Arithmetic structures for differential operators on formal schemes

Abstract : Let $o$ be a complete discrete valuation ring, of inequal characteristics $(0,p)$, $L$ its fraction field, ${\cal X}_0$ a smooth formal scheme over the formal spectrum of $o$. We generalize Berthelot's construction of sheaves of arithmetic differential operators on a smooth formal scheme like ${\cal X}_0$ to admissible formal blowing-ups ${\cal X}$ of ${\cal X}_0$ and study the first properties of these sheaves.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01614108
Contributeur : Marie-Annick Guillemer <>
Soumis le : mardi 10 octobre 2017 - 14:54:23
Dernière modification le : jeudi 12 octobre 2017 - 01:08:50

Identifiants

  • HAL Id : hal-01614108, version 1
  • ARXIV : 1709.00555

Citation

Christine Huyghe, Tobias Schmidt, Matthias Strauch. Arithmetic structures for differential operators on formal schemes. 2017. 〈hal-01614108〉

Partager

Métriques

Consultations de la notice

52