
HAL Id: hal-01613679
https://hal.science/hal-01613679v3

Submitted on 31 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Regularization effects of a noise propagating through a
chain of differential equations: an almost sharp result

Paul-Eric Chaudru de Raynal, Stephane Menozzi

To cite this version:
Paul-Eric Chaudru de Raynal, Stephane Menozzi. Regularization effects of a noise propagating
through a chain of differential equations: an almost sharp result. Transactions of the American
Mathematical Society, 2020, �10.1090/tran/7947�. �hal-01613679v3�

https://hal.science/hal-01613679v3
https://hal.archives-ouvertes.fr


REGULARIZATION EFFECTS OF A NOISE PROPAGATING

THROUGH A CHAIN OF DIFFERENTIAL EQUATIONS: AN

ALMOST SHARP RESULT

PAUL-ERIC CHAUDRU DE RAYNAL AND STÉPHANE MENOZZI

Abstract. We investigate the effects of the propagation of a non-degenerate
Brownian noise through a chain of deterministic differential equations whose

coefficients are rough and satisfy a weak like Hörmander structure (i.e. a non-

degeneracy condition w.r.t. the components which transmit the noise). In
particular we characterize, through suitable counter-examples, almost sharp

regularity exponents that ensure that weak well posedness holds for the as-

sociated SDE. As a by-product of our approach, we also derive some density
estimates of Krylov type for the weak solutions of the considered SDEs.

1. Introduction and Main Results

In this work we are interested in studying the weak regularization effects of a
Brownian noise propagating through a chain of n d-dimensional oscillators. Namely,
we establish weak uniqueness for Stochastic Differential Equations (SDEs in short)
of the following type:

(1.1)

dX1
t = F1(t,X1

t , . . . , X
n
t )dt+ σ(t,X1

t , . . . , X
n
t )dWt,

dX2
t = F2(t,X1

t , . . . , X
n
t )dt,

dX3
t = F3(t,X2

t , . . . , X
n
t )dt,

...
dXn

t = Fn(t,Xn−1
t , Xn

t )dt.

t ≥ 0.

In the above equation, (Wt)t≥0 stands for a d-dimensional Brownian motion and
the components (Xi

t)i∈[[1,n]] are Rd-valued as well. We suppose that the (Fi)i∈[[2,n]]

satisfy a kind of weak Hörmander condition, i.e. the matrices
(
Dxi−1

Fi(t, ·)
)
i∈[[2,n]]

have full rank. However, the coefficients (Fi)i∈[[2,n]] can be rather rough in their
other entries. Namely, Hölder continuous or even in a suitable Lq − Lp space for
F1, where the parameter q relates to the time integrability and p to the spatial one.
We assume as well that the diffusion coefficient σ is bounded from above and below
and spatially Hölder continuous.

We emphasize that, under these conditions, the Stroock and Varadhan Theory for
weak uniqueness does not apply. This especially comes from the specific degenerate
framework considered here: the noise in the ith component only comes from the

Received by the editors October 9, 2017 and, in revised form, May 1, 2021.

2020 Mathematics Subject Classification. Primary: 60H10, 34F05; Secondary: 60H30.
Key words and phrases. regularization by noise, martingale problem, Kolmogorov hypoelliptic

PDEs, density estimates, parametrix.
The article was prepared within the framework of the HSE University Basic Research Program.

1



2 PAUL-ERIC CHAUDRU DE RAYNAL AND STÉPHANE MENOZZI

(i − 1)th component, 2 ≤ i ≤ n, through the non-degeneracy of the gradients(
Dxi−1Fi(t, ·)

)
i∈[[2,n]]

(components which transmit the noise). We nevertheless show

that the system is well posed, in a weak sense, when the drift of the first component
is Hölder continuous or bounded in supremum norm or in suitable Lq − Lp norm
and the drift functions of the other components are only Hölder continuous with
respect to the variables that do not transmit the noise. Denoting by (βji )2≤i≤j≤n
the Hölder index of the drift of the ith component w.r.t. the jth variable we assume
βji ∈

(
[(2i− 3)/(2j− 1)], 1

]
. We also show that these thresholds are (almost) sharp

thanks to appropriate counter examples.
Also, as a by-product of our analysis, we prove that the density of the unique

weak solution of the system satisfies Krylov-like estimates.

Weak and strong regularization by noise. Strong and weak well posedness of
stochastic systems outside the classical Cauchy-Lipschitz framework have motivated
a lot of works since the last past four decades1.

Concerning the strong well posedness, the first result in that direction is due to
Zvonkin [Zvo74] who showed that one-dimensional non degenerate Brownian driven
stochastic differential equations with bounded and measurable drift and Hölder
continuous diffusion matrix are well posed for Hölder index strictly greater than
1/2. Then, Veretennikov [Ver80] generalized the result to the multidimensional
case for a Lipschitz diffusion matrix. These results have been recently revisited in
the work of Krylov and Röckner [KR05], where SDEs with additive Brownian noise
and locally integrable drift are shown to be strongly well posed and Zhang [Zha10]
who extended the Krylov and Röckner result to SDEs with multiplicative noise
and weakly Lipschitz diffusion matrix (i.e. in Sobolev Sense). Similar issues are
handled as well in [FF11]. Also, we can mention the recent work by Davie [Dav07]
in which path-by-path uniqueness is proved for non degenerate Brownian SDEs with
bounded drift and the approach of Catellier and Gubinelli [CG16] (which also relies
on path-by-path uniqueness) where SDEs with additive fractional Brownian noise
are investigated. Finally, let us mention the work [GO13] where the strong well-
posedness of a particular one dimensional system with singular inhomogeneous drift
is proved. We refer the reader to the Saint Flour Lecture notes of Flandoli [Fla11]
where a very interesting and general account on the topic is given.

On the other hand, and still in the Brownian framework, it has been shown
that non degenerate stochastic systems are well posed in a weak sense as soon
as the drift function is measurable and bounded and the diffusion matrix only a
continuous (in space) function. This is the celebrated theory of the martingale
problemma put on complete mathematical framework by Stroock and Varadhan,
see [SV79]. Weak well posedness results for non degenerate SDE with additive noise
have also been explored recently: Flandoli, Issoglio and Russo showed in [FIR17]
that multidimensional non degenerate SDEs with non-homogeneous distributional
drift are well posed as soon as the regularity index is strictly greater than −1/2.
At the same time, Delarue and Diel proved in [DD15] that the result still holds
when the regularity index is strictly greater than −2/3 in the one-dimensional case.
This last work has then been generalized by Cannizzaro and Chouk [CC18] to the

1In the presentation below, we will mainly focus on Brownian driven SDEs. We can refer to
the recent work of Priola [Pri18] for the more general Lévy driven case in the non-degenerate

framework.
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multidimensional setting. Note however that, in the two last mentioned works, the
Authors assumed that the drift can be enhanced into a rough path structure.

All the above strong and weak results deeply rely on the non-degeneracy as-
sumption imposed to the noise and illustrate what is usually called, following the
terminology of Flandoli, a regularization by noise phenomenon. Here, the regular-
ization has to be understood as follows: while an ordinary differential system could
be ill-posed when the drift is less than Lipschitz (or weakly Lipschitz [PL89]), the
analogous non degenerate stochastic system is well posed (in a strong or a weak
sense). To obtain this kind of result, the noise plays a central role. A striking exam-
ple to understand the phenomenon is the Peano Example : while the deterministic
scalar ODE

(1.2) Ẏt = sign(Yt)|Yt|αdt, Y0 = 0, α ∈ (0, 1),

has an infinite number of solutions that could still be trapped in the singularity for
any given time, the corresponding Brownian SDE is strongly well posed. In [DF14],
Delarue and Flandoli put the phenomenom in light: in short time, the fluctuations
of the noise dominate the system so that the solution leaves the singularity and in
long time, the drift dominates and constrains the solution to fluctuate around one
of the extremal solutions of the Peano Example. Hence, there is a strong competi-
tion, in short time, between the irregularity of the drift and the fluctuations of the
noise.

Here, our result mostly emphasizes a regularization phenomenon coming from a
degenerate noise (i.e. when n ≥ 2 in (1.1)). In view of the above discussion, it
is clear that the degeneracy may dramatically damage the regularization by noise
properties and, in order to preserve some regularization effect, the noise still needs
to have a way to propagate through the system. Such kind of behavior will typically
hold when the system satisfies a so-called Hörmander condition for hypoellipticity,
see Hörmander’s seminal work on the topic [Hör67].

In our case, we suppose the drift of each component to be differentiable w.r.t.
its first variable and the resulting gradient to be non-degenerate, but only Hölder
continuous in the other variable. This last non-degeneracy assumption is the reason
why this kind of condition is called weak Hörmander condition. Namely, up to
some regularization of the diffusion coefficient, the drift is needed to span the space
through Lie Bracketing. Also, in comparison with the general Hörmander setting,
the specific drift structure we consider here is such that at each level of the chain
we only require one additional Lie bracket to generate the corresponding directions,
up to some regularization of the diffusion coefficient again. This setting allows us
to recover some regularization effect of the noise at each level of the chain. We also
refer for similar issues to Section 2 in [LP94].

Concerning the strong regularization effects of a degenerate noise in a weak
Hörmander setting, one of the first result has been given by Chaudru de Raynal
in [CdR17] and concerns strong well posedness of the above system (1.1) when
n = 2. It is shown in that case that the system is well posed as soon as the drift
coefficients are Hölder continuous with Hölder exponent strictly greater than 2/3
w.r.t. the degenerate variable and when the diffusion matrix is Lipschitz continuous
in space. This result was then extended by Wang and Zhang [WZ16] under Hölder-
Dini conditions with the same critical Hölder threshold 2/3. We also mention, again
for two oscillators and when the degenerate component only depends linearly of the
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non-degenerate variable and not on the degenerate component, the recent work by
Fedrizzi, Flandoli, Priola and Vovelle [FFPV17] who address the case of a weakly
differentiable non-degenerate drift with order of weak differentiation strictly greater
than 2/3. The critical case corresponding to the exponent 2/3 has been discussed
by Zhang [Zha18].

From the weak regularization by noise viewpoint, in our current weak Hörmander
setting, one of the first results is the work by Menozzi [Men11]. The key-point
there is to exploit some smoothing effects of a suitable parametrix kernel, associ-
ated with a Gaussian linearization of (1.1), which had already been used by Delarue
and Menozzi in [DM10] to derive heat-kernel bounds for the solution of (1.1). In
[Men11], it is shown that the system (1.1) is (weakly) well posed for a spatially
Lipschitz continuous drift satisfying the previously mentioned non-degeneracy con-
dition, and a spatially Hölder continuous diffusion coefficient. The result was then
extended in [Men18] for a spatially continuous diffusion coefficient, following the
martingale problem approach establishing some suitable Calderón-Zygmund esti-
mates for a degenerate Gaussian kernel and appropriate non-standard localization
arguments. Also, in the case of two oscillators, Zhang showed in [Zha18] that when
the degenerate component only depends linearly on the non-degenerate variable
and not on the degenerate component, the system is weakly well posed as soon
as the drift of the first component satisfies some local integrability conditions and
when the diffusion coefficient is continuous. At the same time, Chaudru de Raynal
showed in [CdR18] that when n = 2 the system is well posed in a weak sense as soon
as the drift of each component are at least 1/3 Hölder continuous in the degenerate
variable and showed that this result is (almost) sharp for the drift of the second
oscillator thanks to an appropriate counter example.

Hence, the minimal threshold obtained for the Hölder regularity of the drift is
not an artefact: this can be seen as the price to pay to balance the degeneracy
of the noise. Especially, in view of the previous discussion on the Delarue and
Flandoli work, it is related to the fact that the fluctuations of the degenerate noise
are not strong enough to push the solution away from the singularity if the drift
is too irregular. As said above, this is illustrated in [CdR18] where a counter
example is built thanks to this observation. Namely, it is shown that any stochastic
perturbation of the Peano Example (1.2) has to have (at least) fluctuations of order
strictly lower than 1/(1− α) in order to restore (weak) uniqueness. Hence, for two
oscillators, assuming that the dynamics of the degenerate component is driven
by (1.2) perturbed by the integral of the Brownian source plugged in the non-
degenerate component in (1.1), we have that the typical variance of the noise is of
order t3/2 at time t. From the above condition, we indeed find 1/(1−α) > 3/2 ⇐⇒
α > 1/3.

Organization of our paper. The paper is organized as follows. Our assumptions
and main results are stated at the end of the current Section. We present in Section
2 the main tools that allow to derive our results. Namely, a suitable Gaussian
linearization of the initial model (1.1) around a deterministic Cauchy-Peano flow
of the initial system of ODEs (corresponding to (1.1) taking σ = 0). In particular,
since we consider rough coefficients, we establish therein measurability properties
and bi-Lipschitz like regularity for such flows. The well posedness of the martingale
problem for the operator associated with (1.1) is then obtained in Section 3. Section
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4 is eventually dedicated to a class of counter examples which emphasize the almost
sharpness of our results.

Assumptions and main result. Our assumptions are the following:

(UE) There exists κ ≥ 1 s.t. for all (t,x) ∈ R+ × Rnd, z ∈ Rd,

κ−1|z|2 ≤ 〈σσ∗(t,x)z, z〉 ≤ κ|z|2,
where | · | denotes the Euclidean norm, 〈·, ·〉 is the inner product and ∗ stands for
the transpose.

(S) The coefficients σ(t, ·),
(
Fi(t,0)

)
i∈[[2,n]]

are assumed to be bounded measurable

in time. Also, the diffusion coefficient σ(t, ·) is uniformly η-Hölder continuous in
space, for some η > 0 uniformly in time. The drift entries

(
Fi(t, ·)

)
i∈[[2,n]]

are s.t.

for all (zi, · · · , zn) ∈ Rd(n−(i−1)), the mapping z ∈ Rd 7→ Fi(t, z, zi, · · · , zn) is in
C1+η(Rd,Rd) uniformly in time2 and w.r.t. (zi, . . . , zn). Moreover, Dxi−1

Fi(t, ·) is

bounded . Eventually, the mappings (zi, · · · , zn) ∈ Rd(n−(i−1)) 7→ Fi(t, z, zi, · · · , zn)

are, for j ∈ [[i, n]], βji -Hölder continuous in the variable zj , with βji > 0, uniformly
in time and in z ∈ Rd.

(D) The first entry of the drift F1 is supposed to satisfy one of the following as-
sumptions:

(a) The measurable mapping t ∈ R+ 7→ F1(t,0) is bounded and F1(t, ·) is
Hölder continuous in space3 uniformly in time.

(b) The measurable mapping (t,x) ∈ R+ × Rnd 7→ F1(t,x) is bounded.

(c) F1 ∈ Lq(R+, L
p(Rnd)), n

2d
p + 2

q < 1, p ≥ 2, q > 2.

Observe that case (b) can be viewed as a particular case of (c), corresponding to
p = q =∞. Since the techniques used to address those two cases are rather different
(see Section 3.2), we prefer to consider them separately.

(H) There exists a closed convex subset Ei−1 ⊂ GLd(R) (set of invertible d× d ma-
trices) s.t., for all t ≥ 0 and (xi−1, . . . , xn) ∈ R(n−i+2)d, Dxi−1

Fi(t, xi−1, . . . , xn) ∈
Ei−1. For example, Ei, i ∈ [[1, n − 1]], may be a closed ball included in GLd(R),
which is an open set.

We say that assumption (A) is in force whenever (UE), (S), (H) and at least
one of the three items in (D) hold.

Theorem 1 (Weak Uniqueness and Hölder continuity indexes). Assume (A) and
that the following conditions hold:

(1.3) ∀i ∈ [[2, n]], j ∈ [[i, n]], βji ∈

(
2i− 3

2j − 1
, 1

]
.

Then, the martingale problem associated with (Lt)t≥0 where for all φ ∈ C2
0 (Rnd,R),

x ∈ Rnd,

(1.4) Ltϕ(x) = 〈F (t,x), Dxφ(x)〉+
1

2
tr
(
a(t,x)D2

x1
φ(x)

)
, a := σσ∗,

2For the sake of clarity we chose the same regularity index for σ and (Dxi−1Fi)i∈[[2,n]], but the

result remains true for any ησ Hölder continuous σ and ηF,i Hölder continuous Dxi−1Fi, provided

ησ and ηF,i belong to (0, 1].
3Actually one can assume that F1 is βj1 Hölder continuous in the jth variable for any βj1 in

(0, 1].
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is well posed, i.e. there exists a unique probability measure P on C(R+,Rnd) s.t.

denoting by (Xt)t≥0 the associated canonical process, for every ϕ ∈ C1,2
0 (R+ ×

Rnd,R) and conditionally to Xt = x for t ≥ 0,
(
ϕ(s,Xs) − ϕ(t,x) −

∫ s
t

(∂u +

Lu)ϕ(u,Xu)du
)
s≥t

is a P-martingale. In particular weak uniqueness holds for the

SDE (1.1).
The transition probability P (t, s,x, ·), determined by (Ls)s≥0, is s.t. for a given

T > 0, almost all s ∈ (t, T ] and all Γ ∈ B(Rnd): P (t, s,x,Γ) =
∫

Γ
p(t, s,x,y)dy.

Furthermore, we have the following Krylov-like estimate: for all fixed T > 0 and

every f ∈ Lq′([0, T ], Lp
′
(Rnd)) with n2d

p′ + 2
q′ < 2, p′ > 1, q′ > 1, (t,x) ∈ [0, T ]×Rnd:

(1.5) |EPt,x [

∫ T

t

f(s,Xs)ds]| ≤ C‖f‖Lq′ (([0,T ],Lp′ (Rnd)),

where EPt,x denotes the expectation w.r.t.

Pt,x[·] := P[·|Xt = x] and C := C((A), p′, q′, T ).

Hence, our Theorem allows to recover almost all the previously mentioned works
on weak well posedness and provides an extension for the full chain. It also permits
us to avoid any regularity assumption on the drift of the diffusion component so that
we recover the Stroock and Varadhan result in the case n = 1 up to an arbitrary
small Hölder exponent on the continuity of the diffusion matrix. Concerning this
last point, we feel that using the localization strategy proposed by Menozzi in
[Men18] we may be able to get rid of this assumption and only assume the diffusion
coefficient to be continuous in space. Indeed, using our results (say Lemma 5 below
together with condition (1.3)) should allow one to adapt the approach of [Men18]
and extend Theorem 1 to continuous diffusion matrix.

We also underline that our result allows to deal with a large class of different
drifts for the non degenerate component: the system can be globally with sub-linear
growth (Assumption (A)-(a)), rough and bounded (Assumption (A)-(b)) or only
suitably integrable and rough (Assumption (A)-(c)).

Moreover, the following result shows that Theorem 1 is almost sharp. By almost,
we mean that the critical lower thresholds in (1.3) and in (D)-(c) are not yet
handled. Namely we have:

Theorem 2 (Almost sharpness). There exists F satisfying (UE), (S), (H) and
such that:

(1.6) ∃i ∈ [[2, n]], j ∈ [[i, n]], βji <
2i− 3

2j − 1
,

or

(1.7) F1 ∈ Lq([0, T ], Lp(Rnd)),
n2d

p
+

2

q
> 1, p ≥ 2, q > 2

for which weak uniqueness fails for the SDE (1.1).

We first emphasize that there are already some results in that direction: in
[BFGM19] the Authors show that when n = 1 and when the integrability condition
(1.7) is not satisfied (i.e. in the supercritical case) equation (1.1) does not have
a weak solution. Another counter example to that case can be found in [GO13].
Note that in comparison with the results in [FIR17], [DD15], [CC18], the almost
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sharpness of the integrability condition (1.7) has to be understood for drifts assumed
to be functions and not distributions.

Secondly, it has been proved in [CdR18], that for all i in [[2, n]] the Hölder ex-
ponents βii , are also almost sharp, thanks to a class of counter examples based on
stochastic perturbations of the Peano example (1.2).

Thirdly, we feel that the Hölder continuity assumption assumed on Dxi−1
Fi(t, ·)

is a technical artefact. Nevertheless, relaxing this assumption to consider the(
Dxi−1Fi(t, ·)

)
i∈[[2,n]]

are just continuous functions of xi−1 is definitely more tricky.

Indeed, in that case, our approach based on parametrix fails and the natural ap-
proach, relying on harmonic analysis techniques, seems very involved.

And last, but not least, let us notice that the two thresholds for the drift com-
ponent (say (1.3) and condition (A)-(c)) will appear many times throughout this
work as a minimal value for making our proof work (see the proofs of Lemmas 5,
6, 9 and 11). This underlines the sharpness of the exponent for the strategy we
used and explains why the critical case of these conditions is not investigated here.
It seems indeed clear for us that the critical case requires different tools as those
presented here.

Remark 1. Before entering into the proof, we indicate that, from a more analytic
viewpoint, the techniques we develop in the current work could also be used in
order to derive well-posedness results in the mild sense (see [SV79], [Kol11]) for
the corresponding degenerate parabolic PDE, which involves rough coefficients in
a weak Hörmander setting, when the source term belongs to appropriate Lebesgue
spaces.

2. Strategy and key tools

Our strategy relies on the martingale problem approach. Hence, we face two
difficulties: firstly, we have to show the existence of a solution to the martingale
problem in our current setting, which becomes quite tricky under (D)-(c) while it is
quite obvious under (D) - (a) and (b); secondly we have to show that the solution
is unique which is the real core of this paper.

About uniqueness. Usual approaches to uniqueness for the martingale prob-
lem associated with a given operator are based on a perturbative method. Let us
detail two of the main strategies developed in the literature. The historical one
due to Stroock and Varadhan [SV79] consists in exploiting some Lp controls on
the derivatives of a suitable Gaussian heat kernel (parametrix ). It allows, in the
non-degenerate diffusive case, to establish well posedness provided the diffusion
coefficient is solely continuous. As a by-product of this approach, Krylov like esti-
mates of type (1.5) are obtained, emphasizing that the canonical process associated
with the solution actually possesses a density which enjoys integrability properties
up to a certain threshold. Extensions of these types of results to the chain (1.1)
are available in [Men18].

On the other hand, a more recent approach is due to Bass and Perkins [BP09].
In the non-degenerate setting, under the stronger assumption of Hölder continuity
of the diffusion coefficient, it only requires pointwise controls of an underlying
parametrix kernel. This approach has then been successfully extended under the
considered weak type Hörmander setting to a chain of type (1.1) in [Men11] in the
diffusive case and in [HM16] for more general stable driven degenerate SDEs of type
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(1.1) with dimension restrictions. It is actually more direct than the approach of
Stroock and Varadhan. However, its drawback is that it does not provide a priori
information on the density of the underlying canonical process.

Let us underline that in both cases, the parametrix plays a central role. This
approach consists in expanding the generator of a given stochastic process around
a suitable proxy generator which can be well handled. The point is then to control
in a suitable way the associated approximation error. In our current degenerate
diffusive setting, since the SDE is Brownian driven, the difficulty is to exhibit an
appropriate Gaussian process that fulfills the previously indicated constraints.

When the drift F is smooth in addition to (A), say globally Lipschitz continuous,
it has been shown in [DM10], [Men11], [Men18] that a good proxy is provided by
the linearization around the deterministic flow associated with (1.1) (i.e. when
σ = 0 therein) leading to consider a multi-scale Gaussian process as parametrix.
It is therefore a natural candidate for the current work. Anyhow, under (A), we
do not have anymore a deterministic flow in the usual Cauchy-Lipschitz sense. A
first difficulty is therefore to deal with non-smooth and non-unique Cauchy-Peano
flows. It actually turns out that any measurable flow solving (1.1) with σ = 0 is a
good candidate to make our machinery work. The specific controls associated with
those objects are presented in Section 2.2.

Also, in order to handle very rough drifts for the non degenerate component,
from (D)-(c) F1 ∈ Lq([0, T ], Lp(Rnd)), we are led to apply the Girsanov transform
to the equation with F1 = 0. To do so requires to have some a priori knowledge
of the corresponding density. This is why, to achieve our goal, the Stroock and
Varadhan approach leading to estimate (1.5), seems to be the natural framework.

In comparison with the approach based on the Zvonkin Transform initiated in
[CdR18], our approach allows to obtain a clever analysis of the chain in the sense
that we are here able to enlight the almost sharp regularity needed for each com-
ponent of the drift and w.r.t. each variable. This last point is not possible via
the Zvonkin Transfom which is more global and does not permit this distinction.
Accordingly to the works [CdR17], [FFPV17], the Zvonkin approach seems more
suited to derive strong uniqueness. In that case a global threshold appears for each
variable at each level of the chain.

About existence. Concerning the existence part, our proof consists in adapt-
ing to our degenerate setting the idea introduced by Portenko [Por90] and used
by Krylov and Röckner [KR05] as well to build local weak solutions in the non-
degenerate case.

Usual notations. In what follows, we denote a quantity in Rnd by a bold letter:
i.e. 0, stands for zero in Rnd and we denote by (X1

t , . . . , X
n
t )t≥0 the components

of (Xt)t≥0. Introducing the embedding matrix B from Rd into Rnd, i.e. B =
(Id×d, 0, . . . , 0)∗, where “∗” stands for the transpose, we rewrite accordingly (1.1)
in the shortened form

dXt = F(t,Xt)dt+Bσ(t,Xt)dWt,

where F = (F1, . . . , Fn) is an Rnd-valued function.

The deterministic backward flow. In the following, we will first assume for
the sake of simplicity that assumption (D)-(a) is in force. The extension to cases
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(b) and (c) will be discussed later on. Introduce now, for fixed T > 0, y ∈ Rnd and
t ∈ [0, T ] the backward flow:

(2.1)
.

θt,T (y) = F(t,θt,T (y)), θT,T (y) = y.

Remark 2. We mention carefully that from the Cauchy-Peano theorem, a solution
to (2.1) exists. Indeed, the coefficients are continuous and have at most linear
growth.

2.1. Linearized Multi-scale Gaussian Process and Associated Controls.
We now want to introduce the forward linearized flow around a solution of (2.1).
Namely, we consider for s ≥ 0 the deterministic ODE

(2.2)
.

φ̃s = F(s,θs,T (y)) +DF(s,θs,T (y))[φ̃s − θs,T (y)],

where for all z ∈ Rnd,

DF(s, z) =



0 · · · · · · · · · 0
Dz1F2(s, z) 0 · · · · · · 0

0 Dz2F3(s, z) 0 0
...

... 0
. . .

...
0 · · · 0 Dzn−1Fn(s, z) 0


denotes the subdiagonal of the Jacobian matrix DzF(s, ·) at point z. Introduce

now for a given (T,y) ∈ R+∗ ×Rnd, the resolvent (R̃T,y(t, s))s,t≥0 associated with
the partial gradients (DF(t,θt,T (y)))t≥0 which satisfies for (s, t) ∈ (R+)2:

∂sR̃
T,y(s, t) = DF(s,θs,T (y))R̃T,y(s, t), R̃T,y(t, t) = Ind×nd.(2.3)

Note in particular that since the partial gradients are subdiagonal det(R̃T,y(t, s)) =
1.

We consider now the stochastic linearized dynamics (X̃T,y
s )s∈[t,T ]:

dX̃T,y
s = [F(s,θs,T (y)) +DF(s,θs,T (y))(X̃T,y

s − θs,T (y))]ds+Bσ(s,θs,T (y))dWs,

∀s ∈ [t, T ], X̃T,y
t = x.(2.4)

From equations (2.2) and (2.3) we explicitly integrate (2.4) to obtain for all
v ∈ [t, T ]:

X̃T,y
v = R̃T,y(v, t)x +

∫ v

t

R̃T,y(v, s)
(
F(s,θs,T (y))−DF(s,θs,T (y))θs,T (y)

)
ds

+

∫ v

t

R̃T,y(v, s)Bσ(s,θs,T (y))dWs.

(2.5)

Denoting by θ̃
T,y

s,t (x) the solution of (2.2) with starting point θ̃
T,y

t,t (x) = x we
rewrite:

(2.6) X̃T,y
v = θ̃

T,y

v,t (x) +

∫ v

t

R̃T,y(v, s)Bσ(s,θs,T (y))dWs, v ∈ [t, T ].

An important correspondence is now given by the following Proposition.
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Proposition 3 (Density of the linearized dynamics). Under (A), we have that,

for all v ∈ (t, T ] the random variable X̃T,y
v in (2.6) admits a Gaussian density

p̃T,y(t, v,x, ·) which writes:

∀z ∈ Rnd, p̃T,y(t, v,x, z)(2.7)

:=
1

(2π)
nd
2 det(K̃T,y

v,t )
1
2

exp

(
−1

2

〈
(K̃T,y

v,t )−1(θ̃
T,y

v,t (x)− z), θ̃
T,y

v,t (x)− z
〉)

,

where

K̃T,y
v,t :=

∫ v

t

R̃T,y(v, s)Ba(s,θs,T (y))B∗R̃T,y(v, s)∗ds,

a(s,θs,T (y)):=σσ∗(s,θs,T (y)).

Also, there exists C := C((A), T ) > 0 s.t. for all k ∈ [[0, 2]], i ∈ [[1, n]],

|Dk
xi p̃

T,y(t, T,x,y)|

≤ C

(T − t)k
(

(i−1)+ 1
2

)
+n2d

2

exp
(
−C−1(T − t)

∣∣T−1
T−t
(
x− θt,T (y)

)∣∣2)
=:

C

(T − t)k
(

(i−1)+ 1
2

) p̄C−1(t, T,x,y),(2.8)

where for all u > 0, we denote by Tu the important scale matrix:

(2.9) Tu =


uId×d 0d×d · · · 0d×d

0d×d u2Id×d 0
...

...
. . .

. . .
...

0d×d · · · 0 unId×d

 .

Proof. Expression (2.7) readily follows from (2.6). We recall as well that, under

(A), the covariance matrix K̃T,y
v,t enjoys, uniformly in y ∈ Rnd a good scaling

property in the sense of Definition 3.2 in [DM10] (see also Proposition 3.4 of that
reference). That is: for all fixed T > 0, there exists C2.10 := C2.10((A), T ) ≥ 1 s.t.
for all 0 ≤ v < t ≤ T , for all y ∈ Rnd:

(2.10) ∀ξ ∈ Rnd, C−1
2.10(v − t)−1|Tv−tξ|2 ≤ 〈K̃T,y

v,t ξ, ξ〉 ≤ C2.10(v − t)−1|Tv−tξ|2.

Remark 3 (On the Hörmander like non-degeneracy assumption and the good scal-
ing property). We carefully point out that the boundedness and non-degeneracy
conditions expressed on the derivatives (Dxi−1Fi(t, ·))i∈[[2,n]], as well as on the dif-
fusion coefficient σ(t, ·), in assumptions (S), (H) and (UE) are precisely explicitly
used to derive this bound. The natural analogue bounds of (2.10) also hold for the
inverse matrices, see again [DM10], Definition 3.2 and Lemma 3.6 therein as well
as the proof of (2.12) below.

Rewrite now from (2.5) and (2.6):〈
(K̃T,y

T,t )−1(θ̃
T,y

T,t (x)− y), θ̃
T,y

T,t (x)− y
〉

=
〈

(R̃T,y(T, t)∗(K̃T,y
T,t )−1R̃T,y(T, t)(x− θ̃

T,y

t,T (y)),x− θ̃
T,y

t,T (y)
〉
,(2.11)
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where, accordingly with the previous notations for the forward linearized flow

θ̃
T,y

T,t (x), we denote:

θ̃
T,y

t,T (y) = R̃T,y(t, T )y−
∫ T

t

R̃T,y(t, s)
(
F(s,θs,T (y))−DF(s,θs,T (y))θs,T (y)

)
ds.

for the corresponding linearized-backward flow starting from y at time T .

Observe now that θ̃
T,y

t,T (y) = θt,T (y). Indeed, from (2.3):

∂tθ̃
T,y

t,T (y) = DF(t,θt,T (y))θ̃
T,y

t,T (y) +
(
F(t,θt,T (y))−DF(t,θt,T (y))θt,T (y)

)
,

so that:

∂tθ̃
T,y

t,T (y)− ∂tθt,T (y) = DF(t,θt,T (y))
(
θ̃
T,y

t,T (y)− θt,T (y)
)
.

Since θ̃
T,y

T,T (y) = θT,T (y) = y, we deduce from Gronwall’s Lemma that θ̃
T,y

t,T (y) =
θt,T (y) for all t ∈ [0, T ].

We carefully point out that, even though the solution to the ODE (2.1) is not
unique, once we have chosen a solution and consider the associated flow to construct

our linearized Gaussian model, we precisely get the identification θ̃
T,y

t,T (y) = θt,T (y)
for all t ∈ [0, T ] with the chosen flow.

We thus get from the previous identification, equations (2.11), (2.10) and Remark
3 that there exists C := C((A), T ) > 0, s.t. for all t ∈ [0, T ),

C−1(T − t)|T−1
T−t(x− θt,T (y))|2 ≤

〈
(K̃T,y

T,t )−1(θ̃
T,y

T,t (x)− y), θ̃
T,y

T,t (x)− y
〉

(2.12)

≤ C(T − t)|T−1
T−t(x− θt,T (y))|2.

Indeed, from (2.10) it is easily derived that the spectrum of ̂̃KT,t,T,y

1 := (T −

t)T−1
T−tK̃

T,y
T,t T

−1
T−t lies in [C−1

2.10, C2.10]. So does the spectrum of ( ̂̃KT,t,T,y

1 )−1 :=

(T − t)−1TT−t(K̃T,y
T,t )−1TT−t. From Lemma 3.6 in [DM10] (see also Lemma 6.2 in

[Men18] for notations closer to the current framework) we can also write R̃T,y(T, t) =

TT−t ̂̃RT,t,T,y

(1, 0)T−1
T−t where ̂̃RT,t,T,y

(1, 0) is a non-degenerate bounded matrix

whose bounds do not depend on t, T , i.e. ̂̃RT,t,T,y

(1, 0) is a non-degenerate macro

matrix. Therefore, introducing H̃T,y
T,t = R̃T,y(t, T )K̃T,y

T,t R̃T,y(t, T )∗, we can rewrite

from (2.11) that:〈
(K̃T,y

T,t )−1(θ̃
T,y

T,t (x)− y), θ̃
T,y

T,t (x)− y
〉

=
〈

(H̃T,y
T,t )−1(x− θT,t(y)),x− θT,t(y)

〉
,

(H̃T,y
T,t )−1 = R̃T,y(T, t)∗(K̃T,y

T,t )−1R̃T,y(T, t)

= (T − t)T−1
T−t
( ̂̃RT,t,T,y

(1, 0)
)∗

( ̂̃KT,t,T,y

1 )−1 ̂̃RT,t,T,y

(1, 0)T−1
T−t.(2.13)

The previous non-degeneracy properties of ( ̂̃KT,t,T,y

1 )−1, ̂̃RT,t,T,y

(1, 0) then readily

give (2.12). Put it differently, the matrix H̃T,y
T,t also satisfies a good scaling property.
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We now deduce from (2.13) and (2.10) that (2.8) holds for k = 0. We now write
from (2.7):

Dxi p̃
T,y(t, T,x,y)

=
1

(2π)
nd
2 det(K̃T,y

T,t )
1
2

Dxi exp

(
−1

2

〈
(H̃T,y

T,t )−1(x− θt,T (y)),x− θt,T (y)
〉)

=

(
− (H̃T,y

T,t )−1(x− θt,T (y))
)
i

(2π)
nd
2 det(K̃T,y

T,t )
1
2

exp

(
−1

2

〈
(H̃T,y

T,t )−1(x− θt,T (y)),x− θt,T (y)
〉)

.

We thus derive from (2.12) and (2.13):

|Dxi p̃
T,y(t, T,x,y)| ≤ C

(T − t)(i−1)+ 1
2 +n2d

2

exp
(
−C−1(T − t)

∣∣T−1
T−t
(
x− θt,T (y)

)∣∣2) ,
which proves (2.8) for k = 1. The case k = 2 is derived similarly. �

2.2. Regularity and measurability of the Cauchy-Peano flow. Let us recall,
as indicated before equation (2.1), that we work first under assumption (D)-(a).
In this setting, we mention that the delicate part here consists in dealing with the
nonlinear flow θt,s(y). Because of our low Hölder regularity, we face two problems:
one has to choose a measurable flow of (2.1) (which is very important to make licit
any integration of this flow along the terminal condition) and this flow must have
the appropriate regularity to deal with our parametrix kernel, say e.g. bi-Lipschitz
as in [DM10], [Men11], [Men18].

The first issue is addressed by Lemma 4 below. The second problem is quite
involved and requires also a careful analysis. Indeed our approach, based on
parametrix kernel, makes an intensive use of the gradient estimate of the frozen
transition density p̃T,y given in (2.7). This leads us to study the space integral
of the Gaussian like function p̄C−1 defined by (2.8) w.r.t. the backward variable
y. The crucial point is that such an integral then involves the backward flow with
argument the integration variable. In a smooth setting, such a problem is easily
handled through a change of variable. When working with non-continuously dif-
ferentiable coefficients, one may also use the bi-Lipschitz property of the flow to
change its argument from the integration variable to the fixed initial one (see e.g.
[DM10] where F is Lipschitz in space). In the current setting the flow is not smooth
enough either to perform a change of variable nor to use the bi-Lipschitz estimate.
Nevertheless, using a careful regularization procedure which precisely works under
the condition (1.3) on the Hölder continuity exponents, we show in Lemma 5 below
that the chosen flow satisfies an approximate bi-Lipschitz estimate. This approxi-
mate bi-Lipschitz estimate is sufficient to deal with our parametrix kernel.

Lemma 4. For a given T > 0, there exists a measurable mapping (s, t,x) ∈ [0, T ]2×
Rnd 7→ θt,s(x) s.t. θt,s(x) = x +

∫ t
s

F(v,θv,s(x))dv.

Proof. The proof follows from the result of [Zub12] and usual covering arguments.
�

From now on, we choose by simplicity to work with a given measurable flow
θt,s(x) which exists by the previous lemma.
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Lemma 5. There exist constants (C5, C
′
5) := (C5, C

′
5)((A), T ) ≥ 1 s.t. for all

0 ≤ t < s ≤ T small enough:

C−1
5 (s− t)|T−1

s−t(θs,t(x)− y)|2 − C ′5 ≤ (s− t)|T−1
s−t(x− θt,s(y))|2

≤ C5(s− t)|T−1
s−t(θs,t(x)− y)|2 + C ′5.(2.14)

Also, for any measurable flow θ̌s,t satisfying the integral equation in Lemma 4 and
possibly different from the chosen one θs,t, it also holds that:

C−1
5 (s− t)|T−1

s−t(θ̌s,t(x)− y)|2 − C ′5 ≤ (s− t)|T−1
s−t(x− θt,s(y))|2

≤ C5(s− t)|T−1
s−t(θ̌s,t(x)− y)|2 + C ′5.(2.15)

Lemma 5 is a key tool for our analysis. It roughly says that, even though the drift
coefficient is not smooth, we can still expect a kind of equivalence of the rescaled
forward and backward flows (which has been thoroughly used in the papers [DM10],
[Men11], [Men18] for Lipschitz drifts) up to an additional constant contribution.
This is precisely the result of equation (2.14). Also, since uniqueness here possibly
fails for the flows, equation (2.15) gives that the bound still holds for two arbitrary
measurable flows. This specific property will be used later on in the proof of Lemma
6 below in Appendix A.

It turns out that, the new contribution in (2.14), (2.15) does not perturb the

analysis of the parametrix kernels associated with the density of X̃T,y
T starting from

x at time t ∈ [0, T ) given in Proposition 3. We refer to Section 3.1 for details.

Proof. We focus on the proof of (2.15). Indeed, (2.14) is derived as a special
case taking the same flows, i.e. θ̌ = θ. Considering now two measurable flows θ, θ̌
provided by the integral equation in Lemma 4, we write from the integral dynamics:

(s− t) 1
2T−1

s−t(x− θt,s(y))

= (s− t) 1
2T−1

s−t

[
(θ̌s,t(x)− y)−

∫ s

t

(
F(u, θ̌u,t(x))− F(u,θu,s(y))

)
du
]
.

= (s− t) 1
2T−1

s−t
(
θ̌s,t(x)− y

)
− Is,t(x,y),(2.16)

Is,t(x,y):=(s− t) 1
2T−1

s−t

∫ s

t

(
F(u, θ̌u,t(x))− F(u,θu,s(y))

)
du.

We aim at establishing that

(2.17) |Is,t(x,y)| ≤ C
{

1+(s− t)−1

∫ s

t

(s− t) 1
2 |T−1

s−t(θ̌u,t(x)− θu,s(y))|du
}
,

which together with (2.16) and the Gronwall lemma gives the r.h.s. of (2.15). The
l.h.s. could be derived similarly to the analysis we now perform.

Since the function F is not Lispchitz, we will thoroughly use, as crucial auxiliary
tool, some appropriate mollified flows. We first denote by δ ∈ Rn ⊗ Rn, a matrix
whose entry δij is strictly positive for indexes i ∈ [[2, n]] and j ≥ i. We then define
for all v ∈ [0, T ], z ∈ Rnd, i ∈ [[2, n]],

F δi (v, zi−1,n) := Fi(v, ·) ? ρδi,.(z)(2.18)

=

∫
Rd(n−(i−1))

Fi(v, zi−1, zi − wi, · · · , zn − wn)ρδi,.(w)dw.
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Here, for all w = (wi, · · · , wn) ∈ Rd(n−(i−1)),

ρδi,.(w) :=
1∏n

j=i δ
d
ij

ρi

(
wi
δii
,
wi+1

δi(i+1)
, · · · , wn

δin

)
,

where ρi : Rd(n−(i−1)) → R+ is a standard mollifier, i.e. ρi is smooth, has compact
support and

∫
Rd(n−(i−1)) ρi(z)dz = 1. We denote

Fδ(v, z) = (F1(v, z), F δ2 (v, z), · · · , F δn(v, z)).

Note carefully that, under the considered assumptions (A), the (F δi )i∈[[2,n]] are
thus Lipschitz continuous functions, with explosive Lipschitz constant w.r.t. the
mollifying procedure in the variables (xi, · · · , xn). More precisely, standard argu-
ments from approximation theory give that, under the current assumptions, the

Lipschitz constant of F δi w.r.t. its jth variable blows up at rate δ
−1+βji
ij .

Controls associated with the mollification procedure. The first key point is
that the regularized drift Fδ only appears in a time integral for our analysis (see
equations (2.16) and (2.23)). So, the parameters δij only have to satisfy that there
exists C := C((A), T ) > 0 such that for all z in Rnd, for all u in [t, s]:∣∣∣(s− t) 1

2T−1
s−t

(
F(u, z)− Fδ(u, z)

)∣∣∣ ≤ C(s− t)−1.(2.19)

From the definition of our regularization procedure in (2.18) this means that δij
must be such that

n∑
i=2

(s− t) 1
2−i

n∑
j=i

δ
βji
ij ≤ C(s− t)−1.(2.20)

Hence, one can choose δij = (s− t)
(i− 3

2 ) 1

β
j
i which yields (s− t) 1

2−iδ
βji
ij = (s− t)−1.

This choice of δij will be kept for the rest of the proof.
The second key point relies on the fact that, for this choice of the regularization

parameter, the rescaled drift Fδ satisfies an approximate Lipschitz property whose
Lipschitz constant, once the drift is integrated, does not yield any additional sin-
gularity. Namely, there exists a C := C((A), T ) such that for all u in [s, t], for all
z, z′ in Rnd ∣∣∣(s− t) 1

2T−1
s−t

(
Fδ(u, z)− Fδ(u, z′)

)∣∣∣(2.21)

≤ C

(
(s− t)− 1

2 + (s− t)−1|(s− t) 1
2T−1

s−t(z− z′)|

)
.

Indeed, as already underlined at the end of the previous paragraph, the (F δi )i∈[[2,n]]

are Lipschitz continuous functions (with potentially explosive Lipschitz constant
in the variables (xi, · · · , xn) for F δi because of the regularization procedure) and

F1 is βj1 > 0 Hölder continuous in the jth variable for arbitrary (βj1)j∈[[1,n]] in
(0, 1]. The Young inequality then yields that there exists Cβj1

> 0 s.t. for all
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x ∈ Rnd, |x|β
j
1 ≤ Cβj1 (1 + |x|). Hence,∣∣∣(s− t) 1

2T−1
s−t

(
Fδ(v, z)− Fδ(v, z′)

)∣∣∣
≤ C

(
(s− t)− 1

2 (1 + |(z− z′)|)

+

n∑
i=2

(s− t) 1
2−i
(
|(z− z′)i−1|+

n∑
j=i

|(z− z′)j |

δ
1−βji
ij

))

≤ C

(
(s− t)− 1

2 + |(s− t) 1
2T−1

s−t(z− z′)|

×
(

1 + (s− t)−1 +

n∑
i=2

n∑
j=i

(s− t)j−i

δ
1−βji
ij

))
.

Hence (2.21) follows from the fact that, from our previous choice of δij , one gets

(2.22)
(s− t)j−i

δ
1−βji
ij

= (s− t)
(j−i)−(i− 3

2 ) 1

β
j
i

(1−βji )
≤ C(s− t)−1,

since from the assumption (1.3) on the indexes of Hölder continuity:

βji >
2i− 3

2j − 1
⇐⇒ (j − i)− (i− 3

2
)(1− βji )/β

j
i > −1.

Derivation of the final bound. We are now in position to bound the term
Is,t(x,y) defined in (2.16). Under (A) we have:

|Is,t(x,y)| ≤
∫ s

t

du|(s− t) 1
2T−1

s−t
(
F(u, θ̌u,t(x))− F(u,θu,s(y))

)
|

≤
∫ s

t

du
∣∣∣(s− t) 1

2T−1
s−t

(
F(u, θ̌u,t(x))− Fδ(u, θ̌u,t(x))

)∣∣∣
+

∫ s

t

du
∣∣∣(s− t) 1

2T−1
s−t

(
Fδ(u, θ̌u,t(x))− Fδ(u,θu,s(y))

)∣∣∣
+

∫ s

t

du
∣∣∣(s− t) 1

2T−1
s−t

(
Fδ(u,θu,s(y))− F(u,θu,s(y))

)∣∣∣
=: I1

s,t(x,y) + I2
s,t(x,y) + I3

s,t(x,y).(2.23)

Using (2.19), we obtain that there exists C := C((A), T ) s.t. for all 0 ≤ t < s ≤
T, x,y ∈ Rnd:
(2.24) |I1

s,t(x,y)|+ |I3
s,t(x,y)| ≤ C.

Finally, one can use (2.21) to derive that for all 0 ≤ t < s ≤ T, x,y ∈ Rnd:

|I2
s,t(x,y)| ≤ C

[
(s− t) 1

2 +

∫ s

t

(s− t)−1
(
(s− t) 1

2 |T−1
s−t(θ̌u,t(x)− θu,s(y))|

)
du

]

≤ C
{

1 + (s− t)−1

∫ s

t

(s− t) 1
2 |T−1

s−t(θ̌u,t(x)− θu,s(y))|du
}
,

up to a modification of C := C((A), T ) for the last inequality. From this last
equation together with (2.24), we therefore derive (2.17). The proof is complete.

�
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2.3. Frozen Green kernels and associated PDEs. In this paragraph we intro-
duce useful tools for the analysis of the martingale problem. Namely, we consider
suitable green kernels associated with the previously defined frozen process and
establish the Cauchy problemma which it solves.

For all f ∈ C1,2
0 ([0, T ) × Rnd,R), and ε ≥ 0 meant to be small, we define the

Green function:

(2.25) ∀(t,x) ∈ [0, T )× Rnd, G̃εf(t,x) =

∫ T

(t+ε)∧T
ds

∫
Rnd

dyp̃s,y(t, s,x,y)f(s,y).

We point out that the measurability of the flow in (s,y) established in Lemma 4
precisely gives that p̃s,y(t, s,x,y) is a measurable function of these parameters and

ensures that the above Green function is properly defined. Denote by (L̃s,yt )t∈[0,s]

the generator of (X̃s,y
t )t∈[0,s], i.e. for all ϕ ∈ C∞0 (Rnd,R), x ∈ Rnd,

L̃s,yt ϕ(x) := 〈F(t,θt,s(y)) +DF(t,θt,s(y))(x− θt,s(y)), Dxϕ(x)〉

+
1

2
tr(σσ∗(t,θt,s(y))D2

x1
ϕ(x)).(2.26)

One now easily checks that:

(2.27) ∀(t,x, z) ∈ [0, s)× (Rnd)2,
(
∂t + L̃s,yt

)
p̃s,y(t, s,x, z) = 0.

However, we carefully mention that some care is needed to establish the following
lemma, whose proof is postponed to Appendix A, which is crucial to derive that
G̃f := G̃0f actually solves an appropriate Cauchy like problem.

Lemma 6 (Dirac convergence of the frozen density). For all bounded continuous
function f : Rnd → R,x ∈ Rnd, setting for all (ε, t) in (R+\{0})× [0, T ], fε,t(x) :=∫
Rnd f(y)p̃t+ε,y(t, t+ ε,x,y)dy, we have:

(2.28) sup
t∈[0,T ]

|fε,t(x)− f(x)| −→
ε↓0

0.

We emphasize that the above lemma is not a direct consequence of the con-
vergence of the law of the frozen process towards the Dirac mass (see e.g. (2.27)).
Indeed, the integration parameter is also the freezing parameter which makes things
more subtle.

We also have the following related result again proved in Appendix A.

Lemma 7 (Lq
′ − Lp′ convergence for the mollification with the frozen density).

For all f ∈ Lq
′(

[0, T ], Lp
′
(Rnd)

)
, q′, p′ < ∞, setting, for any ε > 0, fε(t,x) :=∫

Rnd f(t+ ε,y)It∈[0,T−ε]p̃
t+ε,y(t, t+ ε,x,y)dy, we have for all p′, q′ > 1:

(2.29) ‖fε − f‖Lq′ ([0,T ],Lp′ (Rnd)) −→
ε↓0

0.

Introducing for all f ∈ C1,2
0 ([0, T )×Rnd,R), ε ≥ 0 and (t,x) ∈ [0, T )×Rnd the

quantity:

(2.30) M̃ε
t f(t,x) =

∫ T

(t+ε)∧T
ds

∫
Rnd

dyL̃s,yt p̃s,y(t, s,x,y)f(s,y),

we derive from (2.27) and Proposition 3 that the following equality holds for all
ε > 0 small enough:

(2.31) ∂tG̃
εf(t,x) + M̃ε

t f(t,x) = −fε(t,x), ∀(t,x) ∈ [0, T )× Rnd,
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denoting by fε(t,x) =
∫
Rnd f(t+ ε,y)It∈[0,T−ε]p̃

t+ε,y(t, t+ ε,x,y)dy, i.e. the time
argument of f is also shifted and truncated above T − ε. Observe here that the
localization w.r.t. ε is precisely needed to exploit directly (2.27) and derive (2.31),
for a given fixed ε > 0, by usual domination arguments. We mention that when
ε = 0, it follows from the definition (2.25) of our Green kernel that the smoothness

on f is not a sufficient condition to derive the smoothness of G̃f = G̃0f . This
comes from the dependence of the covariance matrix in p̃s,y w.r.t. the integration
variable (see (2.7)).

Proposition 8. Pointwise control of the Green Kernel. There exists C(T ) :=

C((A), T ) −→
T→0

0 s.t. for all (t,x) ∈ [0, T ] × Rnd and all f ∈ Lq′
(
[0, T ], Lp

′
(Rnd)

)
s.t. n2d

p′ + 2
q′ < 2, p′ > 1, q′ > 1, ε ∈ [0, T − t]:

(2.32) |G̃εf(t,x)| ≤ C(T )‖f‖Lq′ ([0,T ],Lp′ (Rnd)).

Proof. From (2.8) with k = 0 and Lemma 5 we have that for all ε ∈ [0, T − t],

|G̃εf(t,x)|(2.33)

≤ C

∫ T

t

ds

∫
Rnd

dy|f(s,y)|p̄C−1(t, s,x,y)

≤ C

∫ T

t

ds

∫
Rnd

dy|f(s,y)|
exp

(
−C−1(s− t)|T−1

s−t(x− θt,s(y))|2
)

(s− t)n
2d
2

≤ C

∫ T

t

ds

∫
Rnd

dy|f(s,y)|
exp

(
−C−1

[
(s− t)|T−1

s−tθs,t(x)− y)|2 + 1
])

(s− t)n
2d
2

,

up to a modification of C. So, the result follows from the Hölder inequality and the
condition on the exponents p′ and q′. Denoting by p̃′, q̃′ the conjugate of p′ and q′

respectively we indeed have

∫ T

t

ds

∣∣∣∣∣∣
∫
Rnd

dy

∣∣∣∣∣exp
(
−C−1(s− t)(|T−1

s−t(θs,t(x)− y)|2)
)

(s− t)n
2d
2

∣∣∣∣∣
p̃′
∣∣∣∣∣∣
q̃′
p̃′

≤ C

∫ T

t

ds
1

(s− t)
n2d
2 (p̃′−1)( q̃

′
p̃′ )

< +∞⇔ n2d(p̃′ − 1)

2

q̃′

p̃′
< 1⇔ n2d

2p′
+

1

q′
< 1.

�

3. Well posedness of the corresponding martingale problem

We have now given the main tools needed to prove our main results: the well
posedness of the martingale problem associated with (Lt)t≥0 defined in (1.4) and
the corresponding Krylov-type estimates. This section is organized as follows: we
first investigate the well posedness under Assumption (D)-(a). In that case, the
existence part is not a challenge, since it readily follows from previously known
results based on compactness arguments that exploit the sublinear structure of the
drift F, while the uniqueness part is quite more delicate. As a by-product of our
approach to uniqueness we derive the Krylov like estimate.

The scheme used for proving uniqueness under (D)-(a) will be a major tool
to extend our result for uniqueness under (D)-(b) (the existence part under that
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assumption being a trivial application of the Girsanov Theorem) and then for ex-
istence and uniqueness under (D)-(c). Indeed, under this last assumption, even
the existence part requires to derive first some Krylov type estimates. We will
precisely exploit those established under (A)-(a) considering first F1 = 0 and then
cope with the true Lq − Lp drift through a Girsanov argument. The approach
is in some sense similar to the one of Krylov and Röckner [KR05] or Fedrizzi et
al. [FFPV17] for the Girsanov part. The main difference is that in the quoted
work the required Krylov like estimate readily followed from the explicit density
of the unperturbed process at hand. The Brownian motion in [KR05], the joint
density of the Brownian motion and its integral in [FFPV17]. We here precisely
show that, first under (A)-(a), the solution to the martingale problem has a density
which satisfies a similar Krylov type estimate. We actually prove that any solu-
tion to the martingale problem satisfies such an estimate (see equation (3.5) below).

It is precisely to deal with Lq − Lp drifts (under Assumption (D)-(c)) that we
have chosen an approach inspired by the Stroock and Varadhan original arguments
which explicitly provides the required Krylov like estimates. Before going into
the proof, let us briefly explain the main differences between our analysis and the
strategy of [SV79]. In particular, our approach differs from the original one because
of the specific structure of our problem.

In the original non degenerate setting with bounded drifts considered by Stroock
and Varadhan, the Girsanov Theorem allows them to deal with the diffusive part of
the equation only. Their main idea to obtain the desired control on their perturbed
kernel goes through regularization arguments. The key point allowing them to get
the estimation at the limit are: the strong convergence of the driftless Euler scheme
(to keep track on pointwise estimate) and a localization argument.

In our current setting things are a bit different: we are not allowed anymore to
get rid of the drift, because of our degenerate structure.

Thus, our strategy is the following. In the Hölder framework of case (D)-(a), we
manage to prove directly the existence of the density of the canonical process for
any solution to the martingale problem through the associated Krylov-type esti-
mate, for f ∈ Lq′([0, T ], Lp

′
(Rnd)) and p′, q′ large enough. This is a consequence of

the pointwise controls established in Lemma 9 below. This is enough to derive the
well posedness of the martingale problem. In a second time, we complete the proof
of the Krylov estimate (1.5) on the indicated range for p′, q′ through a regulariza-
tion argument. Namely, we regularize the drift coefficient F through convolution.
For the regularized drift, it follows from [DM10], [Men11] that the corresponding
process has a density. It then follows from the previous analysis that the process
with mollified coefficients satisfies uniformly w.r.t. the mollification parameter the
Krylov estimate. The final statement then follows letting the mollification parame-
ter tend to zero from the well posedness of the martingale problem. Cases (b) and
(c) are handled from case (a) through an additional Girsanov type argument.

3.1. Well posedness with full Hölder drift, Assumption (D)-(a).

3.1.1. Existence under Assumption (D)-(a). The first step is to establish that there
exists a solution to the martingale problem defined in Theorem 1. From the def-
inition of (Lt)t≥0 in (1.4) it is easily seen that, under (A), existence is obtained
adapting to our current framework Theorem 6.1.7 in [SV79]. The strategy is clear.
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An Euler like scheme can be considered. Fix first T > 0 and consider the grid
Λm([0, T ]) := {(ti := ih)i∈[[0,m]]}, h = T/m, m ∈ N. Introduce the corresponding
“discretization” scheme:

Xm
s = Xm

ti +

∫ s

ti

(
F(ti,X

m
ti ) +DF(ti,X

m
ti )(X

m
u −Xm

ti )
)
du(3.1)

+Bσ(ti,X
m
ti )(Ws −Wti), s ∈ [ti, ti+1].

This scheme defines a sequence of measures (Pm)m≥1 on C([0, T ],Rnd) which is tight
and for which the continuity assumption on the coefficients and the sub-linearity
of the drift allow to identify that any limit P solves the martingale associated with
(Lt)t≥0 on [0, T ]. We refer to Section 6.1 of [SV79] for details. To derive the ex-
istence of a solution to the martingale problem on the whole positive line, we can
rely on a usual chaining in time argument, see e.g. Chapter 6 in [SV79].

3.1.2. Uniqueness under Assumption (D)-(a). To establish uniqueness and the
Krylov type control of Theorem 1, the key ingredient is to prove that an oper-
ator involving L and a suitable associated perturbation (based on the frozen pro-
cess/generators of Section 2) satisfy appropriate estimates. Namely, for ε ≥ 0
introduce:

Rεf(t,x) := (LtG̃
εf − M̃ε

t f)(t,x)(3.2)

=

∫ T

(t+ε)∧T
ds

∫
Rnd

dy(Lt − L̃s,yt )p̃iss,y(t, s,x,y)f(s,y),

with G̃εf, M̃εf and p̃s,y defined in (2.25), (2.30) and (2.7) respectively. From now
on, we also set Rf(t,x) = R0f(t,x). The aforementioned estimates are summarized
in the following general Lemma whose proof is postponed to the end of the current
section.

Lemma 9 (Pointwise and Lq
′ − Lp′ Control for Rε).

There exists q′0 := q′0((A)), p′0 := p′0((A)) s.t. for q′ ≥ q′0, p′ ≥ p′0, it holds that for
all (t,x) ∈ [0, T ]× Rnd and Rε as in (3.2):

(3.3) |Rεf(t,x)| ≤ C‖f‖Lq′ ([0,T ]×Rnd,Lp′ (Rnd)),

with C := C((A), T, p′0, q
′
0).

Also, for q′, p′ > 1 s.t. n2d
p′ + 2

q′ < 2, we have that for all f ∈ Lq
′
([0, T ] ×

Rnd, Lp′(Rnd)), uniformly in ε ∈ [0, ε0], ε0 small enough:

(3.4) ‖Rεf‖Lq′ ([0,T ]×Rnd,Lp′ (Rnd)) ≤ C‖f‖Lq′ ([0,T ]×Rnd,Lp′ (Rnd)),

with C := C((A), T, p′, q′) −→
T→0

0. In particular, equation (3.4) implies that the

operator I−Rε is invertible, with bounded inverse in Lq
′ −Lp′ , provided T is small

enough.

Having this result at hand, we are now in position to derive uniqueness of the mar-
tingale problem.

The first step of our approach consists in showing that any solution to the mar-
tingale problem satisfies the Krylov like density estimate of Theorem 1 for p′ and



20 PAUL-ERIC CHAUDRU DE RAYNAL AND STÉPHANE MENOZZI

q′ therein large enough but finite. Indeed, the first condition on p′, q′ precisely
allows us to take benefit from the pointwise control (3.3) in Lemma 9. Note that in
this setting, thanks to an approximation argument, the Krylov type estimate (1.5)
reduces to
(3.5)

∀f ∈ C∞0 ([0, T )× Rnd,R),

∣∣∣∣∣EP

[∫ T

t

f(s,Xt,x
s )ds

]∣∣∣∣∣ ≤ C(T )‖f‖Lq′ ([0,T ],Lp′ (Rnd)).

To establish the above control, we apply the Itô formula on the Green kernel G̃εf ,
for f in C∞0 ([0, T ) × Rnd,R), for ε small enough (depending on the support of f)
and the process Xt,x

s :

G̃εf(t,x) + E

[∫ T

t

(∂s + Ls)G̃
εf(s,Xt,x

s )ds

]

= G̃εf(t,x) +

∫ T

t

∫
Rnd

(∂s + Ls)G̃
εf(s,y)PXt,x

s
(dy)ds = 0,

where PXt,x
s

denotes the law of Xt,x
s . We exploit (2.31) to write:

G̃εf(t,x)−
∫ T

t

∫
Rnd

fε(s,y)PXt,x
s

(dy)ds(3.6)

+

∫ T

t

∫
Rnd

(LsG̃
εf − M̃ε

s f)(s,y)PXt,x
s

(dy)ds = 0,

where fε is defined in Lemma 7. Recall that thanks to Proposition 8 we have that
there exists C(T ) := C((A), T ) −→

T→0
0 s.t. for all (t,x) ∈ [0, T ] × Rnd and all

f ∈ Lq′([0, T ], Lp
′
(Rnd):

(3.7) |G̃εf(t,x)| ≤ C(T )‖f‖Lq′ ([0,T ],Lp′ (Rnd)).

As we assume that p′, q′ are large enough, the pointwise control (3.3) of Lemma
9 holds. From (3.6), (3.7) and (3.3) we hence readily get:

(3.8) |
∫ T

t

E[fε(X
t,x
s )]ds| ≤ C‖f‖Lq′ ([0,T ],Lp′ (Rnd)).

Letting ε go to zero, we thus derive from Lemma 6 that, for any solution P of the
martingale problem, provided p′, q′ are large enough, inequality (3.5) holds.

We are now in position to prove uniqueness to the martingale problem. Let P
be a solution and denote, thanks to the Krylov type estimate established above, its
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density by p(t, s,x,y). We have from (3.6) that: for f in C∞0 ([0, T )× Rnd,R)

−G̃εf(t,x)

= −EP

[∫ T

t

fε(s,X
t,x
s )ds

]
+ EP

[∫ T

t

Rεf(s,Xt,x
s )ds

]

= −
∫ T

t

∫
Rnd

fε(s,y)p(t, s,x,y)dyds+

∫ T

t

∫
Rnd

Rεf(s,y)p(t, s,x,y)dyds

= −
∫ T

t

∫
Rnd

(Iε −Rε)f(s,y)p(t, s,x,y)dyds,(3.9)

denoting by Iεf(s,y) := fε(s,y). It thus easily follows from Proposition 8, Lemmas

7 and 9 eq. (3.4) that both sides are continuous with respect to Lq
′ − Lp′ norm,

uniformly in ε. In particular, (3.9) holds for all f ∈ Lq′ −Lp′ . From Lemmas 7 and
9 we can apply (3.9) to (Iε −Rε)−1f and deduce, still from these Lemmas, that

(3.10) EP

[∫ T

t

f(s,Xt,x
s )ds

]
= G̃ ◦ (I −R)−1f(t,x),

by letting ε go to zero. This gives uniqueness for T small enough. Global well-
posedness is derived from a chaining in time argument.

To conclude the proof of Theorem 1, it now only remains to derive the Krylov

like density estimate (1.5) in full generality i.e. for any p′, q′ satisfying n2d
p′ + 2

q′ < 2

(whence not assuming that they are large enough and finite).
Assume first that both p′ and q′ are not large enough. We now consider, for

a parameter δ > 0, the SDE (1.1) with drift Fδ(t,x) :=
(
F(t, ·) ? Φδ

)
(x), where

Φδ(·) := δ−ndΦ(·/δ) with Φ ∈ C∞0 (Rnd,R+),
∫
Rnd Φ(z)dz = 1. It is known that,

denoting by Pδ the associated solution to the martingale problem, the canonical
process enjoys two-sided multi-scale Gaussian bounds similar to those of (2.8) (with
k = 0), see indeed again [DM10], [Men11], with constants possibly depending on δ.

Denoting by pδ(t, s,x,y) its density, similarly to (3.6) we get for any f in
C∞0 ([0, T )× Rnd,R),

G̃δ,εf(t,x)−
∫ T

t

∫
Rnd

fε(s,y)pδ(t, s,x,y)dyds(3.11)

+

∫ T

t

∫
Rnd

(LδsG̃
εf − M̃δ,ε

s f)(s,y)pδ(t, s,x,y)dyds = 0,

where in the above equation, G̃δ,εf, Lδs, M̃
δ,ε
s denote the frozen Green kernel, gen-

erator and frozen generator with mollified drift. Importantly, the pointwise bound
(3.7) on the Green kernel and the controls of Lemma 9 are uniform with respect to
this additional mollifying parameter.

Then, from (3.11) and Lemma 9, we deduce that

C(T )‖f‖Lq′ ([0,T ],Lp′ (Rnd))

(
1 + ‖pδ‖Lq̃′ ([0,T ],Lp̃′ (Rnd))

)
≥
∣∣∣∣ ∫ T

t

∫
Rnd

fε(s,y)pδ(t, s,x,y)dyds

∣∣∣∣,
where q̃′, p̃′ are the conjugate exponents of q′, p′ respectively.
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Using now Lemma 7 we get, for any f ∈ C∞0 ([0, T )× Rnd,R)

∣∣∣∣ ∫ T

t

∫
Rnd

f(s,y)pδ(t, s,x,y)dyds

∣∣∣∣
≤C(T )‖f‖Lq′ ([0,T ],Lp′ (Rnd))

(
1 + ‖pδ‖Lq̃′ ([0,T ],Lp̃′ (Rnd))

)
+ ‖f − fε‖Lq′ ([0,T ],Lp′ (Rnd))‖p

δ‖Lq̃′ ([0,T ],Lp̃′ (Rnd))

≤C(T )‖f‖Lq′ ([0,T ],Lp′ (Rnd))

(
1 + ‖pδ‖Lq̃′ ([0,T ],Lp̃′ (Rnd))

)
+

1

2
‖f‖Lq′ ([0,T ],Lp′ (Rnd))‖p

δ‖Lq̃′ ([0,T ],Lp̃′ (Rnd))

as soon as ε, possibly depending on f , is small enough. Up to an additional
density argument, this yields in particular from the Riesz representation theo-
rem that, for T small enough, ‖pδ‖Lq̃′ ([0,T ],Lp̃′ (Rnd)) ≤ C(T ). Thus, for any f

in Lq
′
([0, T ], Lp

′
(Rnd)):

∣∣∣∣∣
∫ T

t

∫
Rnd

f(s,y)pδ(t, s,x,y)dyds

∣∣∣∣∣ =

∣∣∣∣∣
∫ T

t

EPδ [f(s,Xt,x
s )]ds

∣∣∣∣∣
≤C(T )‖f‖Lq′ ([0,T ],Lp′ (Rnd)).

Estimate (3.5) is then obtained letting δ go to zero from the well posedness of the
martingale problem and Theorem 11.1.4 in [SV79].

Next, the case when q′ = p′ = ∞ is direct and the remaining cases are thus
q′ < +∞, p′ = ∞ and q′ = ∞, p′ < +∞. The first one is again direct. The
second follows from the fact that for any q′ ∈ (2 + ∞], ‖f‖Lq′ ([0,T ],Lp′ (Rnd)) ≤
‖f‖L∞([0,T ],Lp′ (Rnd))T

1/q′ . �

Proof of Lemma 9. We focus on the proof for Rf = R0f . The parameter ε does
not play here any role for the estimates. We have, by definition

Rf(t,x) =

∫ T

t

ds

∫
Rnd

dy(Lt − L̃s,yt )p̃s,y(t, s,x,y)f(s,y)

=:

∫ T

t

ds

∫
Rnd

dyH(t, s,x,y)f(s,y).(3.12)

Here, the operator H is the so-called backward parametrix kernel, see [MS67]. It
already appeared, in a similar form but under stronger smoothness assumptions in
[DM10, Men11].
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The bound (2.8) of Proposition 3 now yields that there exists C := C((A)) such
that:

|Rf(t,x)|

≤
∫ T

t

ds

∫
Rnd

dy|f(s,y)|

{∣∣∣F1(t,x)− F1(t,θt,s(y))
∣∣∣|Dx1 p̃

s,y(t, s,x,y)|

+

n∑
i=2

{∣∣∣Fi(t,x)−
(
Fi(t,θt,s(y))−Dxi−1

Fi(t,θt,s(y))(x− θt,s(y))i−1

)∣∣∣
× |Dxi p̃

s,y(t, s,x,y)|
}

+ |a(t,x)− a(t,θt,s(y))||D2
x1
p̃s,y(t, s,x,y)|

}

≤C
∫ T

t

ds

∫
Rnd

dy|f(s,y)|

{(
1 + |x− θt,s(y)|

)
(s− t) 1

2

+

n∑
i=2

{[∣∣∣Fi(t,x)− Fi(t, xi−1,θt,s(y)i:n)
∣∣∣

+
∣∣∣Fi(t, xi−1,θt,s(y)i:n)−

(
Fi(t,θt,s(y))−Dxi−1

Fi(t,θt,s(y))(x− θt,s(y))i−1

)∣∣∣]
× 1

(s− t)(i−1)+ 1
2

}
+
|x− θt,s(y)|η

s− t

}
exp

(
−C−1(s− t)|T−1

s−t(x− θt,s(y))|2
)

(s− t)n
2d
2

,

where we have denoted for z ∈ Rnd, zi:n = (zi, · · · , zn) ∈ R(n−(i−1))d. From (A)
and (1.3) we thus derive, up to a modification of C:

|Rf(t,x)| ≤ C
∫ T

t

ds

∫
Rnd

dy|f(s,y)|

{(
(s− t)− 1

2 + (s− t) 1
2 |T−1

s−t(x− θt,s(y))|
)

+

n∑
i=2

{[ n∑
j=i

( |(x− θt,s(y))j |
(s− t)j− 1

2

)βji
(s− t)β

j
i (j− 1

2 )

+
( |(x− θt,s(y))i−1|

(s− t)(i−1)− 1
2

)1+η

(s− t)(i− 3
2 )(1+η)

∣∣∣] 1

(s− t)i− 1
2

}
+

(
(s− t) 1

2 |T−1
s−t(x− θt,s(y))|

)η
(s− t)1− η2

}
exp

(
−C−1(s− t)|T−1

s−t(x− θt,s(y))|2
)

(s− t)n
2d
2

.

In the above equation we put each contribution coming from the difference of the
generators at its intrinsic scale w.r.t. exponential bounds. In other words, the
terms:

( |(x− θt,s(y))j |
(s− t)j− 1

2

)βji ≤
(
(s− t) 1

2 |T−1
s−t(x− θt,s(y))|

)βji ,( |(x− θt,s(y))i−1|
(s− t)(i−1)− 1

2

)1+η

≤
(
(s− t) 1

2 |T−1
s−t(x− θt,s(y))|

)(1+η)
,
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can be absorbed by the exponential. Therefore,

|Rf(t,x)| ≤ C

{
n∑
i=2

n∑
j=i

∫ T

t

ds

(s− t)i− 1
2−β

j
i (j− 1

2 )

∫
Rnd

dyp̄C−1(t, s,x,y)|f(s,y)|

+

∫ T

t

ds

(s− t)1− η2

∫
Rnd

dyp̄C−1(t, s,x,y)|f(s,y)|

+

n∑
i=2

∫ T

t

ds

(s− t)1−η(i− 3
2 )

∫
Rnd

dyp̄C−1(t, s,x,y)|f(s,y)|

}
.(3.13)

Note carefully that the condition (1.3) precisely gives that for all i ∈ [[2, n]], j ∈
[[i, n]], 1−{(i− 1) + 1

2 −β
j
i (j− 1 + 1

2 ) > 0 so that all the above time singularity are
integrable. Note also that, thanks to Lemma 5 (almost equivalence on the flows):
(3.14)∫

Rnd
dyp̄C−1(t, s,x,y) =

∫
Rnd

dy
exp

(
−C−1(s− t)|T−1

s−t(x− θt,s(y))|2
)

(s− t)n
2d
2

≤ C3.14.

The results in (3.3) and (3.4) now follow from (3.13) and the following key
Lemma.

Lemma 10 (Lq
′ − Lp′ Controls for the singularized Green kernel). Introduce for

f ∈ Lq′
(
[0, T ], Lp

′
(Rnd)

)
, with p′, q′ > 1 and some γ ∈ [0, 1) the quantify:

(3.15) Nγf(t,x) :=

∫ T

t

ds

(s− t)γ

∫
Rnd

dyp̄C−1(t, s,x,y)|f(s,y)|.

There exists q′0 := q′0(γ) ≥ 1, p′0 := p′0(γ) ≥ 1 and C := C((A), T, p′0, q
′
0) s.t. for

q′ ≥ q′0, p′ ≥ p′0, it holds that for all (t,x) ∈ [0, T ]× Rnd:

Nγf(t,x) ≤ C‖f‖Lq′ ([0,T ]×Rnd,Lp′ (Rnd)).

Also, there exists C(T ) := C(T, (A), γ) −→
T→0

0 s.t. for all f ∈ Lq′
(
[0, T ], Lp

′
(Rnd)

)
,

‖Nγf‖Lq′ ([0,T ],Lp′ (Rnd)) ≤ C(T )‖f‖Lq′ ([0,T ],Lp′ (Rnd)).

�

Proof of Lemma 10. Let us first start with the pointwise estimate. For all (t,x) ∈
[0, T )× Rnd, denoting by p̃′, q̃′ the conjugate exponents of p′, q′, write:

Nγf(t,x) ≤
(∫ T

t

ds

(s− t)q̃′γ
( ∫

Rnd
dyp̄C−1(t, s,x,y)p̃

′) q̃′
p̃′
) 1
q̃′ ‖f‖Lq′ ([0,T ],Lp′ (Rnd))

≤ C

∫ T

t

ds

(s− t)q̃
′(γ+n2d

2 (1− 1
p̃′ ))
‖f‖Lq′ ([0,T ],Lp′ (Rnd)).

It is thus clear that the pointwise statement of the lemma is fulfilled if p′, q′ are large
enough, in order to guarantee that, for (p̃′)−1 + (p′)−1 = 1, (q̃′)−1 + (q′)−1 = 1,

p̃′, q̃′ are sufficiently close to 1 to have q̃′(γ + n2d
2 (1− 1

p̃′ )) < 1.

Let us now turn to the estimate in Lq
′
([0, T ], Lp

′
(Rnd)) norm. Setting

Kt,s,γ ? f(s,x) :=
1

(s− t)γ

∫
Rnd

dyp̄C−1(t, s,x,y)f(s,y)dy,
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we derive from (3.15) and the triangle inequality:
(3.16)∥∥∥Nγf(t, ·)

∥∥∥
Lp′ (Rnd)

=
∥∥∥∫ T

t

dsKt,s,γ?f(s, ·)
∥∥∥
Lp′ (Rnd)

≤
∫ T

t

ds‖Kt,s,γ?f(s, ·)‖Lp′ (Rnd).

From usual L1 − Lp′ convolution arguments we also get:

‖Kt,s,γ ? f(s, ·)‖Lp′ (Rnd) ≤
C

(s− t)γ
‖f(s, ·)‖Lp′ (Rnd).

Plugging this estimate into (3.16) and using the Hölder inequality with exponents
q′, q̃′ > 1 s.t. (q′)−1 + (q̃′)−1 = 1 we obtain:∫ T

0

dt‖Nγf(t, ·)‖q
′

Lp′ (Rnd)
≤ C

∫ T

0

dt
(∫ T

t

ds

(s− t)γ
‖f(s, ·)‖Lp′ (Rnd)

)q′
≤ CT

∫ T

0

dt

∫ T

t

ds
C

(s− t)γ
‖f(s, ·)‖q

′

Lp′ (Rnd)
,

where CT := C((A), p′, q′, T ) denotes a constant which is small as T is. From the
Fubini Theorem we eventually derive∫ T

0

dt‖Nγf(t, ·)‖q
′

Lp′ (Rnd)
≤ CT

∫ T

0

ds‖f(s, ·)‖q
′

Lp′ (Rnd)

∫ s

0

dt
C

(s− t)γ

≤ CT ‖f‖q
′

Lq′ ([0,T ],Lp′ (Rnd))
,

up to a modification of CT in the last inequality. �

Hence, using the above control in (3.13) yields:

‖Rf‖Lq′ ([0,T ],Lp′ (Rnd)) ≤ CT ‖f‖Lq′ ([0,T ],Lp′ (Rnd)).

This concludes the proof of Lemma 9. �

3.2. Existence and uniqueness under (D)-(b) and (c). Since in that setting
no continuity is assumed on F1 we will derive the well posedness through Girsanov
arguments. It therefore clearly appears that the dynamics with 0 drift on the first
non-degenerate component, and its associated linearization, plays a key role. We
first introduce some notations used throughout this section.

We first define for all x ∈ Rnd, F̄(t,x) := (0, F2(t,x), · · · , Fn(t,x)), where F̄
satisfies (S) and (H). Recall from Theorem 1 that, under (A)-(a), weak uniqueness
holds for the SDE:

(3.17) dX̄t = F̄(t, X̄t)dt+Bσ(t, X̄t)dWt.

For fixed (T,y) ∈ R+ × Rnd, we consider the following deterministic system to
define our Gaussian proxy:

(3.18)
.

θ̄t,T (y) = F̄(t, θ̄t,T (y)), θ̄T,T (y) = y,

and
d

dt
˜̄φt = F̄(t, θ̄t,T (y)) +DF(t, θ̄t,T (y))[˜̄φt − θ̄t,T (y)], t ≥ 0.
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Again, in (3.18), we consider a Cauchy-Peano flow furnished by Lemma 4 and which
also satisfies the equivalence of rescaled norms of Lemma 5. The dynamics of the
linearized Gaussian process associated with (3.17) writes:
(3.19)

d ˜̄XT,y
t =

(
F̄(t, θ̄t,T (y)) +DF̄(t, θ̄t,T (y))( ˜̄XT,y

t − θ̄t,T (y))
)
dt+Bσ(t, θ̄t,T (y))dWt,

and we denote the associated generator by ( ˜̄LT,yt )t∈[0,T ] and by ˜̄pT,y(t, s,x, ·) the
corresponding density at times s > t when the process starts in x at time t.

We point out that, with respect to the previously used notations, we choose to
keep track of the driftless dynamics for F1 adding bars on the associated objects:
dynamics, generators, density.

For our strategy, recall that we aim at proving uniqueness for the initial SDE
(1.1) through the well posedness of the martingale problem associated with (Lt)t≥0.
Once existence is known, the point is that we use a different Gaussian proxy than
previously, namely the one considered in (3.19) associated with the driftless dy-
namics on the first component.

3.2.1. Existence and Uniqueness under Assumption (D)-(b). Under (b) (bounded
measurable drift F1 on the non-degenerate component), existence is a direct conse-
quence of the Girsanov theorem. We thus now focus on uniqueness.

Repeating the previous approach (see subsection 3.1.2), using the family of ran-

dom variables ( ˜̄Xs,y
s )s∈[t,T ] defined in (3.19) with ˜̄Xs,y

t = x as Gaussian proxys, we
have to bound analogously to the estimate of Lemma 9:

Rf(t,x) :=

∫ T

t

ds

∫
Rnd

dy(Lt − ˜̄Ls,yt )˜̄ps,y(t, s,x,y)f(s,y)(3.20)

=

∫ T

t

ds

∫
Rnd

dy
{

(Lt − L̄t) + (L̄t − ˜̄Ls,yt )
}

˜̄ps,y(t, s,x,y)f(s,y)

=: R̄f(t,x) + R̄f(t,x),

where

R̄f(t,x) :=

∫ T

t

ds

∫
Rnd

dy(L̄t − ˜̄Ls,yt )˜̄ps,y(t, s,x,y)f(s,y),

and

R̄f(t,x) :=(R− R̄)f(t,x) =

∫ T

t

ds

∫
Rnd

dy(Lt − L̄t)˜̄ps,y(t, s,x,y)f(s,y)(3.21)

=

∫ T

t

ds

∫
Rnd

dy〈F1(t,x), Dx1
˜̄ps,y(t, s,x,y)〉f(s,y).

From Lemma 9, we have already shown that R̄f(t,x) is controlled in Lq
′ − Lp

′

norm. It thus suffice to investigate the behavior of the Lq
′ − Lp′ norm of R̄f(t,x)

defined by (3.21). Namely, our goal is to prove that

(3.22) ‖R̄f‖Lq′ ([0,T ],Lp′ (Rnd)) ≤ C(T )‖f‖Lq′ ([0,T ],Lp′ (Rnd)), with C(T ) −→
T→0

0.

Since from (2.8) and (3.21) we have for all (t,x) ∈ [0, T ]× Rnd:

|R̄f(t,x)| ≤ C
∫ T

t

ds

(s− t) 1
2

∫
Rnd

dy
exp

(
−C−1(s− t)|T−1

s−t(x− θ̄t,s(y))|2
)

(s− t)n
2d
2

|f(s,y)|.

The estimate (3.22) then readily follows from Lemma 10.
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3.2.2. Existence and Uniqueness under Assumption (D)-(c). We choose in this
paragraph to address first the uniqueness, which is a rather direct extension of our
previous approach, whereas the existence is a bit involved and requires to exploit
the Krylov like inequality (1.5) that has been established for the process (X̄t)t≥0

with 0 drift in the non-degenerate component introduced in (3.17).
Uniqueness under Assumption (D)-(c). With the notations of the previous

paragraph it remains to control, in Lq
′−Lp′ norm, the contribution R̄f introduced

in (3.21). The term R̄f in (3.20) is again controlled as under assumption (D)-(a).
Similarly to the previous paragraph (see also (2.8) and (3.21)), we have:

|Dx1
˜̄ps,y(t, s,x,y)| ≤ C

(s− t)n
2d
2 + 1

2

× exp

(
−C

−1

2
(s− t)|T−1

s−t(x− θ̄t,s(y))|2
)

≤ C

(s− t) 1
2

p̄C−1(t, s,x,y).(3.23)

Uniqueness then follows from the following lemma which can be viewed as a re-
finement of Lemma 10 and explicitly exploits the condition on p and q stated in
(D)-(c).

Lemma 11 (Refined Lq − Lp control of singularized Green kernels).
Introduce for all f, F1 ∈ Lq

(
[0, T ], Lp(Rnd)

)
and (t,x) ∈ [0, T ]× Rnd,

(3.24) uF1
(t,x) := F1(t,x)

∫ T

t

ds

(s− t) 1
2

∫
Rnd

p̄C−1(t, s,x,y)f(s,y)dy.

Then, for all p ≥ 2, q > 2 s.t. n2d
p + 2

q < 1, there exists C(T ) := C(T, (A), p, q) −→
T→0

0 s.t. for all f, F1 ∈ Lq
(
[0, T ], Lp(Rnd)

)
‖uF1

‖Lq([0,T ],Lp(Rnd)) ≤ C(T )‖F1‖Lq([0,T ],Lp(Rnd))‖f‖Lq([0,T ],Lp(Rnd)).

�

Proof of Lemma 11. With the notations of Lemma 10 rewrite:

uF1
(t,x) = F1(t,x)

∫ T

t

ds

(s− t) 1
2

∫
Rnd

p̄C−1(t, s,x,y)f(s,y)dy

=: F1(t,x)

∫ T

t

dsKt,s, 12
? f(s,x).(3.25)

The triangle inequality yields:
(3.26)∥∥∥∫ T

t

dsF1(t, ·)Kt,s, 12
? f(s, ·)

∥∥∥
Lp(Rnd)

≤
∫ T

t

ds‖F1(t, ·)Kt,s, 12
? f(s, ·)‖Lp(Rnd).

The idea is here to reproduce the computations of Lemma 10 integrating directly the
singularized heat-kernel, i.e. Kt,s, 12

, in the y variable when performing the Hölder

inequality in order to make the product of the norms ‖f(s, ·)‖Lp(Rnd)‖F1(t, ·)‖Lp(Rnd)
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appear. Precisely:

‖F1(t, ·)Kt,s, 12
? f(s, ·)‖Lp(Rnd)

=
(∫

Rnd
dx|F1(t,x)|p

∣∣∣ ∫
Rnd

dyKt,s, 12
(x,y)f(s,y)

∣∣∣p) 1
p

≤
(∫

Rnd
dx|F1(t,x)|p

{∫
Rnd

dy|f(s,y)|p
}{∫

Rnd
dy|Kt,s, 12

(x,y)|p̃
} p
p̃
) 1
p

,

where again p−1 + (p̃)−1 = 1. Observe now that usual Gaussian calculations give
that there exists Cp > 0 such that, for all x in Rnd:{∫

Rnd
dy|Kt,s, 12

(x,y)|p̃
} 1
p̃ ≤ Cp

(s− t)
n2d
2

1
p+ 1

2

.

Thus,

‖F1(t, ·)Kt,s, 12
? f(s, ·)‖Lp(Rnd) ≤ ‖F1(t, ·)‖Lp(Rnd)‖f(s, ·)‖Lp(Rnd)

Cp

(s− t)
n2d
2

1
p+ 1

2

,

(3.27)

which yields from (3.26) that:∥∥∥∫ T

t

dsF1(t, ·)Kt,s, 12
? f(s, ·)

∥∥∥
Lp(Rnd)

≤ Cp
∫ T

t

ds

(s− t)
n2d
2

1
p+ 1

2

‖F1(t, ·)‖Lp(Rnd)‖f(s, ·)‖Lp(Rnd).

From the definition in (3.25) we eventually derive that:∫ T

0

dt‖uF1(t, ·)‖q
Lp(Rnd)

≤ Cqp
∫ T

0

‖F1(t, ·)‖q
Lp(Rnd)

(∫ T

t

ds

(s− t)(n
2d
2

1
p+ 1

2 )q̃

) q
q̃ ∫ T

t

ds‖f(s, ·)‖q
Lp(Rnd)

≤ Cqp‖F1‖qLq([0,T ],Lp(Rnd))
‖f‖q

Lq([0,T ],Lp(Rnd))

(∫ T

t

ds

(s− t)(n
2d
2

1
p+ 1

2 )q̃

) q
q̃

,

(3.28)

with q−1 + (q̃)−1 = 1. Let us now show that the remaining time integral in the
above equation gives a small contribution in times. To do so, it suffices to show

that (n
2d
2

1
p + 1

2 )q̃ < 1. Since (q̃)−1 = 1− 1
q , we have that:

(n2d

2

1

p
+

1

2

)
q̃ < 1 ⇐⇒ n2d

2

1

p
+

1

2
< 1− 1

q
⇐⇒ n2d

p
+

2

q
< 1,

which is precisely the condition appearing in (D)-(c) and assumed in the current
Lemma. �
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Existence under Assumption (D)-(c). We here consider a function F1 ∈ Lq([0, T ],
Lp(Rnd)), where p, q are as in (D)-(c). To prove the existence, the strategy is to
exploit the idea introduced by Portenko [Por90] and used by Krylov and Röckner
[KR05] as well to build local weak solutions (before they also establish that they are
actually strong solutions) in the non-degenerate case. We also refer for perturbed
degenerate Ornstein-Uhlenbeck dynamics to [FFPV17] and [Zha18]. We adapt a
bit this approach.

Recall that for the process (X̄t)t≥0 introduced in (3.17) we have from Theorem
1, equation (1.5), the following density estimate.

Denoting by P̄ (t, s,x, ·) the transition probability determined by (L̄s)s≥0, it is
s.t. for a given T > 0, almost all s ∈ (t, T ] and all Γ ∈ B(Rnd): P̄ (t, s,x,Γ) =∫

Γ
p̄(t, s,x,y)dy. More specifically, for any f ∈ Lq

′
([0, T ], Lp

′
(Rnd)), n

2d
p′ + 2

q′ <

2, p′ > 1, q′ > 1, and (t,x) ∈ [0, T ]× Rnd:
(3.29)∣∣∣ĒP̄t,x

[ ∫ T

t

f(s, X̄s)ds
]∣∣∣ ≤ C3.29‖f‖Lq′ ([0,T ],Lp′ (Rnd)), C3.29 := C3.29((A), p′, q′, T ).

We now state an exponential integrability result for the unique weak solution of
(3.17). Such types of estimates were first proved by Khas’minskii in [Kha59] for the
Brownian motion. We can also refer to Lemma 2.1 in Chapter 1 of the monograph
by Sznitman [Szn98]. Since the proof only relies on the Markov property, it readily
extends to the current inhomogeneous and non-Brownian framework.

Lemma 12 (Khas’minskii’s type exponential integrability). Let (X̄t)t≥0 be the
(unique-weak) solution to (3.17). Then, for any fixed T > 0 and a positive Borel
function f : [0, T ]× Rnd → R+ s.t.

αT := sup
x∈Rnd

ĒP̄0,x

[∫ T

0

f(s, X̄s)ds

]
< 1,

one also has:

sup
x∈Rnd

ĒP̄0,x

[
exp

(∫ T

0

f(s, X̄s)ds

)]
<

1

1− αT
.

As a corollary to the previous Lemma we obtain the following proposition which
will allow to apply the Girsanov Theorem to derive the existence of a solution to the
martingale problem under the assumption (D)-(c) through a change of probability.

Proposition 13 (Exponential integrability). Let (X̄t)t≥0 be the (unique-weak)

solution to (3.17). Let F1 ∈ Lq([0, T ], Lp(Rnd)) with n2d
p + 2

q < 1, p ≥ 2, q > 2.

Then, for any λ > 0, there exists KF1,λ := KF1,λ((A), T ) s.t.

(3.30) sup
x∈Rnd

ĒP̄0,x

[
exp

(
λ

∫ T

0

|(σ−1F1)(s, X̄s)|2ds

)]
≤ KF1,λ.

The constant KF1,λ depends continuously on ‖F1‖Lq([0,T ],Lp(Rnd)) and λ.

We point out that in the above Proposition, the case p = 2 can only be considered
in the scalar non-degenerate case d = n = 1.
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Proof. Observe that for a > 1 s.t. a(n
2d
p + 2

q ) < 1, setting p′ = p
2a , q

′ = q
2a , so that

indeed n2d
p′ + 2

q′ < 2, one has:

‖ |σ−1F1|2a ‖Lq′ ([0,T ],Lp′ (Rnd)) =
(∫ T

0

dt
{∫

Rnd
dx(|(σ−1F1)(t,x)|2a)p

′
} q′
p′
) 1
q′

≤ κa
(∫ T

0

dt
{∫

Rnd
dx|F1(t,x)|p

} q
p
) 2a
q ≤ κa‖F1‖2aLq([0,T ],Lp(Rnd)).

From equation (3.29) we thus derive that for all x ∈ Rnd:∣∣∣ĒP̄0,x [

∫ T

0

|σ−1F1(s, X̄s)|2ads]
∣∣∣(3.31)

≤ C3.29‖ |σ−1F1|2a ‖Lq′ ([0,T ],Lp′ (Rnd)) ≤ C3.29κ
a‖F1‖2aLq([0,T ],Lp(Rnd)).

For a as above, write now for ε ∈ (0, 1) and from the Young inequality:

ĒP̄0,x

[
exp

(
λ

∫ T

0

|(σ−1F1)(s, X̄s)|2ds

)]

≤ ĒP̄0,x

[
exp

(
λ

∫ T

0

|(σ−1F1)(s, X̄s)|2a
ε

a
ds

)]
C(T, a, ε, λ).

The statement now directly follows from the above equation, (3.31) and Lemma 12
taking ε := (2λC3.29κ

a‖ F1‖2aLq([0,T ],Lp(Rnd)))
−1. �

Proposition 13 ensures that the Novikov condition is fulfilled in order to prove
existence for the martingale problem associated with (Lt)t≥0 for F1 satisfying (D)-
(c) starting from P̄0,x and the associated dynamics (3.17) of the canonical process.
Set,

W̃t := Wt −
∫ t

0

(σ−1F1)(s, X̄s)ds, t ∈ [0, T ].

From Proposition 13, we derive that:

Mt := exp

(∫ t

0

(σ−1F1)(s, X̄s)dWs −
1

2

∫ t

0

|(σ−1F1)(s, X̄s)|2ds
)
, t ∈ [0, T ]

is a P̄-Ft martingale (here (Fs)s∈[0,T ] stands for the natural filtration associated

with the canonical process (X̄s)s∈[0,T ] under P̄). It follows from the Girsanov theo-

rem that (W̃t)t∈[0,T ] is a Wiener process on (Ω,FT , (Fs)s∈[0,T ],P) where [dP/dP̄]
∣∣
FT

:= MT . The dynamics of (X̄s)s∈[0,T ], writes under P:

dX̄t =
(
BF1(t, X̄t) + F̄(t, X̄t)

)
dt+Bσ(t, X̄t)dW̃t = F(t, X̄t)dt+Bσ(t, X̄t)dW̃t,

that is (X̄t)t∈[0,T ] solves (1.1) under P.

3.3. Krylov bounds under (D)-(b) and (c). We aim here at proving estimate
(1.5) under assumptions (D)-(b) and (c). We mainly focus on case (c) which is the
more involved. Case (b) can indeed be derived from the methodology developed
under (D)-(a) and the controls obtained in Section 3.2.1 or alternatively following
the approach presented below for (D)-(c) which remains valid for a bounded drift
on the non-degenerate component.
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Thanks to Proposition 13, the proof of the Krylov bound (1.5) is similar to the
proof of Lemma 3.3 in [KR05]. We provide a complete proof in our context for the
sake of completeness.

Write now for f ∈ Lq
′
([0, T ], Lp

′
(Rnd)), n

2d
p′ + 2

q′ < 2, p′ > 1, q′ > 1, (t,x) ∈
[0, T ]× Rnd with the notations of the previous paragraph:

|EPt,x [

∫ T

t

f(s,Xs)ds]| =
∣∣∣ĒP̄t,x

[MT

Mt

∫ T

t

f(s,Xs)ds
]∣∣∣

≤ ĒP̄t,x
[(MT

Mt

)α] 1
α

T
1
α

(
ĒP̄t,x

[ ∫ T

t

|f(s, X̄s)|βds
]) 1

β

,

where α−1 + β−1 = 1, α > 1, β > 1. We have from Proposition 13 that the
exponential martingale has moments of all orders so that there exists CT > 0, with
CT → 0 when T → 0 such that:

|EPt,x [

∫ T

t

f(s,Xs)ds]| ≤CT
(
ĒP̄t,x

[ ∫ T

t

|f(s, X̄s)|βds
]) 1

β

≤ CT ‖|f |β‖
1
β

Lq′′ ([0,T ],Lp′′ (Rnd))

≤ CT ‖f‖Lq′′β([0,T ],Lp′′β(Rnd)),

if p′′, q′′ ∈ [1,+∞] are s.t. n2d/p′′ + 2/q′′ < 2. Taking β > 1 sufficiently close to
1 s.t. the previous condition holds for p′′ = p′/β, q′′ = q′/β eventually yields the
result.

4. Counter example

This section is devoted to the almost sharpness of the thresholds appearing in
Theorem 1. This is the purpose of Theorem 2 which we now prove. We only focus
here on the statement concerning the almost sharpness of the Hölder exponents βji ,
i ≤ j in [[2, n]]2 in (1.3). Indeed, as emphasized in the introduction, the sharpness
of Lq − Lp integrability conditions on the first component F1 of the drift follows
from Example 69 of [BFGM19] (see also Proposition 3.3 of [GO13]). We eventually
recall that, the almost sharpness of the coefficients βii , i in [[2, n]], has been already
proved in [CdR18].

Let us first introduce the main idea of our counter example. As we already
discussed, the Peano system (1.2) is ill posed as soon as α is in (0, 1) and Y starts
from 0 and well posed (in a strong sense) as soon as it is suitably perturbed. In
[DF14], the authors show that, in order to regularize, there must exist a transition
time strictly less than one such that, before this time, the noise dominates in the
dynamics of the system and therefore allows the solution to leave the singularity.
This competition can be written explicitly and gives the following (heuristic) rule:
the fluctuations of order γ of the noise added in the system has to be strictly lower
than 1/(1− α). We formalize these facts with our Proposition 14 below.

This proposition will be the key tool to handle each Hölder threshold which
depends on the component and the variable. Hence, in order to exhibit the (almost)
optimal threshold for the drift of the ith component with respect to the jth variable
we need to build an ad hoc Peano-like example. Focusing on the ith component
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and the jth variable, for i ∈ [[2, n]] and j ∈ [[i, n]], we consider:

ẋ1
t = ẋ2

t = . . . = ẋi−1
t = 0

ẋit = sign(xjt )|x
j
t |β

j
i

ẋi+1
t = xit, . . . , ẋ

j
t = xj−1

t

ẋj+1
t = ẋj+2

t = . . . = ẋnt = 0

t ≥ 0,

and xl0 = 0 for all l in [[1, j]]. Each entry (xkt )t≥0,k∈[[1,n]] of the above dynamics is
scalar. It is well seen that the global well posedness of this system relies on the well

posedness of the ith equation whose extremal solutions write±cij
βji
t((j−i)β

j
i+1)/(1−βji ),

for some positive cij
βji

. For the considered initial point x0 = (x1
0, · · · , xn0 ) = (0, · · · , 0),

the above dynamics can be rewritten in short as:

dxt = [Axt + F ji (xt)]dt, A =



0 · · · · · · · · · 0

1 0 · · · 0
...

0 1 0
...

...
...

. . .
. . . 0

...
0 · · · 0 1 0


,

where F ji (x) = eisign(xj)|xj |β
j
i and ei is the ith vector of the canonical basis of Rn.

In that case, the corresponding stochastic perturbation has the form

(4.1) dXt = [AXt + F ji (Xt)]dt+BdWt,

This in particular means that the perturbation of the ith component is done by
the (i−1)th iterated integrals (in time) of Brownian motion. Thus, focusing on the
ith level of the chain and the jth component this means that we are interested in
the following type of SDE

Zi,jt = x+Wi
t

(4.2)

+

∫ t

0

sign

(∫ s

0

. . .

∫ si+2

0

Zi,jsi+1
dsi+1 . . . dsj

)∣∣∣∣∣
∫ s

0

. . .

∫ si+2

0

Zi,jsi+1
dsi+1 . . . dsj

∣∣∣∣∣
βji

ds

where Wi will be chosen as the (i − 1)th iterated integral in time of Brownian
motion. The non-uniqueness in law for equation (4.2) will then follow from the
next proposition.

Proposition 14 (Failure of the well posedness for the regularized Peano system).
Let W be a random process with continuous paths satisfying, in law, an invariance
by symmetry and a self-similarity property of order γ > 0. Namely:

(Wt, t ≥ 0)
(law)
= (−Wt, t ≥ 0), ∀ρ > 0, (Wρt)t≥0

(law)
= (ργWt)t≥0.
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Suppose moreover that E[sups∈[0,1] |Ws|] < +∞ and that W and α < 1 are such
that there exists a weak solution to the following SDE:
(4.3)

Zt = x+

∫ t

0

sign

(∫ s

0

. . .

∫ s2

0

Zs1ds1 . . . dsk

)∣∣∣∣∣
∫ s

0

. . .

∫ s2

0

Zs1ds1 . . . dsk

∣∣∣∣∣
α

ds+Wt,

for any initial condition x ≥ 0 where k ∈ N is given and that it satisfies the
Kolmogorov criterion.

Then, if α < (γ − 1)/(k + γ), uniqueness in law fails for (4.3).

Turning now to our claim, it is clear that for βji > 0 (4.2), admits for all initial
condition x≥0 at least one solution which satisfies the Kolmogorov Criterion. Our
statement concerning the non uniqueness in law for the solution of (4.2) then readily

follows from Proposition 14. Taking α = βji , W = Wi, which corresponds to the
(i − 1)th iterated integrals (in time) of Brownian motion and therefore induces to
take γ = i− 1

2 , and k = j − i, we deduce that weak uniqueness fails as soon as

βji <
2i− 3

2j − 1
.

It now remains to prove Proposition 14.

Proof of Proposition 14. Consider the extremal solutions of the deterministic so-
lutions associated with (4.3), that correspond to the case Wt = 0 and write
±cα,kt(kα+1)/(1−α). The crucial point consists in comparing the fluctuations of
the noise in the dynamics of (4.3) with the extremal solution of the associated
Peano Example. The proof follows the lines of [CdR18] but we decide to reproduce
it here for the sake of completeness.

For a given parameter β ∈ (0, 1), we define for any continuous path Y from R+

to R the variable τ(Y ) as

τ(Y ) = inf{t ≥ 0 : Yt ≤ (1− β)cα,kt
(kα+1)/(1−α)}.

The stopping time τ(Y ) then corresponds to the first passage of Y below a threshold
related to the (positive) extremal solution of the deterministic Peano system. Then,
the key point to the proof of Proposition 14 is the following Lemma.

Lemma 15. Let Z be a weak solution of (4.3) starting from some x > 0 and
suppose that α < (γ − 1)/(k + γ). Then, there exists a positive ρ, depending on α,
β, γ and E|W1| only, such that

Px(τ(Z) ≥ ρ) ≥ 3/4.(4.4)

Roughly speaking, the result tells us that, when the noise in the system is not
strong enough, the solution from above the (positive) extremal solution will remain
above with great probability. If weak uniqueness holds, the symmetry property
implies that any solution from below the (negative) extremal solution will remain
below with great probability. Letting the starting point tend to 0 (i.e. to the sin-
gularity) this leads to a contradiction. Together with the above Lemma, this last
fact will allow us to conclude our counter-example.

Let (Z,W) be a weak solution of (4.3) with the initial condition x = 0. Then,
(−Z,−W) is also a weak solution of (4.3) so that, if uniqueness in law holds, Z
and −Z have the same law.
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Let Zn be a sequence of weak solutions of (4.3) starting from 1/n, n being a
positive integer and (P1/n)n≥0 its law. Thanks to Kolmogorov’s criterion, we can
extract a converging subsequence (P1/nk)k≥0 that converges to P0, the law of the
weak solution Z of (1.2) starting from 0. Since the bound in (4.4) does not depend
on the initial condition we get that

P0(τ(Z) ≥ ρ) ≥ 3/4,

and, thanks to uniqueness in law

P0(τ(−Z) ≥ ρ) ≥ 3/4,

which is obviously impossible.
�

Proof of Lemma 15. Let Z be a weak solution of (4.3) starting from x > 0. Since
it has continuous path, we have almost surely that τ(Z) > 0. Then, note that for
t ∈ [0, τ(Z)] we have:

Zt = x+

∫ t

0

sign

(∫ s

0

. . .

∫ s2

0

Zs1ds1 . . . dsk

)∣∣∣∣∣
∫ s

0

. . .

∫ s2

0

Zs1ds1 . . . dsk

∣∣∣∣∣
α

ds+Wt

≥ (1− β)αc̄α,kt
(kα+1)/(1−α) +Wt,

for some positive constant c̄α,k. Indeed, from the very definition of τ(Z), one

gets Zs1 ≥ (1 − β)cα,ks
(kα+1)/(1−α)
1 , which once integrated in time and taking the

αth power yields a lower bound of the form (1 − β)αcαα,kc
α
α,kt

α(k+(kα+1)/(1−α)) =

(1 − β)αcαα,kc
α
α,kt

α(k+1)/(1−α) for some additional constant cα,k > 0 related to the
iterated time integration, recalling that α < 1 and that t is small for the last
inequality. One sets eventually c̄α,k := cαα,kc

α
α,k.

Hence, choosing η such that (1 − η) = [(1 − β)α + (1 − β)]/2, we observe that
β − η + 1− η = (1− β)α and we get that:

Zt ≥ (1− η)c̄α,kt
(kα+1)/(1−α) + (β − η)c̄α,kt

(kα+1)/(1−α) +Wt,

for all t in [0, τ(Z)].
Let now ρ be a positive number to be specified later on. Set c̃α,k = (β − η)c̄α,k

and define

A =
{
c̃α,kt

(kα+1)/(1−α) +Wt > 0 for all t in (0, ρ]
}
.

The event A allows us to compare the fluctuations of the noise and those of the
(positive) extremal solution. More precisely, it is the set of realizations for which
the amount of noise in the system is lacking. Note that on A we have

Zt ≥ (1− η)c̄α,kt
(kα+1)/(1−α) ≥ (1− β)c̄α,kt

(kα+1)/(1−α)

for all t in [0, ρ], recalling that α, β ∈ (0, 1) for the last inequality. But this is
compatible only with the event {τ(Z) ≥ ρ} so that A ⊂ {τ(Z) ≥ ρ}. Hence

(4.5) P(τ(Z) ≥ ρ) ≥ P(A).
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It remains to choose ρ > 0 such that P(A) ≥ 3/4. Write:

P(A) =P[∀t ∈ (0, ρ], c̃α,kt
kα+1
1−α +Wt > 0] = P[∀t ∈ (0, 1], c̃α,k(ρt)

kα+1
1−α +Wρt > 0]

=P[∀t ∈ (0, 1], c̃α,k(ρt)
kα+1
1−α + ργWt > 0]

=P[∀t ∈ (0, 1], c̃α,kρ
kα+1
1−α −γ + t−

kα+1
1−α Wt > 0],

from the self-similarity assumption on W. Since by assumption α < γ−1
γ+k ⇐⇒

kα+1
1−α − γ < 0, the statement will follow taking ρ small enough as soon as we

prove the process Rt := t−
kα+1
1−α Wt, t ∈ (0, 1], which is continuous on the open set

(0, 1], can be extended by continuity in 0 with R0 = 0. Observe that E[|Rt|] =

tγ−
kα+1
1−α E[|W1|] −→

t→0
0. Setting δ := γ− kα+1

1−α > 0 and introducing tn := n−1/δ(1+η),

η > 0, we get that for all ε > 0,

P[|Rtn | ≥ ε] ≤ ε−1E[|Rtn |] = ε−1tδnE[|W1|] = ε−1n−(1+η)E[|W1|].

We thus get from the Borel-Cantelli lemma that Rtn −→
n, a.s.

0. Namely, we have

almost sure convergence along the subsequence tn going to zero with n. It now re-
mains to prove that the process Rt does not fluctuate much between two successive
times tn and tn+1. Write for t ∈ [tn+1, tn]:

|Rt| := |t−
kα+1
1−α Wt| ≤t

− kα+1
1−α

n+1

(
|Wtn+1 |+ sup

s∈[tn+1,tn]

|Ws −Wtn+1 |
)

≤t−
kα+1
1−α

n+1

(
2|Wtn+1 |+ sup

s∈[0,tn]

|Ws|
)
.(4.6)

The first term of the above left hand side tends almost surely to zero with n.
Observe as well that, from the scaling properties of W, for any ε > 0:

P[t
− kα+1

1−α
n+1 sup

s∈[0,tn]

|Ws| ≥ ε] = P[t
− kα+1

1−α
n+1 tγn sup

s∈[0,1]

|Ws| ≥ ε]

≤ ε−1tδn(
tn
tn+1

)
kα+1
1−α E[ sup

s∈[0,1]

|Ws|] ≤ Cε−1n−(1+η)E[ sup
s∈[0,1]

|Ws|],

which again gives from the Borel-Cantelli lemma the a.s. convergence with n of the
second term in the r.h.s of (4.6). We eventually derive that Rt −→

t→0, a.s.
0. Again,

the key point is that we normalize the process W at a rate, t
kα+1
1−α , which is lower

than its own characteristic time scale, tγ . This is precisely what leaves some margin
to establish continuity.

�

Appendix A. Proof of the Technical Lemmas 6 and 7

A.1. Proof of Lemma 6 (Dirac convergence of the frozen density). For
the proof of this Lemma we are somehow faced with the same type of difficulties as
for Lemma 5. Namely, recalling the expression of p̃t+ε,y(t, t+ ε,x,y) derived from

(2.7), we have a dependence of the covariance matrix K̃t+ε,y
t+ε,t and of the linearized

flow θ̃
t+ε,y

t+ε,t (x) in the integration variable y.
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Let (θu,t(x)
)
u∈[t,t+ε]

be the forward flow provided by Lemma 4. To study the

sensitivity of the covariance matrix w.r.t. the flows we now introduce, for a given
point x ∈ Rnd, the linear Gaussian diffusion (X̄u)u∈[t,t+ε] with dynamics:

(A.1) dX̄u = DF(u,θu,t(x))X̄udu+Bσ(u,θu,t(x))dWu.

The associated covariance matrix between t and t+ ε writes:

(A.2) K̄t,x
t+ε,t =

∫ t+ε

t

R̄t,x(t+ ε, u)Bσσ∗(u,θu,t(x))B∗R̄t,x(t+ ε, u)∗du,

where (R̄t,x(v, u))t≤u,v≤t+ε stands for the resolvent associated with

(DF(u,θu,t(x)))u∈[t,t+ε].

We point out that (R̄t,x(v, u))t≤u,v≤t+ε and (R̃t+ε,y(v, u))t≤u,v≤t+ε are similar
resolvents, in the sense that they actually only differ in the flow considered in the
linear dynamics. The flow is forward for R̄t,x and backward for R̃t+ε,y.

Observe now that, from (H), K̄t,x
t+ε,t satisfies the good scaling property (2.10).

Write now:∫
Rnd

p̃t+ε,y(t, t+ ε,x,y)f(y)dy

=

[∫
Rnd

{
exp

(
− 1

2

〈
(K̃t+ε,y

t+ε,t )−1(θ̃
t+ε,y

t+ε,t (x)− y), θ̃
t+ε,y

t+ε,t (x)− y
〉)

(2π)
nd
2 det(K̃t+ε,y

t+ε,t )
1
2

−
exp

(
− 1

2

〈
(K̃t+ε,y

t+ε,t )−1(θt+ε,t(x)− y),θt+ε,t(x)− y
〉)

(2π)
nd
2 det(K̃t+ε,y

t+ε,t )
1
2

}
f(y)dy

]

+

[∫
Rnd

{
exp

(
− 1

2

〈
(K̃t+ε,y

t+ε,t )−1(θt+ε,t(x)− y),θt+ε,t(x)− y
〉)

(2π)
nd
2 det(K̃t+ε,y

t+ε,t )
1
2

−
exp

(
− 1

2

〈
(K̄t,x

t+ε,t)
−1(θt+ε,t(x)− y),θt+ε,t(x)− y

〉)
(2π)

nd
2 det(K̄t,x

t+ε,t)
1
2

}
f(y)dy

]

+

[∫
Rnd

exp
(
− 1

2

〈
(K̄t,x

t+ε,t)
−1(θt+ε,t(x)− y),θt+ε,t(x)− y

〉)
(2π)

nd
2 det(K̄t,x

t+ε,t)
1
2

f(y)dy

]

=:

3∑
i=1

Ξε
i (t,x).(A.3)

It is directly seen from the dominated convergence theorem that Ξε
3(t,x) →

ε↓0
f(x).

It remains to prove that Ξε
1(t,x),Ξε

2(t,x) can be viewed as remainders as ε ↓ 0.
Let us write

|Ξε
1(t,x)| ≤ ‖f‖∞

∫
Rnd

dy

(2π)
nd
2 det(K̃t+ε,y

t+ε,t )
1
2

∫ 1

0

dλ|(ϕεt,x,y)′(λ)|,(A.4)
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where λ ∈ [0, 1]:

ϕεt,x,y(λ) = exp

(
−1

2

{
〈(K̃t+ε,y

t+ε,t )−1(θt+ε,t(x)− y),θt+ε,t(x)− y〉+

λ
[
〈(K̃t+ε,y

t+ε,t )−1(θ̃
t+ε,y

t+ε,t (x)− y), θ̃
t+ε,y

t+ε,t (x)− y〉

−〈(K̃t+ε,y
t+ε,t )−1(θt+ε,t(x)− y),θt+ε,t(x)− y〉

]})
,

|(ϕεt,x,y)′(λ)| ≤
∣∣∣(K̃t+ε,y

t+ε,t )−
1
2

{
(θt+ε,t(x)− y) + (θ̃

t+ε,y

t+ε,t (x)− y)
}∣∣∣

×
∣∣∣(K̃t+ε,y

t+ε,t )−
1
2

{
(θt+ε,t(x)− y)− (θ̃

t+ε,y

t+ε,t (x)− y)
}∣∣∣ϕεt,x,y(λ),(A.5)

using the Cauchy-Schwarz inequality for the last assertion. A key quantity to con-

trol for the analysis is now the linearization error |(K̃t+ε,x
t+ε,t )−

1
2 (θt+ε,t(x)−θ̃

t+ε,y

t+ε,t (x))|.
From (2.10) we readily have:

(A.6)∣∣∣(K̃t+ε,x
t+ε,t )−

1
2 (θt+ε,t(x)− θ̃

t+ε,y

t+ε,t (x))
∣∣∣ ≤ Cε 1

2 |T−1
ε (θt+ε,t(x)− θ̃

t+ε,y

t+ε,t (x))|.

To bound the above r.h.s. we first introduce for z ∈ Rnd, u ∈ [t, t+ ε],

Ft+ε,y(u, z) :=
(
F1(u,θu,t+ε(y)), F2(u, z1, (θu,t+ε(y))2,n),

F3(u, z2, (θu,t+ε(y))3,n), · · · , Fn(s, zn−1, (θu,t+ε(y))n)
)
.(A.7)

We then write:

ε
1
2T−1

ε (θt+ε,t(x)− θ̃
t+ε,y

t+ε,t (x))

:= ε
1
2T−1

ε

{∫ t+ε

t

du

[(
F(u,θu,t(x))− Ft+ε,y(u,θu,t(x))

)
+

(
DF(u,θu,t+ε(y))(θu,t(x)− θ̃

t+ε,y

u,t (x))

)
+

(∫ 1

0

dλ
(
DFt+ε,y(u,θu,t+ε(y) + λ(θu,t(x)− θu,t+ε(y)))

− DFt+ε,y(u,θu,t+ε(y))
)

(θu,t(x)− θu,t+ε(y))

)]}
:= (I1

t+ε,t + I2
t+ε,t + I3

t+ε,t)(x,y),(A.8)

where, according to the notations of (A.7), for (u, z) ∈ [t, t+ε]×Rnd, DFt+ε,y(u, z)
is the (nd)×(nd) matrix with only non zero d×d matrix entries (DFt+ε,y(u, z))j,j−1

:= Dxj−1
Fj(u, zj−1,θu,t+ε(y)j,n), j ∈ [[2, n]]. In particular DFt+ε,y(u,θu,t+ε(y)) =

DF(u,θu,t+ε(y)).
Observe now that, from (S):

|I3
t+ε,t(x,y)| ≤ C

n∑
i=2

∫ t+ε

t

duε−(i−1/2)|(θu,t(x)− θu,t+ε(y))i−1|1+η

≤ C

∫ t+ε

t

duε−1+η/2
(
ε1/2|T−1

ε (θu,t(x)− θu,t+ε(y))|
)1+η

.
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From Lemma 5 (almost equivalence of the flows) we now derive:

|I3
t+ε,t(x,y)| ≤ C

∫ t+ε

t

duε−1+η/2
(
ε1/2|T−1

ε (θt+ε,t(x)− y)|+ 1
)1+η

≤ Cεη/2
(
ε1/2|T−1

ε (θt+ε,t(x)− y)|+ 1
)1+η

.(A.9)

Let us now deal with I1
t+ε,t(x,y). From the previous definition of Ft+ε,y in (A.7),

the key idea is to use the sub-linearity of F and the appropriate Hölder exponents.
Namely, using the Young inequality we derive:

|I1
t+ε,t(x,y)| ≤ C

n∑
i=1

ε−i+1/2
n∑
j=i

∫ t+ε

t

du|(θu,t(x)− θu,t+ε(y))j |β
j
i

≤ C

(
ε−1/2

∫ t+ε

t

du
(
|(θu,t(x)− θu,t+ε(y))|+ 1

)

+

n∑
i=2

ε−i+1/2
n∑
j=i

∫ t+ε

t

du

{(
|((θu,t(x)− θu,t+ε(y))j)|

εγ
j
i

)
+ ε

γji
β
j
i

1−βj
i

})
,

for some parameters γji > 0 to be specified below. Hence,

|I1
t+ε,t(x,y)| ≤ C

(∫ t+ε

t

duε1/2|T−1
ε (θu,t(x)− θu,t+ε(y))|+ ε1/2

+

n∑
i=2

n∑
j=i

∫ t+ε

t

du
{
ε−i+j−γ

j
i

( |((θu,t(x)− θu,t+ε(y))j)|
εj−1/2

)
+ ε
−i+1/2+γji

β
j
i

1−βj
i

})

≤C

(∫ t+ε

t

duε1/2|T−1
ε (θu,t(x)− θu,t+ε(y))|+ ε1/2

+

n∑
i=2

n∑
j=i

∫ t+ε

t

du
{
ε−i+j−γ

j
i ε1/2|T−1

ε (θu,t(x)− θu,t+ε(y))|+ ε
−i+1/2+γji

β
j
i

1−βj
i

})
.

We now use Lemma 5 to derive

ε1/2|T−1
ε (θu,t(x)− θu,t+ε(y))| ≤ C(ε1/2|T−1

ε (θt+ε,t(x)− y)|+ 1).

We emphasize here that in our current framework we should a priori write

θt+ε,u(θu,t(x)) in the above equation since we do not have a priori the flow prop-
erty. Anyhow, since Lemma 5 is valid for any flow starting from θu,t(x) at time u
associated with the ODE (see equation (2.15)) we can proceed along the previous
one, i.e. (θv,t(x))v∈[u,t+ε]. This yields:

|I1
t+ε,t(x,y)|

(A.10)

≤C
[
ε1/2 + (ε1/2|T−1

ε (θt+ε,t(x)− y)|+ 1)ε
(

1 +

n∑
i=2

n∑
j=i

{
ε−i+j−γ

j
i + ε

−i+1/2+γji
β
j
i

1−βj
i

})]
.
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Choose now for i ∈ [[2, n]] and j ∈ [[i, n]],

−i+ j − γji = −i+ 1/2 + γji
βji

1− βji
⇐⇒ γji = (j − 1

2
)(1− βji ),

to balance the two previous contributions associated with the indexes i, j. To obtain
a global smoothing effect w.r.t ε in (A.10) we need to impose:

−i+ j − γji > −1 ⇐⇒ βji >
2i− 3

2j − 1
.

Hence, under (1.3), we have that there exists ζ := ζ
(
(A), (βji )i∈[[1,n]],j∈[[i,n]]

)
∈ (0, 1)

s.t.:

|I1
t+ε,t(x,y)| ≤ Cεζ

(
1 + ε1/2|T−1

ε (θt+ε,t(x)− y)|
)
.(A.11)

We now get from (A.6), (A.8), (A.9), (A.11) and the Gronwall lemma that:∣∣∣(K̃t+ε,x
t+ε,t )−

1
2 (θt+ε,t(x)− θ̃

t+ε,y

t+ε,t (x))
∣∣∣

≤Cε 1
2 |T−1

ε (θt+ε,t(x)− θ̃
t+ε,y

t+ε,t (x))|

≤Cεη/2∧ζ
(
1 + ε1/2|T−1

ε (θt+ε,t(x)− y)|+ (ε1/2|T−1
ε (θt+ε,t(x)− y)|)1+η

)
.(A.12)

Hence, recalling from (2.12) and Lemma 5 that

〈(K̃t+ε,y
t+ε,t )−1(θ̃

t+ε,y

t+ε,t (x)− y), θ̃
t+ε,y

t+ε,t (x)− y〉 ≥ C−1ε|T−1
ε (x− θt,t+ε(y))|2

≥C−1(ε|T−1
ε (θt+ε,t(x)− y)|2 − 1),

we get from the definition in (A.5) that for all λ ∈ [0, 1]:

ϕεt,x,y(λ) ≤ C exp(−C−1ε|T−1
ε (θt+ε,t(x)− y)|2).

We finally obtain from (A.5) and (A.12) that there exists C2 := C2(T, (A)) ≥ 1
s.t.:

|(ϕεt,x,y)′(λ)| ≤ C2ε
η/2∧ζ exp

(
−C−1

2 ε|T−1
ε (θt+ε,t(x)− y)|2

)
.(A.13)

Plugging Equation (A.13) into (A.4), we derive that, since K̃t+ε,y
t+ε,t satisfies (2.10),

|Ξε
1(t,x)| →

ε↓0
0.

Let us now consider the term Ξε
2(t,x) in (A.3). Write first Ξε

2(t,x) := (Ξε
21 +

Ξε
22)(t,x) where:

Ξε
21(t,x) :=

∫
Rnd

dy

(2π)
nd
2

f(y)

det(K̄t,x
t+ε,t)

1
2

∫ 1

0

dλ(ψεt,x,y)′(λ),

∀λ ∈ [0, 1], ψεt,x,y(λ) := exp

(
−1

2

{
〈(K̄t,x

t+ε,t)
−1(θt+ε,t(x)− y),θt+ε,t(x)− y〉

+ λ

[
〈(K̃t+ε,y

t+ε,t )−1(θt+ε,t(x)− y),θt+ε,t(x)− y〉

−〈(K̄t,x
t+ε,t)

−1(θt+ε,t(x)− y),θt+ε,t(x)− y〉
]})

,

Ξε
22(t,x) :=

∫
Rnd

dy

(2π)
nd
2

f(y)

[
1

det(K̃t+ε,y
t+ε,t )

1
2

− 1

det(K̄t,x
t+ε,t)

1
2

]
(ψεt,x,y)(1).(A.14)
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Observe that for all λ ∈ [0, 1],

|(ψεt,x,y)′(λ)| ≤
∣∣∣〈((K̃t+ε,y

t+ε,t )−1 − (K̄t,x
t+ε,t)

−1)(θt+ε,t(x)− y),θt+ε,t(x)− y〉
∣∣∣ψεt,x,y(λ).

Equation (2.10), which holds for K̄t,x
t+ε,t as well, yields:

|(ψεt,x,y)′(λ)| ≤ C
∣∣∣〈((K̃t+ε,y

t+ε,t )−1 − (K̄t,x
t+ε,t)

−1)(θt+ε,t(x)− y),θt+ε,t(x)− y〉
∣∣∣

× exp(−Cε|T−1
ε (θt+ε,t(x)− y)|2)

=: C|Qε| exp(−Cε|T−1
ε (θt+ε,t(x)− y)|2),(A.15)

for C := C((A), T ).
Now, the covariance matrices explicitly write

K̃t+ε,y
t+ε,t =

∫ t+ε

t

duR̃t+ε,y(t+ ε, u)Ba(u,θu,t+ε(y))B∗R̃t+ε,y(t+ ε, u)∗,

K̄t,x
t+ε,t =

∫ t+ε

t

duR̄t,x(t+ ε, u)Ba(u,θu,t(x))B∗R̄t,x(t+ ε, u)∗,

where R̃t+ε,y, R̄t,x respectively denote the resolvents associated with the linear
parts of equations (2.2) and (A.1). Thus, setting:

(A.16) K̃t+ε,y
t+ε,t = ε−1Tε ̂̃Kt+ε,t,t+ε,y

1 Tε, K̄t,x
t+ε,t = ε−1Tε ̂̄Kt+ε,t,t,x

1 Tε,

we write:∣∣∣〈(K̃t+ε,y
t+ε,t − K̄t,x

t+ε)(θt+ε,t(x)− y),θt+ε,t(x)− y〉
∣∣∣

=

∣∣∣∣〈( ̂̃Kt+ε,t,t+ε,y

1 − ̂̄Kt+ε,t,t,x

1 )(ε−1/2Tε(θt+ε,t(x)− y)), ε−1/2Tε(θt+ε,t(x)− y)〉
∣∣∣∣

≤ C| ̂̃Kt+ε,t,t+ε,y

1 − ̂̄Kt+ε,t,t,x

1 |×ε−1|Tε(θt+ε,t(x)− y)|2.

It remains to control the term̂̃Kt+ε,t,t+ε,y

1 − ̂̄Kt+ε,t,t,x

1 = (∆t+ε,t
1 −∆t+ε,t

2 )(x,y),

∆t+ε,t
1 (x,y) := ε

∫ t+ε

t

duT−1
ε R̃t+ε,y(t+ ε, u)B∆a(u, t+ ε)(x,y)B∗R̃t+ε,y(t+ ε, u)∗T−1

ε ,

∆a(u, t+ ε)(x,y) =
(
a(u,θu,t+ε(y))− a(u,θu,t(x))

)
,

∆t+ε,t
2 (x,y) := ε

∫ t+ε

t

duT−1
ε ∆ ˜̄Rt+ε,u,t,x,y

(t+ ε, u)Ba(u,θu,t(x))B∗R̄t,x(t+ ε, u)∗T−1
ε

− ε
∫ t+ε

t

du

{
T−1
ε R̃t+ε,y(t+ ε, u)Ba(u,θu,t(x))B∗

(
∆ ˜̄Rt+ε,u,t,x,y

(t+ ε, u)
)∗

T−1
ε

}
,

∆ ˜̄Rt+ε,u,t,x,y
(t+ ε, u) =

(
R̄t,x(t+ ε, u)− R̃t+ε,y(t+ ε, u)

)
.

(A.17)

From the scaling properties of the resolvent, see e.g. Lemma 6.2 in [Men18] for
details, we have that:

(A.18) R̄t,x(t+ ε, u) = Tε ̂̄Rt+ε,u,t,x

1 T−1
ε , R̃t+ε,y(t+ ε, u) = Tε ̂̃Rt+ε,u,t+ε,y

1 T−1
ε ,
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where ̂̄Rt+ε,u,t,x

1 , ̂̃Rt+ε,u,t+ε,y

1 are non-degenerate bounded matrices, uniformly in
u ∈ [t, t+ ε]. Hence, from (A.18) and the definitions in (A.17):

|∆t+ε,t
1 (x,y)|

≤Cε−1

∫ t+ε

t

|∆a(u, t+ ε)(x,y)|du ≤ Cε−1

∫ t+ε

t

|θu,t(x)− θu,t+ε(y)|ηdu(A.19)

≤Cεη/2−1

∫ t+ε

t

du|ε1/2T−1
ε (θu,t(x)− θu,t+ε(y))|η

≤Cεη/2(|ε1/2T−1
ε (θt+ε,t(x)− y)|η + 1),

using again Lemma 5 for the last inequality. Still from (A.18), the definitions in
(A.17) and recalling as well that T−1

ε Ba(u,θu,t(x))B∗T−1
ε = ε−2Ba(u,θu,t(x))B∗,

we now write that:

|∆t+ε,t
2 (x,y)| ≤ Cε−1

∫ t+ε

t

|T−1
ε ∆ ˜̄Rt+ε,u,t,x,y

(t+ ε, u)Tε|du.(A.20)

Note then:

|T−1
ε ∆ ˜̄Rt+ε,u,t,x,y

(t+ ε, u)Tε|

=
∣∣∣T−1
ε

∫ t+ε

u

(
DF(v,θv,t(x))R̄t,x(v, u)−DF(v,θv,t+ε(y))R̃t+ε,y(v, u)

)
dvTε

∣∣∣
≤
∫ t+ε

u

|T−1
ε DF(v,θv,t(x))Tε||T−1

ε ∆ ˜̄Rt+ε,u,t,x,y
(v, u)Tε|dv

+

∫ t+ε

u

∣∣∣T−1
ε

(
DF(v,θv,t(x))−DF(v,θv,t+ε(y))

)
Tε
∣∣∣|T−1

ε R̃t+ε,y(v, t)Tε|dv

≤ C
∫ t+ε

u

ε−1|DF(v,θv,t(x))−DF(v,θv,t+ε(y))|dv,

using the Gronwall lemma and the structure of the resolvent for the last inequality.
Pay attention that we only know from (S) that for all i ∈ [[2, n]],∀zi:n =

(zi, · · · , zn) ∈ R(n−i+1)d, zi−1 7→ Dxi−1
Fi(zi−1, z

i:n) is Cη(Rd,Rd ⊗ Rd)-Hölder
continuous for η > 0. We thus have to handle the above term with some care.
Write with the notations of (A.7):

|T−1
ε ∆ ˜̄Rt+ε,u,t,x,y

(t+ ε, u)Tε|

≤ C

∫ t+ε

u

ε−1
n∑
i=2

(
|Dxi−1

Fi(v,θv,t(x))−Dxi−1
F t+ε,yi (v,θv,t(x))|

+|Dxi−1
F t+ε,yi (v,θv,t(x))−Dxi−1

Fi(v,θv,t+ε(y))|
)
dv

≤ C

∫ t+ε

u

ε−1
n∑
i=2

(
|Dxi−1

Fi(v,θv,t(x))−Dxi−1
Fi(v,θv,t(x)i−1, (θv,t+ε(y))i:n)|

+|(θv,t(x)− θv,t+ε(y))i−1|η
)
dv =: (R1 +R2)(t+ ε, u, t,x,y).

We get |R2(t + ε, u, t,x,y)| ≤ C
∫ t+ε
u

ε−1|θv,t(x) − θv,t+ε(y)|ηdv which can be
handled similarly to (A.19). This yields:

|R2(t+ ε, u, t,x,y)| ≤ Cεη/2
(
ε1/2|T−1

ε (θt+ε,t(x)− y)|+ 1)η.
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On the other hand, using a reverse Taylor expansion, for positive parameters
(δi)i∈[[2,n]] to be specified:

|R1(t+ ε, u, t,x,y)|

≤C
∫ t+ε

u

ε−1
n∑
i=2

(∣∣∣{Fi(v,θv,t(x)i−1 + δi, (θv,t(x))i:n
)
− Fi(v,θv,t(x))

}
−
{
Fi
(
v,θv,t(x)i−1 + δi, (θv,t+ε(y))i:n

)
− Fi

(
v,θv,t(x)i−1, (θv,t+ε(y))i:n

)}∣∣∣δ−1
i + δηi

)
dv

≤C
∫ t+ε

u

ε−1
n∑
i=2

( n∑
j=i

|(θv,t(x)− θv,t+ε(y))j |β
j
i δ−1
i + δηi

)
≤C
{ n∑
i=2

n∑
j=i

(
|ε1/2(T−1

ε (θt+ε,t(x)− y))|β
j
i + 1

)
ε(j−1/2)βji δ−1

i + max
i∈[[2,n]]

δηi

}
,

using again Lemma 5 for the last inequality. For this contribution to be a re-

mainder it therefore suffices to choose δi = maxj∈[[i,n]] ε
(j−1/2)βji−γ , for γ > 0

small enough. From the above computations we eventually derive that there exists
ζ ′ := ζ ′((A), (βji )i∈[[1,n]],j∈[[i,n]]) ∈ (0, 1) s.t.

|T−1
ε ∆ ˜̄Rt+ε,u,t,x,y

(t+ ε, u)Tε| ≤ Cε
η
2∧ζ

′(
ε

1
2 |T−1

ε (θt+ε,t(x)− y)|+ 1).

Plugging this bound into (A.20), we then derive from (A.19) and (A.17) that:

(A.21) | ̂̃Kt+ε,t,t+ε,y

1 − ̂̄Kt+ε,t,t,x

1 | ≤ Cε
η
2∧ζ

′(
ε

1
2 |T−1

ε (θt+ε,t(x)− y)|+ 1).

Recalling now that ̂̃Kt+ε,t,t+ε,y

1 , ̂̄Kt+ε,t,t,x

1 are because of (2.10) and (A.16) non-
degenerate uniformly w.r.t. the parameter ε, we deduce that the inverse matrices( ̂̃Kt+ε,t,t+ε,y

1

)−1

,
( ̂̄Kt+ε,t,t,x

1

)−1

have the same Hölder regularity. Indeed,

( ̂̃Kt+ε,t,t+ε,y

1

)−1

−
( ̂̄Kt+ε,t,t,x

1

)−1

=
( ̂̄Kt+ε,t,t,x

1

)−1
( ̂̄Kt+ε,t,t,x

1 − ̂̃Kt+ε,t,t+ε,y

1

)( ̂̃Kt+ε,t,t+ε,y

1

)−1

,

and we eventually conclude from (A.21). Hence, from the definition in (A.15)

|Qε| :=
∣∣∣〈((K̃t+ε,y

t+ε,t )−1 − (K̄t,x
t+ε,)

−1
)
(θt+ε,t(x)− y),θt+ε,t(x)− y〉

∣∣∣
=

∣∣∣∣∣〈(
( ̂̃Kt+ε,t,t+ε,y

1

)−1

−
( ̂̄Kt+ε,t,t,x

1

)−1)
(ε1/2T−1

ε (θt+ε,t(x)− y))

, ε1/2T−1
ε (θt+ε,t(x)− y)〉

∣∣∣
≤Cεη/2∧ζ

′(
ε1/2|T−1

ε (θt+ε,t(x)− y)|+ 1)ε|T−1
ε (θt+ε,t(x)− y)|2,

C :=C((A), T ).
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We eventually get:

|Ξε
21(t,x)|

≤Cεη/2∧ζ
′
∫
Rnd

dy

ε
n2d
2

(ε1/2|T−1
ε (θt+ε,t(x)− y)|+ 1) exp(−Cε|T−1

ε (θt+ε,t(x)− y)|2)

≤Cεη/2∧ζ
′
, C := C((A), T ).

(A.22)

This yields |Ξε
21(t,x)| →

ε→0
0. Arguments similar to those employed for Ξε

21(t,x)

can be used to prove that for the term Ξε
22(t,x) defined in (A.14). Namely,

|Ξε
22(t,x)| ≤ ‖f‖∞

∫
Rnd

dy

(2π)
nd
2

∣∣∣∣∣ 1

det(K̃t+ε,y
t+ε,t )

1
2

− 1

det(K̄t,x
t+ε,t)

1
2

∣∣∣∣∣(ψεt,x,y)(1)

≤ C‖f‖∞
∫
Rnd

dy

∣∣∣∣∣1− det(K̃t+ε,y
t+ε,t )

1
2

det(K̄t,x
t+ε,t)

1
2

∣∣∣∣∣p̄C−1(t, t+ ε,x,y)

≤ C‖f‖∞
∫
Rnd

dy

∣∣∣∣∣1− det
(
K̃t+ε,y
t+ε,t

(
K̄t,x
t+ε,t

)−1
) 1

2

∣∣∣∣∣p̄C−1(t, t+ ε,x,y).(A.23)

Using again (A.16), we now write:

det
(
K̃t+ε,y
t+ε,t

(
K̄t,x
t+ε,t

)−1
)

= det
( ̂̃Kt+ε,t,t+ε,y

1

( ̂̄Kt+ε,t,t,x

1

)−1
)

= det
(
I + ( ̂̃Kt+ε,t,t+ε,y

1 − ̂̄Kt+ε,t,t,x

1 )
( ̂̄Kt+ε,t,t,x

1

)−1
)
.

Plugging this identity into (A.23), we thus derive from (A.21) that Ξε
22(t,x) →

ε→0
0.

The proof is complete. �

A.2. Proof of Lemma 7. Up to approximation argument, we can suppose without
loss of generality that f ∈ C1,2

0 ([0, T )× Rnd,R). Write for p′, q′ > 1,

‖fε − f‖q
′

Lq′ ([0,T ],Lp′ (Rnd))
=

∫ T

0

‖fε(t, ·)− f(t, ·)‖q
′

Lp′ (Rnd)
dt.

Note that, up to a middle point type argument, the indicator part in the very
definition of fε can be easily dealt. With a slight abuse of notation, we thus start
from the following expression for fε:

∀(t,x) ∈ [0, T ]× Rnd,
∫
Rnd

f(t+ ε,y)p̃t+ε,y(t, t+ ε,x,y)dy.

Now,

‖fε(t, ·)− f(t, ·)‖p
′

Lp′ (Rnd)

=

∫
Rnd

∣∣∣ ∫
Rnd

f(t+ ε,y)p̃t+ε,y(t, t+ ε,x,y)dy − f(t,x)
∣∣∣p′dx

≤2p
′−1
(∫

Rnd

∣∣∣ ∫
Rnd

f(t+ ε,y)p̃t+ε,y(t, t+ ε,x,y)dy − f(t+ ε,θt+ε,t(x))
∣∣∣p′dx

+

∫
Rnd
|f(t+ ε,θt+ε,t(x))− f(t,x)|p

′
dx
)

=: 2p
′−1(Iε1(t) + Iε2(t)).
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Recalling that f is smooth and has compact support in time and space, we readily
get Iε2(t) −→

ε→0
0. Let us now turn to Iε1(t). Write:

Iε1(t)

≤2p
′−1
(∫

Rnd

∣∣∣ ∫
Rnd

(
f(t+ ε,y)− f(t+ ε,θt+ε,t(x)

)
p̃t+ε,y(t, t+ ε,x,y)dy

∣∣∣p′dx
+

∫
Rnd

∣∣∣f(t+ ε,θt+ε,t(x))

∫
Rnd

(
p̃t+ε,y(t, t+ ε,x,y)− p̄(t, t+ ε,x,y)

)
dy
∣∣∣p′dx)

=:Iε11(t) + Iε12(t),

where p̄(t, t+ ε,x,y) :=
exp(− 1

2 〈(K̄t,x
t+ε,t)

−1(θt+ε,t(x)−y),θt+ε,t(x)−y〉)
(2π)

nd
2 det(K̄t,x

t+ε,t)
1
2

is a true density

in y and already appears in the term Ξε
3 defined in (A.3) in the proof of Lemma

6. The previous analysis of this term readily gives Iε12(t) −→
ε→0

0. On the other

hand, from the good scaling property of equation (2.10), Lemma 5 and the Hölder
inequality, there exists C := C(p′, (A)) s.t.:

Iε11(t) ≤C
∫
Rnd

∫
Rnd

∣∣∣f(t+ ε,y)− f(t+ ε,θt+ε,t(x))
∣∣∣p′ p̄C−1(t, t+ ε,x,y)dydx

≤C
∫
Rnd

(Id(θt+ε,t(x),supp(f(t+ε,·)))≤δ + Id(θt+ε,t(x),supp(f(t+ε,·)))>δ)

×
∫
Rnd

∣∣∣f(t+ ε,y)− f(t+ ε,θt+ε,t(x))
∣∣∣p′ p̄C−1(t, t+ ε,x,y)dydx

≤C
(
εp
′/2‖Df‖∞ +

∫
Rnd

Id(θt+ε,t(x),supp(f(t+ε,·)))>δ

×
∫
Rnd
|f(t+ ε,y)|p

′
p̄C−1(t, t+ ε,x,y)dydx

)
≤C
(
εp
′/2‖Df‖∞ + ‖f‖∞ exp

(
− C−1 δ

2

ε

)∫
Rnd

Iy∈supp(f(t+ε,·))

×
∫
Rnd

p̄C−1(t, t+ ε,x,y)dxdy
)

≤C
(
εp
′/2‖Df‖∞ + ‖f‖∞ exp

(
− C−1 δ

2

ε

))
,

where in the above computations we recall that p̄C−1 introduced in (2.8) is actually
a density w.r.t. x. We conclude the proof from the above convergence of Iε1(t),
Iε2(t) thanks to the dominated convergence theorem.
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