
HAL Id: hal-01614032
https://hal.science/hal-01614032

Submitted on 10 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Chapter 35: Free Simulation Software and Library
Serena Ivaldi, Barkan Ugurlu

To cite this version:
Serena Ivaldi, Barkan Ugurlu. Chapter 35: Free Simulation Software and Library. Humanoid
Robotics: A Reference, Springer, 2018, 978-94-007-6045-5. �hal-01614032�

https://hal.science/hal-01614032
https://hal.archives-ouvertes.fr

Chapter 35: Free Simulation Software and
Library

Barkan Ugurlu and Serena Ivaldi

Abstract With the advent of powerful computation technologies and efficient algo-
rithms, simulators became an important tool in most engineering areas. The field
of humanoid robotics is no exception; there have been numerous simulation tools
developed over the last two decades to foster research and development activities.
With this in mind, this chapter is written to introduce and discuss the current-day
open source simulators that are actively used in the field. Using a developer-based
feedback, we provide an outline regarding the specific features and capabilities of
the open-source simulators, with a special emphasis on how they correspond to re-
cent research trends in humanoid robotics. The discussion is centered around the
contemporary requirements in humanoid simulation technologies with regards to
future of the field.

Key words: dynamic simulation, physics engine, open source software, humanoid
modeling.

1 Introduction

Owing to their anthropomorphic structure, humanoid robots have the potential to
replace humans in a variety of different tasks. The main motivation in pursuing
human-like robots is that numerous man-made tasks are in fact quite hazardous and
risky for human life; therefore, a robotic counterpart might reduce these undesired

Barkan Ugurlu
Dept. of Mechanical Engineering, Ozyegin University, 34794 Istanbul, Turkey
e-mail: barkan.ugurlu@ozyegin.edu.tr

Serena Ivaldi
Inria, Villers-les-Nancy, F-54600, France
& Intelligent Autonomous Systems Lab, TU Darmstadt, Germany
e-mail: serena.ivaldi@inria.fr

1

2 Barkan Ugurlu and Serena Ivaldi

User-speci�c

 Controller
Humanoid

 Model
Environment

 Model

Simulated Sensory

Information and

Robot Response

Command

 Signal
Environmental

 Interaction

Robot and Environment Dynamics

 GUI-based Output

(Animation, data plot)

Simulated Environment

 Response

Fig. 1 Fundamental elements of a humanoid robot simulator.

factors to a technologically possible minimum. With this goal in mind, research
activities on humanoid robotics have sparked in the last two decades.

In order to foster activities in this popular research area, real-time simulators have
been actively used for numerous reasons. Fast and flexible prototyping, optimized
actuator selection, robotics education, fail-safe validation of controllers and trajec-
tory planners can be listed as some of the distinctive advantages, gained through
simulation software. One can simply generate a virtual world in which a simulated
humanoid may realize a series of specific tasks that can be difficult to prototype,
test and realize directly in the physical world. Simulators allow us to complete the
preliminary part of the research before initiating real-world experiments.

Fig. 1 illustrates the fundamental elements regarding a humanoid robot simula-
tion software. The most basic elements are the humanoid model and the environ-
ment model. The humanoid model contains the information that is specific to the
simulated humanoid in question, such as, number of DoFs (Degrees of Freedom),
mechanical parameters, sensors, geometric structure, actuator properties, etc. The
environment model consists of the physical properties of the virtual world. Namely,
they are gravitational acceleration, terrain type and surface structure, environmental
structures (e.g., walls, furniture, tools), extra objects in addition to the simulated
humanoid, ground stiffness and friction.

The simulator should be able to compute all the resultant physical quantities
that occur due to dynamic interactions between the simulated robot and the virtual
environment for a given period of time. Its degree of realism strongly depends on
how the developer accurately characterized the robot-environment dynamics as it is
run to obtain the result of simulation.

Chapter 35: Free Simulation Software and Library 3

Furthermore, a user-specific controller sends command signals to the simulated
humanoid, to make it perform the desired motion pattern. It may also evaluate the
simulated robot response by means of real-time feedback.

Simulated humanoid and environment responses are usually output via a GUI
screen that may include an animation window to observe robot behavior and task-
specific plots to monitor variations of important parameters.

When looking at Fig. 1, one may realize that the simulation design has two intrin-
sic challenges: i) development of computationally fast and efficient numeric solvers,
ii) precise and accurate dynamics algorithms concerning the simulated robot and en-
vironment.

Until the mid 1990s, researchers attempted to overcome the first challenge by
implementing alternative computation techniques like parallel algorithms [1–6]. A
recent benchmark study can be found in [7]. Nevertheless, the fast and ever-growing
pace of semiconductor technology paved the way for highly powerful computation
tools, and therefore, seeking alternative computation techniques has not been a ma-
jor issue.

While advances in computer technology enabled humanoid roboticists to over-
come the first challenge, it is their cumulative research effort that is responsible for
the formulation of precise and accurate dynamics algorithms. A milestone study
was conducted by Luh et al. to address an online computation scheme for a robotic
manipulator [8]. To mention some other major contributions, Featherstone proposed
the articulated body inertia method [9]. Khatib proposed operational space formu-
lation to map joint space dynamics into task space dynamics [10]. Rodriguez made
use of Kalman filters to implement powerful dynamics algorithms [11]. On top of
these prior works, various efficient dynamics algorithms have been developed so far,
for instance, see [12] as an exemplary recent work.

To the best of authors’ knowledge, Walker and Orin composed all the necessary
elements in a unifying framework and developed one of the first robotic simulators
[13]. Researchers followed Walker and Orin’s footsteps and derived floating-base
dynamics [14–16], so as to provide real-time humanoid simulation software, e.g.,
see [17–19].

Dynamic simulation has become a powerful tool for prototyping complex behav-
iors and study new robot control algorithms, especially for humanoid robots. The
robotics teams competing in the DARPA Robotics Challenge made extensive use of
such tools, from simulating contacts and whole-body movements to planning com-
plex manipulations. Many different simulation tools have been developed to meet
the needs of the researchers. More generally, the number of tools for dynamics sim-
ulation has grown substantially in the last years. In this plethora of existing tools, it
is necessary for the humanoid robotics community to have a systematic evaluation
to assist in choosing which of the available tools is best for their research. However,
qualitative and quantitative evaluations are difficult to find.

To this end, Ivaldi et al. investigated the state of the art in dynamics simulation
and reported a user-feedback based survey regarding the use of dynamics simulation
tools in the robotics research community [19]. From the survey, it appears that the

4 Barkan Ugurlu and Serena Ivaldi

major requirements for robotics researchers are better physics engines and open-
source software.

Despite the numerous tools for simulation, the analysis of the user-based feed-
back survey in [19] indicated that there is not a general-purpose simulator which
dominates the others in terms of performance or application. However, for humanoid
robotics, Gazebo [20] emerges as the most popular among the open-source projects,
while V-Rep and Webots [21,22] are the preferred commercial simulators consider-
ing the user-based survey.

With a complementary point of view, this chapter is centered around a developer-
based feedback survey to investigate the state-of-the-art in humanoid robotics simu-
lation and software. It particularly aims to provide an outline concerning the special
features and characteristics of current-day open source simulators with regards to
the present research trends in humanoid robotics.

The chapter is organized as follows. Section 2 addresses the contemporary simu-
lation scenarios and requirements of research on humanoid robotics. Section 3 lists
the prominent open-source simulation packages, with a special emphasis on how
they correspond to the current-day simulation scenarios. Physics engines are suc-
cinctly discussed in section 4 and structurally distinguished from built-in simulation
packages. Finally, the chapter is concluded in section 5.

2 Contemporary Simulation Scenarios and Requirements

In order to portray the current state-of-the-art, the following questions were an-
swered by the simulator developers. The questions were selected in a way so as to
see how the simulators correspond to the current-day simulation requirements.

2.1 Actuator-Related Requirements

1. Can the simulator incorporate actuator dynamics?
In an electrically-actuated robotic system, actuator dynamics represent the terms
that account for rotor inertia, rotor friction, gear ratio, gear efficiency and electri-
cal characteristics. In a hydraulically or pneumatically-actuated robotic system,
more complicated actuator modeling may be required to provide a feasible and
accurate simulation. Some simulators consider the actuator as a perfect torque
source, while others employ exhaustive dynamics model that include actuator
parameters.

2. Can the simulator incorporate passive compliance?
The recent improvements in mechatronics technology allowed the creation of hu-
manoid robots with physically compliant joints. Incorporation of physical com-
pliance introduces numerous advantages [23]; however, the dynamics become

Chapter 35: Free Simulation Software and Library 5

Fig. 2 Simulated HRP-4 humanoid is crumbling through an unstructured and narrow path [24].
Image courtesy of Karim Bouyarmane.

more complicated due the intrinsic passivity. The characterization of passivity
within the dynamics framework poses additional challenges to the simulation.

3. Is actual torque control available?
In some tasks, the robot is required to interact with the environment and exert a
certain amount of force while there may be no specific position reference avail-
able. To this end, torque control mode is crucial for realizing the task. Simulator
packages that surpass the torque control may solely provide position control op-
tion, and thus, cannot be utilized for such tasks.

2.2 Environment-Related Requirements

4. Can the simulator allow the creation of custom environments and terrains?
The ability to create custom terrains and environment is a fundamental feature
that enables testing the performance of the robot controller in balancing, loco-
motion and whole-body movement scenarios. For instance, Fig. 2 displays four
snapshots from a simulation study, in which the HRP-4 robot (from AIST, Japan)
walks forward through a narrow and unstructured path [24].

5. Can the simulator provide a set of different environments?
A set of built-in environment options is a useful asset for simulation packages.
Options may vary from indoor environments, such as furnished houses and hu-
manoid soccer pitches, to outdoor environments, e.g., muddy/rocky areas, sloped
surfaces and template terrains.

6. Can the simulator provide a set of tools and objects in the simulated environ-
ment?

6 Barkan Ugurlu and Serena Ivaldi

Fig. 3 Simulated Atlas humanoid is ejecting a hose from its socket. Image courtesy of DARPA.
(http://www.DARPA.mil/)

With the recent DARPA Challenge1, disaster response applications gained im-
portance. Therefore, humanoid robots are expected to accomplish challenging
tasks that involve the active use of various tools and objects in the simulated en-
vironment, e.g., driving a car, turning a valve, opening/closing doors, wielding a
hose. Fig. 3 displays a simulation scenario in which the humanoid Atlas (from
Boston Dynamics, US) is ejecting a hose from its socket.

7. Can the simulator generate perturbations on the robot?
For robustness tests, one may need to perturb the simulated humanoid robot, for
example with an external force applied to an arbitrary point on the robot. The
ability to generate custom perturbations and add noise is certainly advantageous
to test the robustness of the robot control.

2.3 Modeling-Related Requirements

8. Can the simulator incorporate human model?
The latest developments in human-friendly robotics multiplied the possibilities
of safe and sound interactions between humanoids and humans. Physical human-
humanoid interaction and cooperation is an active research field that is more and
more requiring simulators that can incorporate human models. Human models

1 http://www.theroboticschallenge.org/

Chapter 35: Free Simulation Software and Library 7

Fig. 4 Multiple NAO humanoids are walking in an office environment in V-Rep. In this scenario,
one of the robots’ vision is reflected to the projector. Image courtesy of Marc Freese, Coppelia
Robotics.

can be also useful for ergonomy studies, for example to simulate human efforts
in whole-body movements.

9. Can the simulator simulate multiple humanoids?
The first simulators were usually centered around a single robot model, therefore
they were unfit for studying scenarios in which multiple humanoids need to co-
operate to accomplish a given task, e.g., soccer-playing humanoids. To address
the multi-robot scenarios, most of the recent simulators have the capability of
simultaneously simulating multiple robots. An example is displayed in 4, where
five NAO humanoids are walking in an office environment.

10. Can the simulator incorporate actual humanoid geometry?
The actual robot geometry may not be an essential factor in dynamic simula-
tion of a humanoid, as long as dynamic and kinematic parameters are accurately
included. However, one on one characterization of robot-specific humanoid ge-
ometry may be required when considering collisions with the environment. If we
give an example, Fig. 3 shows a simulation in which the simulator includes the
exact robot geometry. On the contrary, Fig. 5 displays a biped robot with its sim-
ulation model in which the actual geometry could not be characterized.

11. Can the simulator enable imports from CAD software?
In order to obtain a fast and accurate simulation model, recent simulation pack-

8 Barkan Ugurlu and Serena Ivaldi

(a) (b)

Fig. 5 a) The bipedal robot MARI-3, b) MARI-3’s ROCOS model [25]. The actual robot geometry
is not characterized; however, the simulation model is able to represent locomotion behavior of
MARI-3.

ages allow direct imports from CAD software. This feature not only shortens the
exhaustive model building process, but also enables the direct insertion of robot-
specific properties, such as link parameters, robot geometry, and joint structure.

12. Does the simulator provide common humanoid models?
In recent years, the use of common hardware platforms gained importance in
the field. Atlas, Hubo, Darwin-OP, Nao and HRP-4 maybe listed in this category
since they are used as test platforms in several laboratories across the world.
With this in mind, most simulators are already equipped with the built-in models
of common humanoids. For instance, Fig. 3 and Fig. 6 display the simulated At-
las and Hubo robots in Gazebo and K’lampt environments, respectively.

2.4 Interfacing and Computation-Related Requirements

13. Can the simulator run multiple simulations sequentially?
In machine learning-based robot control, multiple experiments should be sequen-
tially conducted. It is favorable for a simulator to automate this process, so as to
prevent exhaustive and time-consuming manual tasks.

14. Does the simulator have a MATLAB/Simulink Interface?
MATLAB/Simulink provides a flexible and convenient environment in synthesiz-
ing controllers, due to its extended library, graphical editor and efficient solvers.
Therefore, integration of a MATLAB/Simulink interface enables users to incor-

Chapter 35: Free Simulation Software and Library 9

Fig. 6 The humanoid robot Hubo is one of the template models in K’lampt [26]. In this study,
both the simulated robot and actual robot simultaneously perform balancing on a single leg. The
accuracy of the simulator is verified by comparing the actual sensory data and simulated sensory
data. Image courtesy of Kris Hauser.

porate these advantages for humanoid robotic simulations.

15. Does the simulator have a ROS Interface?
ROS (Robot Operating System) is the most common open-source meta-operating
system for robotics, providing numerous tools and libraries for robotic applica-
tions. Due to this fact, simulators often provide a ROS interface to benefit the
computational advantages it presents.

3 Open Source Humanoid Robot Simulators

There is a great diversity of open source robot simulators. In [19], Ivaldi et al. report
more than 40 active software projects. This section will provide an overview of the
most important open-source simulators that are relevant for humanoid robotics.
Commercial simulators that allows certain groups (academics, students) to use com-
plete simulation features are also included. The following list follows no specific
order.

ROCOS (Robot Control Simulator) is a dynamic simulator, developed by Y. Fu-
jimoto and A. Kawamura2. It includes models of friction and collision between the

2 http://www.kawalab.dnj.ynu.ac.jp

10 Barkan Ugurlu and Serena Ivaldi

robot legs and the floor, and it is mainly used for research in multi-modal locomo-
tion, e.g., running, jumping and walking [18].

OpenHRP3 (Open Architecture Human-centered Robotics Platform version 3)
is an integrated software platform for robot simulations. It was developed in Ad-
vanced Institute of Science and Technology (AIST), Japan3. It consists of several
modules, to name a few, a dynamics simulator, a control interface with the robot, a
collision detector and several GUI interfaces. It can be used for a seamless simula-
tion and control of the robot [27–29].

Robotran is a software that generates symbolic models of multi-body systems,
which can be analyzed and simulated in Matlab and Simulink4. It is developed by
the Center for Research in Mechatronics, Université Catholique de Louvain [30].

Gazebo is a multi-robot simulator for outdoor environments, developed by the
Open-Source Robotics Foundation [20]5. It is the official software tool for the
DARPA Robotics Challenge [31]. It supports multiple physics engines (ODE, Bul-
let, DART) and, thanks to its modular and plugin-based structure, can be easily ex-
tended with new features. For example, a special plugin (gazebo yarp plugin)
has been developed for the simulation of humanoid robots based on YARP, namely
iCub and COMAN [32]. In particular, this development is gradually replacing the
previous iCub simulator, iCub SIM, that is based on ODE and is used for prototyp-
ing behaviors thanks to its seamless interface (the same code runs on the simulator
and on the real robot)6.

Morse is a generic simulator for academic research, used to simulate small and
large indoor and outdoor environments with multiple robots7. It provides interfaces
for different mobile robots (not legged) such as the PR2 [33]8.

Klamp’t (Kris’ Locomotion and Manipulation Planning Toolbox) is an open
source, cross-platform software package for modeling, simulating, and planning for
complex robots, particularly for manipulation and locomotion tasks9. It has been
used by members of Team DRC-Hubo in the DARPA Robotics Challenge. The sim-
ulator allows the robust rigid body simulation with triangle mesh / triangle mesh
collisions. Furthermore, actual objects can be captured using a Kinect sensor and
directly integrated to the simulator [26]. In Fig. 6, a simulated Hubo humanoid in
Klamp’t environment can be observed.

V-Rep is a simulator with multi-robot simulation capability, produced by Cop-
pelia Robotics10. It provides an integrated development environment that is based
on a distributed control architecture. Each object/model can be separately controlled
via an embedded script, a plug-in, a ROS node, a remote API client, or a user-based

3 http://www.openrtp.jp/openhrp3/jp/
4 http://www.robotran.be/
5 www.gazebosim.org
6 http://eris.liralab.it/wiki/Simulator README
7 http://morse-simulator.github.io/
8 https://github.com/morse-simulator/morse
9 http://klampt.org
10 http://www.coppeliarobotics.com

Chapter 35: Free Simulation Software and Library 11

Fig. 7 The SL software is configured both as a real-time robot controller and as a simulator for the
Hydraulic Quadruped HyQ. Image courtesy of Claudio Semini, Istituto Italiano di Tecnologia.

input. Similar to Gazebo, it supports multiple physics engines (ODE, Bullet, Vor-
tex). It is not open-source but it has an academic license that makes it free for use in
research and academia [21,34]. See Fig. 4, as an example from V-Rep environment,
where multiple NAO humanoids are walking in an office environment.

SL is a simulation and control library developed mainly by S. Schaal and his
research group. It was primarily developed as a real-time robot controller, and later
augmented to be a physical simulator11. Therefore, one can compose a script to
simulate robot behavior and then directly use the same code for real-time experi-
mentation [35, 36]. Fig. 7 displays a scene in which HyQ is being controlled via SL
software.

OpenRave is an environment for simulating motion planning algorithms for
robotics. It contains several models of industrial robots and targets robotics automa-
tion12. It provides many command line tools to simulate robots and motion planners.
The run-time core is sufficiently compact to be used within controllers [37, 38].

RBDL (Rigid Body Dynamics Library) is a dynamics library developed by M.
Felis, containing efficient implementations of Featherstone’s rigid body dynamics
algorithms from his book [39]13. It can load robot models from Lua scripts or URDF
files.

11 https://www-clmc.usc.edu/s̃schaal/pub/RSS-SL.key.pdf
12 http://openrave.org/
13 http://rbdl.bitbucket.org

12 Barkan Ugurlu and Serena Ivaldi

Drake is not only a simulator but a toolbox for analyzing the dynamics of robots
and building control systems for them14. It is maintained by R. Tedrake and his
Robot Locomotion Group at the MIT Computer Science and Artificial Intelligence
Lab. It has been used for the DARPA Robotics Challenge on their Atlas robot [40].

The NTRT Simulator (NASA Tensegrity Robotics toolkit) is a tensegrity-
specific simulator built to run on top of the Bullet Physics Engine15, version 2.82.
It can simulate a wide range of multi-body systems, in particular, compliant sys-
tems [41].

SCS (Simulation Construction Set) is a Java library for creating simulators 16,
constructed at the Florida Institute for Human and Machine Cognition (IHMC),
US [42]. It makes use of the Featherstone’s algorithms for rigid body dynamics.

OpenSim is a toolkit for musculoskeletal modeling and dynamic simulation of
movement, developed at Stanford University and supported by the US National In-
stitute of Health and by DARPA17. It is freely available, open-source, and extensible
through user plug-ins. The physics engine of this project is SimBody [43].

Moby is a multi-rigid body dynamics simulator developed by the Positronics
Lab at George Washington University18. It supports the simulation of deformable
bodies, together with their interactions to rigid/articulated bodies) [44].

In order to provide a comprehensive review on these simulators, a survey that
included the questions in section 2 was constructed. Inputs of the developers can be
viewed in Tables 1-4. Particularly, Table 1 displays the simulators’ actuator simu-
lation capabilities. Table 2 shows the way they incorporate environment model and
objects in the simulated environment. Table 3 depicts their human and humanoid
modeling properties Table 4 reveals their interfacing features.

4 Open Source Physics Engines

Fig. 8 presents a descriptive classification of the dynamics simulation tools. We can
distinguish between physics engines (e.g. ODE, Bullet) and more complex software,
that we call here ”system simulators” (e.g. Gazebo, V-Rep, iCub SIM) that are based
on a physics engine.

System simulators make use of physics engines to simulate the dynamics of the
bodies in the environment, but also provide additional features, such as sensor sim-
ulation, model editors, GUI interfaces and interaction with the operator. In some
cases they also provide specific interfaces that facilitate seamless simulation and
control of the robot and its virtual character. For example, they emulate the driver
interfaces of the real robot in such a way that code running for the simulators can be

14 http://drake.mit.edu
15 https://github.com/NASA-Tensegrity-Robotics-Toolkit
16 https://ihmcrobotics.github.io
17 http://opensim.stanford.edu
18 https://github.com/PositronicsLab/Moby

Chapter 35: Free Simulation Software and Library 13

Tool Incorporates actuator dynam-
ics

Simulates passive compliance Has torque control

ROCOS × ×
OpenHRP3 ×
Robotran × × ×
Gazebo ×
Morse ×
Klamp’t × × ×
V-Rep × × ×
Gazebo + YARP ×
SL × × ×
OpenRAVE ×
RBDL × × ×
Drake × × ×
iCub SIM × ×
NASA Tens.RT × × ×
SCS × × ×
OpenSim × × ×
Moby × × ×

Table 1 Actuation simulation capabilities.

Tool Can create new envi-
ronments and terrains

Provides a set of differ-
ent environments

Provides tools in the
environment

Can generate perturba-
tions on the robot

ROCOS ×
OpenHRP3 × ×
Robotran ×
Gazebo × × ×
Morse × × × ×
Klamp’t × ×
V-Rep × × × ×
Gazebo + YARP × × × ×
SL × × × ×
OpenRAVE × ×
RBDL × ×
Drake × × × ×
iCub SIM ×
NASA Tens. RT × ×
SCS × ×
OpenSim × × × ×
Moby × ×
Table 2 Simulation of the environment.

14 Barkan Ugurlu and Serena Ivaldi

Tool Incorporates
human model

Simulate multiple
humanoids

Includes robot ge-
ometry

Can import from
CAD

Includes common
humanoid models

ROCOS
OpenHRP3 ×
Robotran ×
Gazebo × ×
Morse × × × ×
Klamp’t × × × ×
V-Rep × × × ×
Gazebo + YARP × × × ×
SL × × × ×
OpenRAVE × ×
RBDL ×
Drake × × × ×
iCub SIM × ×
NASA Tens. RT ×
SCS × × × ×
OpenSim × × ×
Moby × × × ×
Table 3 Human and humanoid models.

Tool Can run multiple simulations
in sequence

Has a Matlab/Simulink inter-
face

Has a ROS interface

ROCOS
OpenHRP3 ×
Robotran × ×
Gazebo ×
Morse × ×
Klamp’t × ×
V-Rep × × ×
Gazebo + YARP × ×
SL × × ×
OpenRAVE × × ×
RBDL × ×
Drake × × ×
iCub SIM ×
NASA Tens. RT ×
SCS ×
OpenSim × ×
Moby ×
Table 4 Simulation interfaces.

Chapter 35: Free Simulation Software and Library 15

physics engines system simulators

simulation tools

computations in
joint coord.

computations in
Cartesian coord.

(joints as constraints)

seamless robot
simulation/control

(dedicated)

generic

ODE
Bullet < v. 2.82

MuJoCo
XDE

Bullet >= v.2.82 OpenHRP
iCub_SIM

Gazebo + iCub_plugin

Robotran
Gazebo
V-Rep

used in

Fig. 8 From [19]. A practical classification of the simulation tools.

switched to the robot at no cost. This makes them in practice the ”official” tools for
some platforms; for example, OpenHRP for the HRP robot series [29], SL simulator
for Sarcos humanoid [35], iCub SIM [45] and the more recent Gazebo plugin for
iCub [32].

Physics engines can be discriminated by the way they represent rigid-body struc-
tures, see Fig. 8. On one hand, we have software tools like ODE which represents
joints as constraints between bodies; on the other hand, we have software like XDE,
OpenHRP, which make use of parametrized rigid-body dynamics representations,
where joints are simply part of the robotics structure.

The second group benefits from the straightforward computation of quantities
that recur in robot control, such as Jacobian and joint-space mass matrices and other
physical quantities.

The critical difference between the two classes is in the way contact forces are
computed. The first class considers contacts forces as bilateral/unilateral constraints,
which are added to the list of constraints used to describe the joints; then the same
solver is used to find the forces for the global system, including contacts and joints.
In the second class, on the contrary, only constraints from the contacts are solved,
which notably simplifies the problem. In general, finding the correct contact forces
can be burdensome. Contact modeling and simulation is an area of research on its
own, which is actively explored improving contact models [26,46] and solvers [47].

The most prominent physics engines may be listed as ODE, PhysX, Bullet,
DART.

ODE19 (Open Dynamics Engine) is an open-source library for simulating rigid
body dynamics, with a built-in collision detector. It is one of the most known multi-
purpose rigid-body physics engines, used in many computer games and embedded
in several simulation tools.

PhysX20 is an engine developed by NVIDIA for enabling real-time physics in
video-games. It is optimized for GPU (Graphics Processing Unit) computations.

19 http://www.ode.org/
20 https://developer.nvidia.com/physx-sdk

16 Barkan Ugurlu and Serena Ivaldi

Bullet21 is another open-source physics library, mostly used for computer graph-
ics and animation. As ODE and NVidia PhysX, it was a game-oriented engine,
that enforced joints constraints numerically. The latest release (v.2.82) also sup-
ports Featherstone’s Articulated Body Algorithm [48] and a Mixed Linear Com-
plementarity Problem. These make it more suitable for robotics applications, since
dynamics is solved in joint coordinates and contacts resolution is more stable.

DART22 (Dynamic Animation and Robotics Toolkit) is another open-source
physics engine, used for robotics and computer graphics. For accuracy, it utilizes
Lagrange’s equations derived from D’Alembert’s principle to describe the dynam-
ics of motion.

SimBody23 is an open-source C++ API that implements Featherstone’s algo-
rithms for rigid body mechanics, with the support of different contact models. The
supported contact models are one of the interesting features of SimBody; one can
model contacts through Hertz contact theory, the elastic foundation model, and can
consider Stribeck friction and Hunt and Crossley dissipation models [49].

A quantitative comparison among all simulators is very difficult to obtain, as
not all simulators may necessarily have the same features of parameters. However,
an interesting comparison among physics engine was recently presented by Erez et
al. [50], where the authors compared the performances of MuJoCo24 with Bullet,
Havok, ODE and PhysX. According to their study, MuJoCo, which is optimized for
robot simulation, outperforms the other engines. We report, for the interested reader,
the results of their comparisons on a simulated humanoid robot in Fig. 9: from left to
right, the first image is the simulated humanoid in contact with the floor, the second
image is the plot of the raw speed as thousands of evaluations per second for each
engine, while the third image is the plot of speed-accuracy trade-offs. More details
can be found in [50].

5 Concluding Remarks

In this chapter, we provide an outline for the current state of the art in open source
humanoid simulation software libraries, with a special emphasis on the simulation
requirements for the main ongoing researches. The discussion is centered around a
survey that was answered by the developers, where we investigated how the simu-
lators address the needs of recent research trends in the field. Based on the survey
inputs, we summarized the listed simulators’ special features and capabilities. In
addition, a succinct review was addressed regarding the open source physics en-
gines that are at the basis of the current simulators and may be used to build new
simulation software.

21 http://bulletphysics.org/wordpress/
22 http://dartsim.github.io/
23 https://simtk.org/home/simbody/
24 http://www.mujoco.org/

Chapter 35: Free Simulation Software and Library 17

0 5 10 15
thousand evaluations/sec (kHz)

PhysX: 3.8

ODE: 9.1

MuJoCo Euler: 14.5

Havok: 5

Bullet: 4.8

humanoid

a
c
c
u
ra
c
y
=
⇒

speed =⇒

Bullet

Havok

MuJoCo Euler

MuJoCo RK

ODE

PhysX

10
−1

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

d
is

cr
ep

an
cy

 (
m

et
er

s)

 x faster than realtime

 humanoid

Fig. 9 Image courtesy of Tom Erez, Yuval Tassa and Emanuel Todorov [50]. The first image
illustrates the simulated humanoid. The second image shows raw speed as thousands of evalu-
ations per second for each engine. The third image shows the speed-accuracy trade-off in terms
of our consistency measure.

This chapter does not discuss how close to reality is a simulator. Such an assess-
ment should require a detailed and exhaustive study using the real humanoid robots
and their simulated models, to assess the so called reality gap. Comparing the ac-
tual and simulated sensory output, it is possible to assess the reality gap for a given
simulator. For instance, researchers performed simultaneous one-legged balancing
experiments on a real Hubo humanoid and its Klamp’t model; see Fig. 6. Although
the aforementioned study may be enriched with the addition of more dynamic mo-
tion patterns (walking, jumping, pushing) for further investigation, it could be taken
as a basis for other simulator assessment studies.

The field of simulation software development is quite active and vibrant. More
often than not, a new simulator software is presented to the community or additional
improvements are announced on the existing ones. Keeping this in mind, this chapter
is written to capture the current-day simulation requirements, with a glimpse on the
possible future trends in the field.

Indeed, current simulators are quite advanced; however there is room for fur-
ther improvement in simulating complex systems. For instance, soft actuators, de-
formable materials and generally soft-bodied robots are still difficult to simulate
[51]. The reality gap for soft systems and actuators being larger, it could be in-
teresting to compensate the inaccurate simulation with better control and machine
learning techniques; e.g., designing controllers in simulation that are robust to dif-
ferences to the real robot [52], or learning the difference between simulation and
reality [53], that was recently proven effective also for damaged robots.

Another point to improve for simulators is to increase computational efficiency,
such that they can be used in real-time for remote control applications or in model-
predictive control schemes. This a crucial feature that is particularly important for
humanoid robots performing complex whole-body dynamic movements [54].

Currently, it is difficult to single out a certain simulator software that is capable
of addressing all the requirements. Despite this fact, we strongly believe that this
chapter provides guidance to the interested researcher in choosing the right simula-
tor package that suits to his/her specific research objectives.

18 Barkan Ugurlu and Serena Ivaldi

References

1. B. Lint and T. Agerwala. Communication issues in the design and analysis of parallel algo-
rithms. IEEE Trans. on Software Engineering, SE-7(2):174–188, 1981.

2. C. S. G. Lee and P. R. Chang. Efficient parallel algorithms for robot forward dynamics com-
putation. IEEE Trans. on Systems, Man, and Cybernetics, 18(2):238–251, 1988.

3. A. Fijany and A. Bejczy. A class of parallel algorithms for computation of the manipulator
inertia matrix. IEEE Trans. on Robotics and Automation, 5(2):600–615, 1989.

4. S. McMillan, D. E. Orin, and P. Sadayappan. Toward super-real-time simulation of robotic
mechanisms using a parallel integration method. IEEE Trans. on Systems, Man, and Cyber-
netics, 22(2):384–391, 1992.

5. A. Fijany, I. Sharf, and G. M. T. D’Eleuterio. Parallel o (log n) algorithms for computation
of manipulator forward dynamics. IEEE Trans. on Robotics and Automation, 11(3):389–400,
1989.

6. A. Aghili. A unified approach for inverse and direct dynamics of constrained multibody sys-
tems based on linear projection operator: applications to control and simulation. IEEE Trans.
on Robotics, 21(5):834–849, 2005.

7. K. Yamane and Y. Nakamura. Comparative study on serial and parallel forward dynamics
algorithms for kinematic chains. Int. Journal of Robotics Research, 28(5):622–629, 2009.

8. J. Y. S. Luh, M. W. Walker, and R. P. Paul. On-line computation scheme for mechanical manip-
ulator. Journal of Dynamic Systems, Measurement, and Control ASME Trans., 102(2):69–76,
1988.

9. R. Featherstone. The calculation of robot dynamics using articulated-body inertias. Int. Jour-
nal of Robotics Research, 2(1):13–30, 1983.

10. O. Khatib. A unified approach for motion and force control of robot manipulators: The oper-
ational space formulation. IEEE Trans. on Robotics and Automation, 3(1):43–53, 1988.

11. G. Rodriguez. Kalman filtering, smoothing, and recursive robot arm forward and inverse
dynamics. IEEE Trans. on Robotics and Automation, 3(6):624–639, 1988.

12. R. Featherstone. A beginner’s guide to 6-d vectors (part 1). IEEE Robotics and Automation
Magazine, 17(3):83–94, 2010.

13. M. W. Walker and D. E. Orin. Efficient dynamic computer simulation of robotics mechanisms.
Journal of Dynamic Systems, Measurement, and Control ASME Trans., 104(2):205–211, 1988.

14. Y. Fujimoto and A. Kawamura. Robust biped walking with force interaction control between
foot and ground. In Proc. IEEE Intl Conf. on Robotics and Automation (ICRA), pages 2030–
2035, Leuven, Belgium, May 1998.

15. J. Nakanishi, M. Mistry, and S. Schaal. Inverse dynamics control with floating base and
constraints. In Proc. IEEE Intl. Conf. on Robotics and Automation(ICRA), pages 1942–1947,
Rome, Italy, May 2007.

16. M. Mistry, J. Buchli, and S. Schaal. Inverse dynamics control of floating base systems using
orthogonal decomposition. In Proc. IEEE Intl. Conf. on Robotics and Automation(ICRA),
pages 3406–3412, Anchorage, US, May 2010.

17. Y. Nakamura, H. Hirukawa, K. Yamane, S. Kajta, K. Fujiwara, F. Kanehiro, F. Nagashima,
Y. Murase, and M. Inaba. Humanoid robot simulator for the meti hrp project. Robotics and
Autonomous Systems, 37(2-3):101–114, 2001.

18. Y. Fujimoto and A. Kawamura. Simulation of an autonomous biped walking robot including
environmental force interaction. IEEE Robotics and Automation Magazine, 5(2):33–42, 1998.

19. S. Ivaldi, J. Peters, V. Padois, and F. Nori. Tools for simulating humanoid robot dynamics:
A survey based on user feedback. In Proc. IEEE Intl. Conf. on Humanoid Robotics, pages
842–849, Madrid, Spain, December 2014.

20. N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-source multi-robot
simulator. In Proc. IEEE/RSJ Intl Conf. on Intelligent Robots and Systems (IROS), pages
2149–2154, Sendai, Japan, September 2004.

21. E. Rohmer, S. P. N. Singh, and M. Freese. V-rep: A versatile and scalable robot simulation
framework. In Proc. IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), pages
1321–1326, Tokyo, Japan, November 2013.

Chapter 35: Free Simulation Software and Library 19

22. O. Michel. Webots: Professional mobile robot simulation. Journal of Advanced Robotics
Systems, 1(1):39–42, 2004.

23. B. Ugurlu, J. A. Saglia, N. G. Tsagarakis, S. Morfey, and D. G. Caldwell. Bipedal hopping
pattern generation for passively compliant humanoids: Exploiting the resonance. IEEE Trans-
actions on Industrial Electronics, 61(10):5431–5443, 2014.

24. K. Bouyarmane, J. Vaillant, F. Keith, and A. Kheddar. Exploring humanoid robot locomotion
capabilities in virtual disaster response scenarios. In Proc. IEEE Intl. Conf. on Humanoid
Robotics, pages 337–342, Osaka, Japan, December 2012.

25. B. Ugurlu and A. Kawamura. A unified control frame for stable bipedal walking. In Proc.
IEEE Intl. Conf. on Industrial Electronics and Control(IECON), pages 4167–4172, Porto,
Portugal, November 2009.

26. K. Hauser. Fast interpolation and time-optimization with contact. Int. Journal of Robotics
Research, 33(9):1231–1250, 2014.

27. F. Kanehiro, H. Hirukawa, and S. Kajita. Openhrp: Open architecture humanoid robotics
platform. Int. Journal of Robotics Research, 23(2):155–165, 2004.

28. K. Yamane and Y. Nakamura. Parallel o(logn) algorithm for dynamics simulation of humanoid
robots. In Proc. IEEE Intl Conf. on Humanoid Robotics, pages 554–559, Genoa, Italy, De-
cember 2006.

29. S. Nakaoka, S. Hattori, F. Kanehiro, S. Kajita, and H. Hirukawa. Constraint-based dynam-
ics simulator for humanoid robots with shock absorbing mechanisms. In Proc. IEEE/RSJ
Intl Conf. on Intelligent Robots and Systems (IROS), pages 3641–3647, San Diego, CA, US,
October 2007.

30. P. Fisette and J. C. Samin. Robotran: Symbolic generation of multi-body system dynamic
equations. Advanced Multibody System Dynamics, 20:373–378, 1993.

31. C. E. Aguero, N. Koenig, H. Boyer I. Chen, S. Peters, J. Hsu, B. Gerkey, S. Paepcke, J. L.
Rivero, J. Manzo, E. Krotkov, and G. Pratt. Inside the virtual robotics challenge: Simulating
real-time robotic disaster response. IEEE Trans. on Automation Science and Engineering,
12(2):494–506, 2015.

32. E. Mingo Hoffman, S. Traversaro, A. Rocchi, M. Ferrati, A. Settimi, F. Romano, L. Natale,
A. Bicchi, F. Nori, and N. Tsagarakis. Yarp based plugins for gazebo simulator. In Modelling
and Simulation for Autonomous Systems Workshop (MESAS), 2014.

33. G. Echeverria, S. Lemaignan, A. Degroote, S. Lacroix, M. Karg, P. Koch, C. Lesire, and
S. Stinckwich. Simulating complex robotic scenarios with morse. In Simulation, Modeling,
and Programming for Autonomous Robots (SIMPAR), pages 197–208, 2012.

34. M. Freese, S. Singh, A. Degroote, S. Ozaki, and N. Matsuhira. Virtual robot experimentation
platform v-rep: A versatile 3d robot simulator. In Simulation, Modeling, and Programming
for Autonomous Robots (SIMPAR), pages 51–62, 2010.

35. S. Schaal. The SL simulation and real-time control software package. Technical report, Univ.
of Southern California, California, US, 2001.

36. A. Billard, Y. Epars, S. Calinon, S. Schaal, and G. Cheng. Discovering optimal imitation
strategies. Robotics and Autonomous Systems, 47(2-3):69–77, 2004.

37. R. Diankov and J. Kuffner. OpenRAVE: A Planning Architecture for Autonomous Robotics.
Technical report, Robotics Institute, Carnegie Mellon University, Pittsburgh, US, 2008.

38. Q.-C Pham and Y. Nakamura. Time-optimal path parameterization for critically dynamic
motions of humanoid robots. In Proc. IEEE Intl. Conf. on Humanoid Robotics, pages 165–
170, Osaka, Japan, November 2012.

39. Roy Featherstone. Rigid Body Dynamics Algorithms. Springer-Verlag New York, Inc., Secau-
cus, NJ, USA, 2007.

40. R. Tedrake. Drake - A planning, control, and analysis toolbox for nonlinear dynamical sys-
tems. Technical report, Massachusetts Institute of Technology, Massachusetts, US, 2014.

41. K. Caluwaerts, J. Despraz, A. Iscen, A. P. Sabelhaus, J. Bruce, B. Schrauwen, and V. Sun-
Spiral. Design and control of compliant tensegrity robots through simulation and hardware
validation. Journal of the Royal Society Interface, 11(98):1742–1757, 2014.

20 Barkan Ugurlu and Serena Ivaldi

42. T. Koolen, S. Bertrand, G. Thomas, T. Wu, J. Smith, J. Englsberger, and J. Pratt. Design of
a momentum-based control framework and application to the humanoid robot atlas. Interna-
tional Journal of Humanoid Robotics, 13(1):1650007–34, 2016.

43. S. L. Delp, F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and
D. G. Thelen. Opensim: Open-source software to create and analyze dynamic simulations of
movement. IEEE Trans. on Biomedical Engineering, 54(11):1940–1950, 2007.

44. E. Drumwright. A fast and stable penalty method for rigid body simulation. IEEE Trans. on
Visualization and Computer Graphics, 14(1):231–240, 2008.

45. V. Tikhanoff, A. Cangelosi, and G. Metta. Integration of speech and action in humanoid robots:
icub simulation experiments. IEEE Trans. on Autonomous Mental Development, 3(1):17–29,
2010.

46. E. Drumwright and D.A. Shell. Extensive analysis of linear complementarity problem (lcp)
solver performance on randomly generated rigid body contact problems. In IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), pages 5034–5039, 2012.

47. E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In
Proc. IEEE Intl. Conf. on Intelligent Robots and Systems (IROS), pages 5026–5033, Algarve,
Portugal, October 2012.

48. R. Featherstone and D. E. Orin. Handbook of Robotics, chapter Dynamics, pages 35–65. B.
Siciliano and O. Khatib Eds.,, 2008.

49. C. Canudas de Wit, H. Olsson, K. J. Astrom, and P. Lischinsky. A new model for control of
systems with friction. IEEE Trans. on Automatic Control, 40(3):419–425, 1995.

50. T. Erez, Y. Tassa, and E. Todorov. Simulation tools for model-based robotics: comparison of
bullet, havok, mujoco, ode and physx. In Proc. IEEE Intl Conf. on Robotics and Automation
(ICRA), May 2015.

51. Frederick Largilliere, Valerian Verona, Eulalie Coevoet, Mario Sanz-Lopez, Jeremie Dequidt,
and Christian Duriez. Real-time Control of Soft-Robots using Asynchronous Finite Element
Modeling. In ICRA 2015, page 6, SEATTLE, United States, 2015.

52. Andrea Del Prete and Nicolas Mansard. Robustness to Joint-Torque Tracking Errors in Task-
Space Inverse Dynamics. IEEE Transaction on Robotics, 2016.

53. A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret. Robots that can adapt like animals. Nature,
521:503–507, 2015.

54. Serena Ivaldi, Jan Babič, Michael Mistry, and Robin Murphy. Special issue on whole-body
control of contacts and dynamics for humanoid robots. Autonomous Robots, 40(3):425–428,
2016.

