothenet, P. Ceccaldi, B. Guigliarelli, and A. Magalon, The prokaryotic Mo/W-bisPGD enzymes family: a catalytic workhorse in bioenergetic, Biochim. Biophys. Acta, vol.1827, issue.8-9, pp.1048-1085, 2013.

Y. Zhang and V. N. Gladyshev, Molybdoproteomes and evolution of molybdenum utilization, J. Mol. Biol, vol.379, issue.4, pp.881-899, 2008.

B. C. Schwahn, F. J. Van-spronsen, A. A. Belaidi, S. Bowhay, J. Christodoulou et al., Efficacy and safety of cyclic pyranopterin monophosphate substitution in severe molybdenum cofactor deficiency type a: a prospective cohort study, The Lancet, vol.386, issue.15, pp.124-129, 2015.

R. A. Rothery, G. J. Workun, and J. H. Weiner, The prokaryotic complex iron-sulfur molybdoenzyme family, Biochim. Biophys. Acta, vol.1778, pp.1897-1929, 2008.

M. J. Pushie and G. N. George, Spectroscopic studies of molybdenum and tungsten enzymes, Coord. Chem. Rev, vol.255, issue.9, pp.1055-1084, 2011.

C. Kisker, H. Schindelin, A. Pacheco, W. A. Wehbi, R. M. Garrett et al., Molecular basis of sulfite oxidase deficiency from the structure of sulfite oxidase, Cell, vol.91, issue.7, pp.973-983, 1997.

A. S. Mcalpine, A. G. Mcewan, A. L. Shaw, and S. Bailey, Molybdenum active centre of dmso reductase from rhodobacter capsulatus : crystal structure of the oxidised enzyme at 1.82-Å resolution and the dithionitereduced enzyme at 2.8-Å resolution, Journal of Biological Inorganic Chemistry, vol.2, pp.690-701, 1997.

H. Raaijmakers and M. Romão, Formate-reduced E. coli formate dehydrogenase H: the reinterpretation of the crystal structure suggests a new reaction mechanism, J. Biol. Inorg. Chem, vol.11, issue.7, pp.849-854, 2006.

P. Arnoux, M. Sabaty, J. Alric, B. Frangioni, B. Guigliarelli et al., Structural and redox plasticity in the heterodimeric periplasmic nitrate reductase, Nat. Struct. Mol. Biol, vol.10, issue.11, pp.928-934, 2003.

M. G. Bertero, R. A. Rothery, M. Palak, C. Hou, D. Lim et al., Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A, Nat. Struct. Mol. Biol, vol.10, issue.9, pp.681-687, 2003.

P. V. Bernhardt, Exploiting the versatility and selectivity of mo enzymes with electrochemistry, Chem. Commun, vol.47, issue.6, pp.1663-1673, 2011.

C. Léger and P. Bertrand, Direct electrochemistry of redox enzymes as a tool for mechanistic studies, Chem. Rev, vol.108, issue.7, pp.2379-2438, 2008.

F. A. Armstrong, H. A. Heering, and J. Hirst, Reactions of complex metalloproteins studied by protein-film voltammetry, Chem. Soc. Rev, vol.26, pp.169-179, 1997.

V. Fourmond and C. Léger, Protein electrochemistry: Questions and answers, Adv. Biochem. Eng. Biotechnol, vol.158, pp.1-41, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01413237

R. D. Milton and S. D. Minteer, Enzymatic bioelectrosynthetic ammonia production: Recent electrochemistry of nitrogenase, nitrate reductase and nitrite reductase

M. Jormakka, S. Tornroth, B. Byrne, and S. Iwata, Molecular basis of proton motive force generation: Structure of formate dehydrogenase-N, Science, vol.295, issue.5561, pp.1863-1868, 2002.

J. Rendon, E. Pilet, Z. Fahs, F. Seduk, L. Sylvi et al., Demethylmenaquinol is a substrate of Escherichia coli nitrate reductase A (NarGHI) and forms a stable semiquinone intermediate at the NarGHI quinol oxidation site, Biochim. Biophys. Acta, vol.1847, issue.8, pp.739-747, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01429032

L. J. Anderson, D. J. Richardson, and J. N. Butt, Using direct electrochemistry to probe rate limiting events during nitrate reductase turnover, Faraday Discuss, vol.116, pp.155-69, 2000.

L. Anderson, D. Richardson, and J. Butt, Catalytic protein film voltammetry from a respiratory nitrate reductase provides evidence for complex electrochemical modulation of enzyme activity, Biochemistry, vol.40, issue.38, pp.11294-307, 2001.

S. Elliott, K. Hoke, K. Heffron, M. Palak, R. Rothery et al., Armstrong, Voltammetric studies of the catalytic mechanism of the respiratory nitrate reductase from Escherichia coli: How nitrate reduction and inhibition depend on the oxidation state of the active site, Biochemistry, vol.43, issue.3, pp.799-807, 2004.

J. Marangon, P. M. Paes-de-sousa, I. Moura, C. D. Brondino, J. J. Moura et al., Substrate-dependent modulation of the enzymatic catalytic activity: Reduction of nitrate, chlorate and perchlorate by respiratory nitrate reductase from Marinobacter hydrocarbonoclasticus 617, Biochim. Biophys. Acta, vol.1817, issue.7, pp.1072-1082, 2012.

S. J. Field, N. P. Thornton, L. J. Anderson, A. J. Gates, A. Reilly et al., Reductive activation of nitrate reductases, pp.3580-3586, 2005.

P. Ceccaldi, J. Rendon, C. Léger, R. Toci, B. Guigliarelli et al., Reductive activation of E. coli respiratory nitrate reductase, Biochim. Biophys. Acta, vol.1847, issue.10, pp.1055-1063, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01429839

K. A. Vincent, X. Li, C. F. Blanford, N. A. Belsey, J. H. Weiner et al., Enzymatic catalysis on conducting graphite particles, Nat. Chem. Biol, vol.3, issue.12, pp.761-762, 2007.

M. Duca, J. R. Weeks, J. G. Fedor, J. H. Weiner, and K. A. Vincent, Combining noble metals and enzymes for relay cascade electrocatalysis of nitrate reduction to ammonia at neutral ph, ChemElectroChem, vol.2, pp.1086-1089, 2015.

B. Frangioni, P. Arnoux, M. Sabaty, D. Pignol, P. Bertrand et al., In Rhodobacter sphaeroides respiratory nitrate reductase, the kinetics of substrate binding favors intramolecular electron transfer, J. Am. Chem. Soc, vol.126, issue.5, pp.1328-1337, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00338609

A. Bassegoda, C. Madden, D. W. Wakerley, E. Reisner, and J. Hirst, Reversible interconversion of CO 2 and formate by a molybdenumcontaining formate dehydrogenase, J. Am. Chem. Soc, vol.136, issue.44, pp.15473-15476, 2014.

S. J. Elliott, A. E. Mcelhaney, C. Feng, J. H. Enemark, and F. A. , Armstrong, A voltammetric study of interdomain electron transfer within sulfite oxidase, J. Am. Chem. Soc, vol.124, issue.39, pp.11612-11615, 2002.

J. P. Ridge, K. Aguey-zinsou, P. V. Bernhardt, G. R. Hanson, and A. G. Mcewan, The critical role of tryptophan-116 in the catalytic cycle of dimethylsulfoxide reductase from Rhodobacter capsulatus, FEBS Lett, vol.563, issue.1-3, pp.197-202, 2004.

K. Heffron, C. Léger, R. Rothery, J. Weiner, and F. Armstrong, Determination of an optimal potential window for catalysis by E. coli dimethyl sulfoxide reductase and hypothesis on the role of Mo(V) in the reaction pathway, Biochemistry, vol.40, issue.10, pp.3117-3126, 2001.

K. Hoke, N. Cobb, F. Armstrong, and R. Hille, Electrochemical studies of arsenite oxidase: An unusual example of a highly cooperative twoelectron molybdenum center, Biochemistry, vol.43, issue.6, pp.1667-1674, 2004.

K. Aguey-zinsou, P. V. Bernhardt, U. Kappler, and A. G. Mcewan, Direct electrochemistry of a bacterial sulfite dehydrogenase, J. Am. Chem. Soc, vol.125, issue.2, pp.530-535, 2003.

S. Najmudin, P. González, J. Trincão, C. Coelho, A. Mukhopadhyay et al., Periplasmic nitrate reductase revisited: a sulfur atom completes the sixth coordination of the catalytic molybdenum, J. Biol. Inorg. Chem, vol.13, issue.5, pp.737-753, 2008.

F. Biaso, B. Burlat, and B. Guigliarelli, DFT investigation of the molybdenum cofactor in periplasmic nitrate reductases: Structure of the Mo(V) EPRactive species, Inorg. Chem, vol.51, issue.6, pp.3409-3419, 2012.

B. J. Jepson, A. Marietou, S. Mohan, J. A. Cole, C. S. Butler et al., Evolution of the soluble nitrate reductase: defining the monomeric periplasmic nitrate reductase subgroup, Biochem. Soc. Trans. 34 (Pt, issue.1, pp.122-126, 2006.

J. N. Butt, L. J. Anderson, L. M. Rubio, D. J. Richardson, E. Flores et al., Enzyme-catalysed nitrate reduction-themes and variations as revealed by protein film voltammetry, Bioelectrochemistry, vol.56, issue.1-2, pp.17-18, 2002.

B. J. Jepson, L. J. Anderson, L. M. Rubio, C. J. Taylor, C. S. Butler et al., Tuning a nitrate reductase for function: The first spectropotentiometric characterization of a bacterial assimilatory nitrate reductase reveals novel redox properties, J. Biol. Chem, vol.279, issue.31, pp.32212-32218, 2004.

P. Bertrand, B. Frangioni, S. Dementin, M. Sabaty, P. Arnoux et al., Effects of slow substrate binding and release in redox enzymes: Theory and application to periplasmic nitrate reductase, J. Phys. Chem. B, vol.111, issue.34, pp.10300-10311, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00336030

A. J. Gates, D. J. Richardson, and J. N. Butt, Voltammetric characterization of the aerobic energy-dissipating nitrate reductase of Paracoccus pantotrophus: exploring the activity of a redox-balancing enzyme as a function of electrochemical potential, Biochem. J, vol.409, issue.1, pp.159-168, 2008.

A. J. Gates, C. S. Butler, D. J. Richardson, and J. N. Butt, Electrocatalytic reduction of nitrate and selenate by napab, Biochem. Soc. Trans, vol.39, issue.1, pp.236-242, 2011.

V. Fourmond, B. Burlat, S. Dementin, M. Sabaty, P. Arnoux et al., Dependence of catalytic activity on driving force in solution assays and protein film voltammetry: Insights from the comparison of nitrate reductase mutants, Biochemistry, vol.49, issue.11, pp.2424-2432, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00677461

V. Fourmond, T. Lautier, C. Baffert, F. Leroux, P. Liebgott et al., Correcting for electrocatalyst desorption or inactivation in chronoamperometry experiments, Anal. Chem, vol.81, issue.8, pp.2962-2968, 2009.

V. Fourmond, B. Burlat, S. Dementin, P. Arnoux, M. Sabaty et al., V) EPR signature of Rhodobacter sphaeroides periplasmic nitrate reductase arising from a dead-end species that activates upon reduction. Relation to other molybdoenzymes from the DMSO reductase family, J. Phys. Chem. B, vol.112, issue.48, pp.15478-15486, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00336002

J. G. Jacques, V. Fourmond, P. Arnoux, M. Sabaty, E. Etienne et al., Reductive activation in periplasmic nitrate reductase involves chemical modifications of the Mo-cofactor beyond the first coordination sphere of the metal ion, Biochim. Biophys. Acta, vol.1837, issue.2, pp.277-286, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01481487

V. Fourmond, M. Sabaty, P. Arnoux, P. Bertrand, D. Pignol et al., Reassessing the strategies for trapping catalytic intermediates during nitrate reductase turnover, J. Phys. Chem. B, vol.114, issue.9, pp.3341-3347, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00677469

J. G. Jacques, B. Burlat, P. Arnoux, M. Sabaty, B. Guigliarelli et al., Kinetics of substrate inhibition of periplasmic nitrate reductase, Biochim. Biophys. Acta, vol.1837, issue.10, pp.1801-1809, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01494456

R. Thomé, A. Gust, R. Toci, R. Mendel, F. Bittner et al., A sulfurtransferase is essential for activity of formate dehydrogenases in escherichia coli, J. Biol. Chem, vol.287, issue.7, pp.4671-4678, 2012.

T. Reda, C. M. Plugge, N. J. Abram, and J. Hirst, Reversible interconversion of carbon dioxide and formate by an electroactive enzyme, Proc. Natl Acad. Sci. USA, vol.105, issue.31, pp.10654-10658, 2008.

J. S. Mcdowall, M. C. Hjersing, T. Palmer, and F. Sargent, Dissection and engineering of the Escherichia coli formate hydrogenlyase complex, FEBS Lett, vol.589, pp.3141-3147, 2015.

V. Fourmond, C. Baffert, K. Sybirna, T. Lautier, A. Abou-hamdan et al., Steady-state catalytic wave-shapes for 2-electron reversible electrocatalysts and enzymes, J. Am. Chem. Soc, vol.135, issue.10, pp.3926-3938, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268145

C. Feng, R. V. Kedia, J. T. Hazzard, J. K. Hurley, G. Tollin et al., Effect of solution viscosity on intramolecular electron transfer in sulfite oxidase, Biochemistry, vol.41, issue.18, pp.5816-5821, 2002.

E. E. Ferapontova, T. Ruzgas, and L. Gorton, Direct electron transfer of hemeand molybdopterin cofactor-containing chicken liver sulfite oxidase on alkanethiol-modified gold electrodes, Anal. Chem, vol.75, issue.18, pp.4841-4850, 2003.

M. Sezer, R. Spricigo, T. Utesch, D. Millo, S. Leimkuehler et al., Redox properties and catalytic activity of surface-bound human sulfite oxidase studied by a combined surface enhanced resonance raman spectroscopic and electrochemical approach, Phys. Chem. Chem. Phys, vol.12, issue.28, pp.7894-7903, 2010.

S. Frasca, O. Rojas, J. Salewski, B. Neumann, K. Stiba et al., Human sulfite oxidase electrochemistry on gold nanoparticles modified electrode, Bioelectrochemistry, vol.87, pp.33-41, 2012.

T. Zeng, S. Frasca, J. Rumschöttel, J. Koetz, S. Leimkühler et al., Role of conductive nanoparticles in the direct unmediated bioelectrocatalysis of immobilized sulfite oxidase, Electroanalysis, vol.28, pp.2303-2310, 2016.

T. Zeng, D. Pankratov, M. Falk, S. Leimkühler, S. Shleev et al., Miniature direct electron transfer based sulphite/oxygen enzymatic fuel cells, Biosens Bioelectron, vol.66, pp.39-42, 2015.

T. Zeng, S. Leimkühler, J. Koetz, and U. Wollenberger, Effective electrochemistry of human sulfite oxidase immobilized on quantum-dots-modified indium tin oxide electrode, ACS Appl. Mater. Interfaces, vol.7, issue.38, pp.21487-21494, 2015.

P. Saengdee, C. Promptmas, T. Zeng, S. Leimkühler, and U. Wollenberger, Third-generation sulfite biosensor based on sulfite oxidase immobilized on aminopropyltriethoxysilane modified indium tin oxide, Electroanalysis, vol.29, pp.110-115, 2017.

T. D. Rapson, U. Kappler, and P. V. Bernhardt, Direct catalytic electrochemistry of sulfite dehydrogenase: Mechanistic insights and contrasts with related Mo enzymes, Biochim. Biophys. Acta, vol.1777, issue.10, pp.1319-1325, 2008.

T. D. Rapson, U. Kappler, G. R. Hanson, and P. V. Bernhardt, Short circuiting a sulfite oxidising enzyme with direct electrochemistry: active site substitutions and their effect on catalysis and electron transfer, Biochim. Biophys. Acta, vol.1807, issue.1, pp.108-118, 2011.

G. G. Barbier, R. C. Joshi, E. R. Campbell, and W. H. Campbell, Purification and biochemical characterization of simplified eukaryotic nitrate reductase expressed in Pichia pastoris, Protein Expr. Purif, vol.37, issue.1, pp.61-71, 2004.

P. Kalimuthu, P. Ringel, T. Kruse, and P. V. Bernhardt, Direct electrochemistry of nitrate reductase from the fungus Neurospora crassa, Biochim. Biophys. Acta, vol.1857, issue.9, pp.1506-1513, 2016.

P. Kalimuthu, K. Fischer-schrader, G. Schwarz, and P. V. Bernhardt, Mediated electrochemistry of nitrate reductase from Arabidopsis thaliana, J. Phys. Chem. B, vol.117, issue.25, pp.7569-7577, 2013.

K. Aguey-zinsou, P. V. Bernhardt, A. G. Mcewan, and J. P. Ridge, The first non-turnover voltammetric response from a molybdenum enzyme: direct electrochemistry of dimethylsulfoxide reductase from Rhodobacter capsulatus, J. Biol. Inorg. Chem, vol.7, issue.7, pp.879-883, 2002.

J. Ridge, K. Aguey-zinsou, P. Bernhardt, I. Brereton, G. Hanson et al., Site-directed mutagenesis of dimethyl sulfoxide reductase from Rhodobacter capsulatus: Characterization of a Y114F mutant, Biochemistry, vol.41, issue.52, pp.15762-15769, 2002.

S. J. Elliott, C. Léger, H. R. Pershad, J. Hirst, K. Heffron et al., Detection and interpretation of redox potential optima in the catalytic activity of enzymes, Biochim. Biophys. Acta, vol.1555, issue.1-3, pp.254-256, 2002.

C. Léger, S. J. Elliott, K. R. Hoke, L. J. Jeuken, A. K. Jones et al., Enzyme electrokinetics: using protein film voltammetry to investigate redox enzymes and their mechanisms, Biochemistry, vol.42, issue.29, pp.8653-62, 2003.

K. F. Aguey-zinsou, P. V. Bernhardt, and S. Leimkühler, Protein film voltammetry of Rhodobacter capsulatus xanthine dehydrogenase, J. Am. Chem. Soc, vol.125, issue.50, pp.15352-15360, 2003.

P. V. Bernhardt, M. J. Honeychurch, and A. G. Mcewan, Direct electrochemically driven catalysis of bovine milk xanthine oxidase, Electrochemistry Communications, vol.8, pp.257-261, 2006.

P. Kalimuthu, S. Leimkühler, and P. V. Bernhardt, Xanthine dehydrogenase electrocatalysis: Autocatalysis and novel activity, J. Phys. Chem. B, vol.115, issue.11, pp.2655-2662, 2011.

Y. Wu and S. Hu, Direct electron transfer of xanthine oxidase and its catalytic reduction to nitrate, Anal. Chim. Acta, vol.602, issue.2, pp.181-186, 2007.

D. Shan, Y. Wang, H. Xue, S. Cosnier, and S. Ding, Xanthine oxidase/laponite nanoparticles immobilized on glassy carbon electrode: direct electron transfer and multielectrocatalysis, Biosens Bioelectron, vol.24, issue.12, pp.3556-3561, 2009.

P. V. Bernhardt and J. M. Santini, Protein film voltammetry of arsenite oxidase from the chemolithoautotrophic arsenite-oxidizing bacterium NT-26, Biochemistry, vol.45, issue.9, pp.2804-2809, 2006.

K. B. Male, S. Hrapovic, J. M. Santini, and J. H. Luong, Biosensor for arsenite using arsenite oxidase and multiwalled carbon nanotube modified electrodes, Anal. Chem, vol.79, issue.20, pp.7831-7837, 2007.

A. Gennaris, B. Ezraty, C. Henry, R. Agrebi, A. Vergnes et al.,

F. Collet and . Barras, Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons, Nature, vol.528, issue.7582, pp.409-412, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01452073

H. Adamson, A. N. Simonov, M. Kierzek, R. A. Rothery, J. H. Weiner et al., Electrochemical evidence that pyranopterin redox chemistry controls the catalysis of YedY, a mononuclear Mo enzyme, Proc. Natl. Acad. Sci. U.S.A, vol.112, issue.47, pp.14506-14511, 2015.

C. C. Lee, N. S. Sickerman, Y. Hu, and M. W. Ribbe, YedY: A mononuclear molybdenum enzyme with a redox-active ligand?, Chembiochem, vol.17, issue.6, pp.453-455, 2016.

M. M. Correia-dos-santos, P. M. Sousa, M. L. Gonçalves, M. J. Romão, I. Moura et al., Direct electrochemistry of the Desulfovibrio gigas aldehyde oxidoreductase, Eur. J. Biochem, vol.271, issue.7, pp.1329-1338, 2004.

P. Pinyou, A. Ruff, S. Pöller, S. Alsaoub, S. Leimkühler et al., Wiring of the aldehyde oxidoreductase paoabc to electrode surfaces via entrapment in low potential phenothiazine-modified redox polymers, Bioelectrochemistry, vol.109, pp.24-30, 2016.

V. Fourmond and C. Léger, Modelling the voltammetry of adsorbed enzymes and molecular catalysts, Curr. Opin. Electrochem, vol.1, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01440516

C. Léger, A. K. Jones, S. P. Albracht, and F. A. Armstrong, Effect of a dispersion of interfacial electron transfer rates on steady state catalytic electron transport in [NiFe]-hydrogenase and other enzymes, J. Phys. Chem. B, vol.106, issue.50, pp.13058-13063, 2002.

V. Fourmond, C. Greco, K. Sybirna, C. Baffert, P. Wang et al., The oxidative inactivation of FeFe hydrogenase reveals the flexibility of the H-cluster, Nat. Chem, vol.6, issue.4, pp.336-342, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01481520

A. Kubas, C. Orain, D. Sancho, L. Saujet, M. Sensi et al., Mechanism of O 2 diffusion and reduction in FeFe hydrogenases, Nat Chem, vol.9, issue.1, pp.88-95, 2017.

G. George, J. Hilton, C. Temple, R. Prince, and K. Rajagopalan, Structure of the molybdenum site of dimethyl sulfoxide reductase, J. Am. Chem. Soc, vol.121, issue.6, pp.1256-1266, 1999.

R. Bray, B. Adams, A. Smith, B. Bennett, and S. Bailey, Reversible dissociation of thiolate ligands from molybdenum in an enzyme of the dimethyl sulfoxide reductase family, Biochemistry, vol.39, issue.37, pp.11258-11269, 2000.

A. F. Bell, X. He, J. P. Ridge, G. R. Hanson, A. G. Mcewan et al., Active site heterogeneity in dimethyl sulfoxide reductase from Rhodobacter capsulatus revealed by Raman spectroscopy, Biochemistry, vol.40, issue.2, pp.440-448, 2001.