C. Cortes and M. Mohri, AUC optimization vs. error rate minimization, In: NIPS, pp.313-320, 2003.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, SMOTE: synthetic minority over-sampling technique, JAIR, pp.321-357, 2002.

E. Ramentol, Y. Caballero, R. Bello, and F. Herrera, SMOTE-RSB *: a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using SMOTE and rough sets theory, Knowledge and Information Systems, vol.18, issue.1, pp.245-265, 2012.
DOI : 10.1109/TKDE.2006.17

N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer, SMOTEBoost: Improving Prediction of the Minority Class in Boosting, pp.107-119, 2003.
DOI : 10.1007/978-3-540-39804-2_12

C. Seiffert, T. M. Khoshgoftaar, J. V. Hulse, and A. Napolitano, RUSBoost: A Hybrid Approach to Alleviating Class Imbalance, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol.40, issue.1, pp.185-197, 2010.
DOI : 10.1109/TSMCA.2009.2029559

W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan, Adacost: Misclassification costsensitive boosting, In: ICML, pp.97-105, 1999.

A. D. Pozzolo, O. Caelen, and G. Bontempi, When is Undersampling Effective in Unbalanced Classification Tasks?, pp.200-215, 2015.
DOI : 10.1007/978-3-319-23528-8_13

A. Niculescu-mizil and R. Caruana, Predicting good probabilities with supervised learning, Proceedings of the 22nd international conference on Machine learning , ICML '05, pp.625-632, 2005.
DOI : 10.1145/1102351.1102430

A. D. Pozzolo, O. Caelen, R. A. Johnson, and G. Bontempi, Calibrating Probability with Undersampling for Unbalanced Classification, 2015 IEEE Symposium Series on Computational Intelligence, pp.159-166, 2015.
DOI : 10.1109/SSCI.2015.33

T. Y. Liu, Learning to Rank for Information Retrieval, 2011.

T. Joachims, Optimizing search engines using clickthrough data, Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '02, pp.133-142, 2002.
DOI : 10.1145/775047.775067

Y. Yue, T. Finley, F. Radlinski, and T. Joachims, A support vector method for optimizing average precision, Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR '07, pp.271-278, 2007.
DOI : 10.1145/1277741.1277790

L. Breiman, Random forests, Machine Learning, vol.45, issue.1, pp.5-32, 2001.
DOI : 10.1023/A:1010933404324

Y. Freund, R. Schapire, and N. Abe, A short introduction to boosting, Journal- Japanese Society For Artificial Intelligence, vol.14, pp.771-780, 1999.

O. Chapelle and Y. Chang, Yahoo! learning to rank challenge overview, pp.1-24, 2011.

J. H. Friedman, Greedy function approximation: a gradient boosting machine, Annals of statistics, pp.1189-1232, 2001.

Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, An efficient boosting algorithm for combining preferences, The Journal of machine learning research, vol.4, pp.933-969, 2003.

C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds et al., Learning to rank using gradient descent, Proceedings of the 22nd international conference on Machine learning , ICML '05, pp.89-96, 2005.
DOI : 10.1145/1102351.1102363

A. Herschtal and B. Raskutti, Optimising area under the ROC curve using gradient descent, Twenty-first international conference on Machine learning , ICML '04, p.49, 2004.
DOI : 10.1145/1015330.1015366

C. J. Burges, From ranknet to lambdarank to lambdamart: An overview, Learning, vol.11, pp.23-581, 2010.

J. Xu and H. Li, AdaRank, Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR '07, pp.391-398, 2007.
DOI : 10.1145/1277741.1277809

Q. Wu, C. J. Burges, K. M. Svore, and J. Gao, Adapting boosting for information retrieval measures, Information Retrieval, vol.10, issue.3, pp.254-270, 2010.
DOI : 10.1007/s10791-009-9112-1

C. J. Burges, R. Ragno, and Q. V. Le, Learning to rank with nonsmooth cost functions, pp.193-200, 2007.

J. A. Hanley and B. J. Mcneil, The meaning and use of the area under a receiver operating characteristic (ROC) curve., Radiology, vol.143, issue.1, pp.29-36, 1982.
DOI : 10.1148/radiology.143.1.7063747

J. H. Friedman, Stochastic gradient boosting, Computational Statistics & Data Analysis, vol.38, issue.4, pp.367-378, 2002.
DOI : 10.1016/S0167-9473(01)00065-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. Li, R. Jin, and Z. H. Zhou, Top rank optimization in linear time, In: NIPS, pp.1502-1510, 2014.