A common approach to the problem of the infinitude of twin primes, primes of the form n!+1, and primes of the form n!-1
Apoloniusz Tyszka

To cite this version:
Apoloniusz Tyszka. A common approach to the problem of the infinitude of twin primes, primes of the form n!+1, and primes of the form n!-1. 2018. hal-01614087v5

HAL Id: hal-01614087
https://hal.archives-ouvertes.fr/hal-01614087v5
Preprint submitted on 24 Mar 2018 (v5), last revised 19 Jun 2020 (v8)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A common approach to the problem of the infinitude of twin primes, primes of the form \(n! + 1 \), and primes of the form \(n! - 1 \)

Apoloniusz Tyszka

March 24, 2018

Abstract

For a positive integer \(x \), let \(\Gamma(x) \) denote \((x - 1)! \). Let \(\text{fact}^{-1}: \{1, 2, 6, 24, \ldots\} \to \mathbb{N} \setminus \{0\} \) denote the inverse function to the factorial function. For positive integers \(x \) and \(y \), let \(\text{rem}(x, y) \) denote the remainder from dividing \(x \) by \(y \). For a positive integer \(n \), by a computation of length \(n \) we understand any sequence of terms \(x_1, \ldots, x_n \) such that \(x_1 \) is defined as the variable \(x \), and for every integer \(i \in \{2, \ldots, n\} \), \(x_i \) is defined as \(\Gamma(x_{i-1}) \), or \(\text{fact}^{-1}(x_{i-1}) \), or \(\text{rem}(x_{i-1}, x_{i-2}) \) (only if \(i \geq 3 \) and \(x_{i-1} \) is defined as \(\Gamma(x_{i-2}) \)). Let \(f(4) = 3 \), and let \(f(n + 1) = f(n)! \) for every integer \(n \geq 4 \). For an integer \(n \geq 4 \), let \(\Psi_n \) denote the following statement: if a computation of length \(n \) returns positive integers \(x_1, \ldots, x_n \) for at most finitely many positive integers \(x \), then every such \(x \) does not exceed \(f(n) \). We prove:

1. the statement \(\Psi_4 \) equivalently expresses that there are infinitely many primes of the form \(n! + 1 \);
2. the statement \(\Psi_6 \) implies that for infinitely many primes \(p \) the number \(p! + 1 \) is prime;
3. the statement \(\Psi_6 \) implies that there are infinitely many primes of the form \(n! - 1 \);
4. the statement \(\Psi_7 \) implies that there are infinitely many twin primes.

2010 Mathematics Subject Classification: 11A41, 68Q05.

Key words and phrases: computation of length \(n \), prime numbers of the form \(n! + 1 \), prime numbers of the form \(n! - 1 \), prime numbers \(p \) such that \(p! + 1 \) is prime, twin prime conjecture.

For a positive integer \(x \), let \(\Gamma(x) \) denote \((x - 1)! \). Let \(\text{fact}^{-1}: \{1, 2, 6, 24, \ldots\} \to \mathbb{N} \setminus \{0\} \) denote the inverse function to the factorial function. For positive integers \(x \) and \(y \), let \(\text{rem}(x, y) \) denote the remainder from dividing \(x \) by \(y \).

Definition. For a positive integer \(n \), by a computation of length \(n \) we understand any sequence of terms \(x_1, \ldots, x_n \) such that \(x_1 \) is defined as the variable \(x \), and for every integer \(i \in \{2, \ldots, n\} \), \(x_i \) is defined as \(\Gamma(x_{i-1}) \), or \(\text{fact}^{-1}(x_{i-1}) \), or \(\text{rem}(x_{i-1}, x_{i-2}) \) (only if \(i \geq 3 \) and \(x_{i-1} \) is defined as \(\Gamma(x_{i-2}) \)).

Let \(f(4) = 3 \), and let \(f(n + 1) = f(n)! \) for every integer \(n \geq 4 \). For an integer \(n \geq 4 \), let \(\Psi_n \) denote the following statement: if a computation of length \(n \) returns positive integers \(x_1, \ldots, x_n \) for at most finitely many positive integers \(x \), then every such \(x \) does not exceed \(f(n) \).

Lemma 1. For every positive integer \(n \), there are only finitely many computations of length \(n \).

Theorem 1. For every integer \(n \geq 4 \), the statement \(\Psi_n \) is true with an unknown integer bound that depends on \(n \).
Proof. It follows from Lemma 1.

Let \(\mathcal{P} \) denote the set of prime numbers.

Lemma 2. ([4] pp. 214–215). For every positive integer \(x \), \(\text{rem}(\Gamma(x), x) \in \mathbb{N} \setminus \{0\} \) if and only if \(x \in \{4\} \cup \mathcal{P} \).

Theorem 2. For every integer \(n \geq 4 \) and for every positive integer \(x \), the following computation \(\mathcal{H}_n \)

\[
\begin{align*}
 x_1 &:= x \\
 \forall i \in \{2, \ldots, n-3\} \quad x_i &:= \text{fact}^{-1}(x_{i-1}) \\
 x_{n-2} &:= \Gamma(x_{n-3}) \\
 x_{n-1} &:= \Gamma(x_{n-2}) \\
 x_n &:= \text{rem}(x_{n-1}, x_{n-2})
\end{align*}
\]

returns positive integers \(x_1, \ldots, x_n \) if and only if \(x = f(n) \).

Proof. We make three observations.

Observation 1. If \(x_{n-3} = 3 \), then \(x_1, \ldots, x_{n-3} \in \mathbb{N} \setminus \{0\} \) and \(x = x_1 = f(n) \).

If \(x = f(n) \), then \(x_1, \ldots, x_{n-3} \in \mathbb{N} \setminus \{0\} \) and \(x_{n-3} = 3 \).

Hence, \(x_{n-2} = \Gamma(x_{n-3}) = 2 \) and \(x_{n-1} = \Gamma(x_{n-2}) = 1 \). Therefore, \(x_n = \text{rem}(x_{n-1}, x_{n-2}) = 1 \).

Observation 2. If \(x_{n-3} = 2 \), then \(x = x_1 = \ldots = x_{n-3} = 2 \).

If \(x = 2 \), then \(x_1 = \ldots = x_{n-3} = 2 \). Hence, \(x_{n-2} = \Gamma(x_{n-3}) = 1 \) and \(x_{n-1} = \Gamma(x_{n-2}) = 1 \). Therefore, \(x_n = \text{rem}(x_{n-1}, x_{n-2}) = 0 \notin \mathbb{N} \setminus \{0\} \).

Observation 3. If \(x_{n-3} = 1 \), then \(x_{n-2} = \Gamma(x_{n-3}) = 1 \). Hence, \(x_{n-1} = \Gamma(x_{n-2}) = 1 \). Therefore, \(x_n = \text{rem}(x_{n-1}, x_{n-2}) = 0 \notin \mathbb{N} \setminus \{0\} \).

Observations 1–3 cover the case when \(x_{n-3} \in \{1, 2, 3\} \). If \(x_{n-3} \geq 4 \), then \(x_{n-2} = \Gamma(x_{n-3}) \) is greater than 4 and composite. By Lemma 2, \(x_n = \text{rem}(x_{n-1}, x_{n-2}) = \text{rem}(\Gamma(x_{n-2}), x_{n-2}) = 0 \notin \mathbb{N} \setminus \{0\} \).

Corollary 1. For every integer \(n \geq 4 \), the bound \(f(n) \) in the statement \(\Psi_n \) cannot be decreased.

Lemma 3. (Wilson’s theorem, [2] p. 89). For every positive integer \(x \), \(x \) divides \(\Gamma(x) + 1 \) if and only if \(x \in \{1\} \cup \mathcal{P} \).

Corollary 2. If \(x \in \mathcal{P} \), then \(\text{rem}(\Gamma(x), x) = x - 1 \).

Lemma 4. For every positive integer \(x \), the following computation \(\mathcal{A} \)

\[
\begin{align*}
 x_1 &:= x \\
 x_2 &:= \Gamma(x_1) \\
 x_3 &:= \text{rem}(x_2, x_1) \\
 x_4 &:= \text{fact}^{-1}(x_3)
\end{align*}
\]

returns positive integers \(x_1, \ldots, x_4 \) if and only if \(x = 4 \) or \(x \) is a prime number of the form \(n! + 1 \).

Proof. For an integer \(i \in \{1, \ldots, 4\} \), let \(A_i \) denote the set of positive integers \(x \) such that the first \(i \) instructions of the computation \(\mathcal{A} \) returns positive integers \(x_1, \ldots, x_i \). We show that

\[
A_4 = \{4\} \cup \{n! + 1 : n \in \mathbb{N} \setminus \{0\} \} \cap \mathcal{P}
\]
For every positive integer \(x\), the terms \(x_1\) and \(x_2\) belong to \(\mathbb{N} \setminus \{0\}\). By Lemma 2, the term \(x_3\) (which equals \(\text{rem}(\Gamma(x), x)\)) belongs to \(\mathbb{N} \setminus \{0\}\) if and only if \(x \in \{4\} \cup \mathcal{P}\). Hence, \(A_1 = \{4\} \cup \mathcal{P}\). If \(x = 4\), then \(x_1, \ldots, x_4 \in \mathbb{N} \setminus \{0\}\). Hence, \(4 \in A_4\). If \(x \in \mathcal{P}\), then Corollary 2 implies that \(x_3 = \text{rem}(\Gamma(x), x) = x - 1 \in \mathbb{N} \setminus \{0\}\). Therefore, for every \(x \in \mathcal{P}\), the term \(x_4 = \text{fact}^{-1}(x_3)\) belongs to \(\mathbb{N} \setminus \{0\}\) if and only if \(x \in \{n! + 1 : n \in \mathbb{N} \setminus \{0\}\}\). This proves equality 1.

It is conjectured that there are infinitely many primes of the form \(n! + 1\), see [1] p. 443 and [5].

Theorem 3. The statement \(\Psi_4\) implies that the set of primes of the form \(n! + 1\) is infinite.

Proof. The number \(3! + 1 = 7\) is prime. By Lemma 4, for \(x = 7\) the computation \(\mathcal{A}\) returns positive integers \(x_1, \ldots, x_4\). Since \(x = 7 > 3 = f(4)\), the statement \(\Psi_4\) guarantees that the computation \(\mathcal{A}\) returns positive integers \(x_1, \ldots, x_4\) for infinitely many positive integers \(x\). By Lemma 5 there are infinitely many primes of the form \(n! + 1\).

Lemma 5. If \(x \in \mathbb{N} \setminus \{0, 1\}\), then \(\text{fact}^{-1}(\Gamma(x)) = x - 1\).

Theorem 4. If the set of primes of the form \(n! + 1\) is infinite, then the statement \(\Psi_4\) is true.

Proof. There exist exactly 10 computations of length 4 that differ from \(\mathcal{H}_4\) and \(\mathcal{A}\), see Table 1. For every such computation \(\mathcal{F}_i\), we determine the set \(S_i\) of all positive integers \(x\) such that the computation \(\mathcal{F}_i\) outputs positive integers \(x_1, \ldots, x_4\) on input \(x\). We omit 10 easy proofs which use Lemmas 2 and 5. The sets \(S_i\) are infinite, see Table 1. This completes the proof.

Table 1: 12 computations of length 4, \(x_1 := x, \ x \in \mathbb{N} \setminus \{0\}\)

Hypothesis. The statements \(\Psi_4, \ldots, \Psi_7\) are true.
Lemma 6. For every positive integer \(x \), the following computation \(\mathcal{B} \)
\[
\begin{align*}
 x_1 & := x \\
 x_2 & := \Gamma(x_1) \\
 x_3 & := \text{rem}(x_2, x_1) \\
 x_4 & := \text{fact}^{-1}(x_3) \\
 x_5 & := \Gamma(x_4) \\
 x_6 & := \text{rem}(x_5, x_4)
\end{align*}
\]
returns positive integers \(x_1, \ldots, x_6 \) if and only if \(x \in \{4\} \cup \{p! + 1 : p \in \mathcal{P}\} \cap \mathcal{P} \).

Proof. For an integer \(i \in \{1, \ldots, 6\} \), let \(B_i \) denote the set of positive integers \(x \) such that the first \(i \) instructions of the computation \(\mathcal{B} \) returns positive integers \(x_1, \ldots, x_i \). Since the computations \(\mathcal{A} \) and \(\mathcal{B} \) have the same first four instructions, the equality \(B_i = A_i \) holds for every \(i \in \{1, \ldots, 4\} \). In particular,
\[
 B_4 = \{4\} \cup (\{n! + 1 : n \in \mathbb{N} \setminus \{0\}\} \cap \mathcal{P})
\]
We show that
\[
 B_6 = \{4\} \cup (\{p! + 1 : p \in \mathcal{P}\} \cap \mathcal{P}) \quad (2)
\]
If \(x = 4 \), then \(x_1, \ldots, x_6 \in \mathbb{N} \setminus \{0\} \). Hence, \(4 \in B_6 \). Let \(x \in \mathcal{P} \), and let \(x = n! + 1 \), where \(n \in \mathbb{N} \setminus \{0\} \). Hence, \(n \neq 4 \). Corollary\[2\] implies that \(x_3 = \text{rem}(\Gamma(x), x) = x - 1 = n! \). Hence, \(x_4 = \text{fact}^{-1}(x_3) = n \) and \(x_5 = \Gamma(x_4) = \Gamma(n) \in \mathbb{N} \setminus \{0\} \). By Lemma\[2\] the term \(x_6 \) (which equals \(\text{rem}(\Gamma(n), n) \)) belongs to \(\mathbb{N} \setminus \{0\} \) if and only if \(n \in \{4\} \cup \mathcal{P} \). This proves equality (2) as \(n \neq 4 \).

Theorem 5. The statement \(\Psi_6 \) implies that for infinitely many primes \(p \) the number \(p! + 1 \) is prime.

Proof. The numbers 11 and 11! + 1 are prime, see \[11\], p. 441 and \[7\]. By Lemma\[6\] for \(x = 11! + 1 \) the computation \(\mathcal{B} \) returns positive integers \(x_1, \ldots, x_6 \). Since \(x = 11! + 1 > 6! = f(6) \), the statement \(\Psi_6 \) guarantees that the computation \(\mathcal{B} \) returns positive integers \(x_1, \ldots, x_6 \) for infinitely many positive integers \(x \). By Lemma\[6\] for infinitely many primes \(p \) the number \(p! + 1 \) is prime.

Lemma 7. For every positive integer \(x \), the following computation \(\mathcal{C} \)
\[
\begin{align*}
 x_1 & := x \\
 x_2 & := \Gamma(x_1) \\
 x_3 & := \Gamma(x_2) \\
 x_4 & := \text{fact}^{-1}(x_3) \\
 x_5 & := \Gamma(x_4) \\
 x_6 & := \text{rem}(x_5, x_4)
\end{align*}
\]
returns positive integers \(x_1, \ldots, x_6 \) if and only if \((x - 1)! - 1 \) is prime.

Proof. For an integer \(i \in \{1, \ldots, 6\} \), let \(C_i \) denote the set of positive integers \(x \) such that the first \(i \) instructions of the computation \(\mathcal{C} \) returns positive integers \(x_1, \ldots, x_i \). If \(x \in \{1, 2, 3\} \), then \(x_6 = 0 \). Therefore, \(C_6 \subseteq \mathbb{N} \setminus \{0, 1, 2, 3\} \). By Lemma\[5\] for every integer \(x \geq 4 \), \(x_4 = (x - 1)! - 1 \), \(x_5 = \Gamma((x - 1)! - 1) \), and \(x_1, \ldots, x_5 \in \mathbb{N} \setminus \{0\} \). By Lemma\[2\] for every integer \(x \geq 4 \),
\[
x_6 = \text{rem}(\Gamma((x - 1)! - 1), (x - 1)! - 1)
\]
belongs to \(\mathbb{N} \setminus \{0\} \) if and only if \((x - 1)! - 1 \in \{4\} \cup \mathcal{P} \). The last condition equivalently expresses that \((x - 1)! - 1 \) is prime as \((x - 1)! - 1 \geq 5 \) for every integer \(x \geq 4 \). Hence,
\[
 C_6 = (\mathbb{N} \setminus \{0, 1, 2, 3\}) \cap \{x \in \mathbb{N} \setminus \{0, 1, 2, 3\} : (x - 1)! - 1 \in \mathcal{P}\} = \{x \in \mathbb{N} \setminus \{0\} : (x - 1)! - 1 \in \mathcal{P}\}
\]

\[\square\]
It is conjectured that there are infinitely many primes of the form \(n! - 1 \), see [1] p. 443 and [6].

Theorem 6. The statement \(\Psi_6 \) implies that there are infinitely many primes of the form \(x! - 1 \).

Proof. The number \((975 - 1)! - 1\) is prime, see [1] p. 441 and [6]. By Lemma [7], for \(x = 975 \) the computation \(\mathcal{C} \) returns positive integers \(x_1, \ldots, x_6 \). Since \(x = 975 > 720 = f(6) \), the statement \(\Psi_6 \) guarantees that the computation \(\mathcal{C} \) returns positive integers \(x_1, \ldots, x_6 \) for infinitely many positive integers \(x \). By Lemma [7] the set \(\{ x \in \mathbb{N} \setminus \{0\} : (x - 1)! - 1 \in \mathcal{P} \} \) is infinite. \(\square \)

Lemma 8. For every positive integer \(x \), the following computation \(\mathcal{D} \)

\[
\begin{align*}
x_1 & := x \\
x_2 & := \Gamma(x_1) \\
x_3 & := \text{rem}(x_2, x_1) \\
x_4 & := \Gamma(x_3) \\
x_5 & := \text{fact}^{-1}(x_4) \\
x_6 & := \Gamma(x_5) \\
x_7 & := \text{rem}(x_6, x_5)
\end{align*}
\]

returns positive integers \(x_1, \ldots, x_7 \) if and only if both \(x \) and \(x - 2 \) are prime.

Proof. For an integer \(i \in \{1, \ldots, 7\} \), let \(D_i \) denote the set of positive integers \(x \) such that the first \(i \) instructions of the computation \(\mathcal{D} \) returns positive integers \(x_1, \ldots, x_i \). If \(x = 1 \), then \(x_3 = 0 \). Hence, \(D_7 \subseteq D_3 \subseteq \mathbb{N} \setminus \{0, 1\} \). If \(x \in \{2, 3, 4\} \), then \(x_7 = 0 \). Therefore,

\[
D_7 \subseteq (\mathbb{N} \setminus \{0, 1\}) \cap (\mathbb{N} \setminus \{0, 2, 3, 4\}) = \mathbb{N} \setminus \{0, 1, 2, 3, 4\}
\]

By Lemma [2], for every integer \(x \geq 5 \), the term \(x_3 \) (which equals \(\text{rem}(\Gamma(x), x) \)) belongs to \(\mathbb{N} \setminus \{0\} \) if and only if \(x \in \mathcal{P} \setminus \{2, 3\} \). By Corollary [2] for every \(x \in \mathcal{P} \setminus \{2, 3\} \), \(x_3 = x - 1 \in \mathbb{N} \setminus \{0, 1, 2, 3\} \). By Lemma [5] for every \(x \in \mathcal{P} \setminus \{2, 3\} \), the terms \(x_4 \) and \(x_5 \) belong to \(\mathbb{N} \setminus \{0\} \) and \(x_5 = x_3 - 1 = x - 2 \). By Lemma [2] for every \(x \in \mathcal{P} \setminus \{2, 3\} \), the term \(x_7 \) (which equals \(\text{rem}(\Gamma(x_5), x_5) \)) belongs to \(\mathbb{N} \setminus \{0\} \) if and only if \(x_5 = x - 2 \in \{4\} \cup \mathcal{P} \). From these facts, we obtain that

\[
D_7 = (\mathbb{N} \setminus \{0, 1, 2, 3, 4\}) \cap (\mathcal{P} \setminus \{2, 3\}) \cap (\{6\} \cup \{p + 2 : p \in \mathcal{P}\}) = \{ p \in \mathcal{P} : p - 2 \in \mathcal{P} \}
\]

\(\square \)

A twin prime is a prime number that is either 2 less or 2 more than another prime number. The twin prime conjecture states that there are infinitely many twin primes, see [3] p. 39.

Theorem 7. The statement \(\Psi_7 \) implies that there are infinitely many twin primes.

Proof. Harvey Dubner proved that the numbers \(459 \cdot 2^{8529} - 1 \) and \(459 \cdot 2^{8529} + 1 \) are prime, see [8] p. 87. By Lemma [8] for \(x = 459 \cdot 2^{8529} + 1 \) the computation \(\mathcal{D} \) returns positive integers \(x_1, \ldots, x_7 \). Since \(x > 720! = f(7) \), the statement \(\Psi_7 \) guarantees that the computation \(\mathcal{D} \) returns positive integers \(x_1, \ldots, x_7 \) for infinitely many positive integers \(x \). By Lemma [8] there are infinitely many twin primes. \(\square \)
References

Apoloniusz Tyszka
Technical Faculty
Hugo Kołłątaj University
Balicka 116B, 30-149 Kraków, Poland
E-mail: rttyszka@cyf-kr.edu.pl