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LOCAL L2-REGULARITY OF

RIEMANN’S FOURIER SERIES

STÉPHANE SEURET∗ AND ADRIÁN UBIS

Abstract. We are interested in the convergence and the local regularity of

the lacunary Fourier series Fs(x) =
∑+∞
n=1

e2iπn
2x

ns
. In the 1850’s, Riemann in-

troduced the series F2 as a possible example of nowhere differentiable function,
and the study of this function has drawn the interest of many mathematicians
since then. We focus on the case when 1/2 < s ≤ 1, and we prove that Fs(x)
converges when x satisfies a Diophantine condition. We also study the L2- local
regularity of Fs, proving that the local L2-norm of Fs around a point x behave
differently around different x, according again to Diophantine conditions on x.

1. Introduction

Riemann introduced in 1857 the Fourier series

R(x) =
+∞∑
n=1

sin(2πn2x)

n2

as a possible example of continuous but nowhere differentiable function. Though
it is not the case (R is differentiable at rationals p/q where p and q are both odd
[5]), the study of this function has, mainly because of its connections with several
domains: complex analysis, harmonic analysis, Diophantine approximation, and
dynamical systems [6, 7, 5, 4, 8, 10] and more recently [2, 3, 12].

In this article, we study the local regularity of the series

(1.1) Fs(x) =
+∞∑
n=1

e2iπn2x

ns

when s ∈ (1/2, 1). In this case, several questions arise before considering its local
behavior. First it does not converge everywhere, hence one needs to characterize
its set of convergence points; this question was studied in [12], and we will first
find a slightly more precise characterization. Then, if one wants to characterize
the local regularity of a (real) function, one classically studies the pointwise Hölder
exponent defined for a locally bounded function f : R→ R at a point x by using
the functional spaces Cα(x): f ∈ Cα(x) when there exist a constant C and a
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polynomial P with degree less than bαc such that, locally around x (i.e. for small
H), one has∥∥(f(·)− P (· − x))11B(x,H)‖∞ := sup(|f(y)− P (y − x)| : y ∈ B(x,H)) ≤ CHα,

where B(x,H) = {y ∈ R : |y − x| ≤ H}. Unfortunately these spaces are not
appropriate for our context since Fs is nowhere locally bounded (for instance, it
diverges at every irreducible rational p/q such that q 6= 2×odd).

Following Calderon and Zygmund in their study of local behaviors of solutions of
elliptic PDE’s [1], it is natural to introduce in this case the pointwise L2-exponent
defined as follows.

Definition 1.1. Let f : R → R be a function belonging to L2(R), α ≥ 0 and
x ∈ R. The function f is said to belong to Cα2 (x) if there exist a constant C and a
polynomial P with degree less than bαc such that, locally around x (i.e. for small
H > 0), one has (

1

H

∫
B(x,H)

∣∣f(h)− P (h− x
)
|2dh

)1/2

≤ CHα.

Then, the pointwise L2-exponent of f at x is

αf (x) = sup
{
α ∈ R : f ∈ Cα2 (x)

}
.

This definition makes sense for the series Fs when s ∈ (1/2, 1), and are based
on a natural generalizations of the spaces Cα(x) be replacing the L∞ norm by the
L2 norm. The pointwise L2-exponent has been studied for instance in [11], and is
always greater than -1/2 as soon as f ∈ L2.

Our goal is to perform the multifractal analysis of the series Fs. In other words,
we aim at computing the Hausdorff dimension, denoted by dim in the following,
of the level sets of the pointwise L2-exponents.

Definition 1.2. Let f : R → R be a function belonging to L2(R). The L2-
multifractal spectrum df : R+ ∪ {+∞} → R+ ∪ {−∞} of f is the mapping

df (α) := dimEf (α),

where the iso-Hölder set Ef (α) is

Ef (α) := {x ∈ R : αf (x) = α}.

By convention one sets df (α) = −∞ if Ef (α) = ∅.
Performing the multifractal analysis consists in computing its L2-multifractal

spectrum. This provides us with a very precise description of the distribution of
the local L2-singularities of f . In order to state our result, we need to introduce
some notations.

Definition 1.3. Let x be an irrational number, with convergents (pj/qj)j≥1. Let
us define

(1.2) x− pj
qj

= hj , |hj | = q
−rj
j
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with 2 ≤ rj <∞. Then the approximation rate of x is defined by

rodd(x) = lim{rj : qj 6= 2 ∗ odd}.

This definition always makes sense because if qj is even, then qj+1 and qj−1 must
be odd (so cannot be equal to 2 ∗ odd). Thus, we always have 2 ≤ rodd(x) ≤ +∞.
It is classical that one can compute the Hausdorff dimension of the set of points
with the Hausdorff dimension of the points x with a given approximation rate
r ≥ 2:

(1.3) for all r ≥ 2, dim{x ∈ R : rodd(x) = r} =
2

r
.

When s > 1, the series Fs converges, and the multifractal spectrum of Fs was
computed by S. Jaffard in [10]. For instance, for the classical Riemann’s series F2,
one has

dF2(α) =


4α− 2 if α ∈ [1/2, 3/4],

0 if α = 3/2,

−∞ otherwise.

Here our aim is to somehow extend this result to the range 1/2 < s ≤ 1. The
convergence of the series Fs is described by our first theorem.

Theorem 1.4. Let s ∈ (1/2, 1], and let x ∈ (0, 1) with convergents (pj/qj)j≥1.
We set for every j ≥ 1

δj =

{
1 if s ∈ (1/2, 1)

log(qj+1/qj) if s = 1,

and

(1.4) Σs(x) =
∑

j: qj 6=2∗odd

δj

√
qj+1

(qjqj+1)s
.

(i) Fs(x) converges whenever s−1+1/rodd(x)
2 > 0. In fact, it converges when-

ever Σs(x) < +∞.

(ii) Fs(x) does not converge if s−1+1/rodd(x)
2 < 0. In fact, it does not converge

whenever

limj: qj 6=2∗odd δj

√
qj+1

(qjqj+1)s
> 0,

In the same way we could extend this results to rational points x = p/q, by
proving that Fs(x) converges for q 6= 2∗odd and does not for q 6= 2∗odd. Observe
that the convergence of Σs(x) implies that rodd(x) ≤ 1

1−s . Our result asserts that

Fs(x) converges as soon as rodd(x) < 1
1−s , and also when rodd(x) = 1

1−s when

Σs(x) < +∞.

Jaffard’s result is then extended in the following sense:

Theorem 1.5. Let s ∈ (1/2, 1].
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Figure 1. L2-multifractal spectrum of Fs

(i) For every x such that Σs(x) < +∞, one has αFs(x) =
s− 1 + 1/rodd(x)

2
.

(ii) For every α ∈ [0, s/2− 1/4]

dFs(α) = 4α+ 2− 2s.

The second part of Theorem 1.5 follows directly from the first one. Indeed,
using part (i) of Theorem 1.5 and (1.3), one gets

dFs(α) = dim

{
x :

s− 1 + 1/rodd(x)

2
= α

}
= dim{x : rodd(x) = (2α+ 1− s)−1}

=
2

(2α+ 1− s)−1
= 4α+ 2− 2s.

The paper is organized as follows. Section 2 contains some notations and pre-
liminary results. In Section 3, we obtain other formulations for Fs based on Gauss
sums, and we get first estimates on the increments of the partial sums of the series
Fs. Using these results, we prove Theorem 1.4 in Section 4. Finally, in Section 5,
we use the previous estimates to obtain upper and lower bounds for the local L2-
means of the series Fs, and compute in Section 6 the local L2-regularity exponent
of Fs at real numbers x whose Diophantine properties are controlled, namely we
prove Theorem 1.5.

Finally, let us mention that theoretically the L2-exponents of a function f ∈
L2(R) take values in the range [−1/2,+∞], so they may have negative values. We
believe that this is the case at points x such that rodd(x) > 1

1−s , so that in the

end the entire L2-multifractal spectrum of Fs would be dFs(α) = 4α + 2− 2s for
all α ∈ [s/2− 1/2, s/2− 1/4].

Another remark is that for a given s ∈ (1/2, 1), there is an optimal p > 2 such
that Fs belongs locally to Lp, so that the p-exponents (instead of the 2-exponents)
may carry some interesting information about the local behavior of Fs.
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2. Notations and first properties

In all the proofs, C will denote a constant that does not depend on the variables
involved in the equations.

For two real numbers A,B ≥ 0, the notation A � B means that A ≤ CB for
some constant C > 0 independent of the variables in the problem.

In Section 2 of [3] (also in [2]), the key point to study the local behavior of the
Fourier series Fs was to obtain an explicit formula for Fs(p/q + h) − Fs(p/q) in
the range 1 < s < 2; this formula was just a twisted version of the one known for
the Jacobi theta function. In our range 1/2 < s ≤ 1, such a formula cannot exist
because of the convergence problems, but we will get some truncated versions of
it in order to prove Theorems 1.4 and 1.5.

Let us introduce the partial sum

Fs,N (x) =
N∑
n=1

e2iπn2x

ns
.

For any H 6= 0 let µ̃H be the probability measure defined by

(2.1) µ̃H(g) =

∫
C(H)

g(h)
dh

2H
,

where C(H) is the annulus C(H) = [−2H,−H] ∪ [H, 2H].

Lemma 2.1. Let f : R → R be a function in L2(R), and x ∈ R. If αf (x) < 1,
then
(2.2)

αf (x) = sup
{
β ∈ [0, 1) : ∃C > 0, ∃ fx ∈ R ‖f(x+ ·)− fx‖L2(µ̃H) ≤ C|H|β

}
.

Proof. Assume that α := αf (x) < 1. Then, for every ε > 0, there exist C > 0 and
a real number fx ∈ R such that for every H > 0 small enough(

1

H

∫
B(x,H)

∣∣f(h)− fx
∣∣2dh)1/2

≤ CHα−ε.

Since C(H) ⊂ B(x, 2H), one has
(2.3)∥∥f(x+ ·)− fx

∥∥
L2(µ̃H)

=

(∫
C(H)

∣∣f(x+ h)− fx
∣∣2 dh

2H

)1/2

≤ C|2H|α−ε�|H|α−ε.

Conversely, if (2.3) holds for every H > 0, then the result follows from the fact
that B(x,H) = x+

⋃
k≥1 C(H/2k). �

So, we will use equation (2.2) as definition of the local L2 regularity.

It is important to notice that the frequencies in different ranges are going to
behave differently. Hence, it is better to look at N within dyadic intervals. More-
over, it will be easier to deal with smooth pieces. This motivates the following
definition.
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Definition 2.2. Let N ≥ 1 and let ψ : R → R be a C∞ function with support
included in [1/2, 2]. One introduces the series

(2.4) Fψs,N (x) =
+∞∑
n=1

e2iπn2x

ns
ψ
( n
N

)
,

and for R > 0 one also sets

wψR(t) = e2iπRt2ψ(t)

and

EψN (x) =
1

N

+∞∑
n=1

wψ
N2x

( n
N

)
,

For the function ψs(t) = t−sψ(t) (which is still C∞ with support in (1/2, 2)) it
is immediate to check that

(2.5) Fψs,N (x) = N1−sEψsN (x).

3. Summation Formula for Fs,N and Fψs,N

3.1. Poisson Summation. Let p, q be coprime integers, with q > 0. In this
section we obtain some formulas for F (p/q + h)− F (p/q) with h > 0. This is not
a restriction, since

(3.1) Fs

(
p

q
− h
)

= Fs

(
−p
q

+ h

)
.

We are going to write a summation formula for EψN (p/q + h), with h > 0.

Proposition 3.2. We have

(3.2) EψN

(
p

q
+ h

)
=

1
√
q

∑
m∈Z

θm · ŵψN2h

(
Nm

q

)
.

where f̂(ξ) =

∫
R
f(t)e−2iπtξdt stands for the Fourier transform of f and (θm)m∈Z

are some complex numbers whose modulus is bounded by
√

2.

Proof. We begin by splitting the series into arithmetic progressions

EψN

(
p

q
+ h

)
=

1

N

+∞∑
n=1

e
2iπn2 p

q · wψ
N2h

( n
N

)
=

q−1∑
b=0

e
2iπb2 p

q

+∞∑
n=1:

n≡b mod q

1

N
wψ
N2h

( n
N

)
.
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Now we apply Poisson Summation to the inner sum to get

+∞∑
n=1:

n≡b mod q

1

N
wψ
N2h

( n
N

)
=

+∞∑
n=1

1

N
wψ
N2h

(
b+ nq

N

)

=
∑
m∈Z

1

q
e

2iπ bm
q · ŵψ

N2h

(
Nm

q

)
This yields

EψN

(
p

q
+ h

)
=

1

q

∑
m∈Z

τm · ŵψN2h

(
Nm

q

)
with

τm =

q−1∑
b=0

e
2iπ pb

2+mb
q .

This term τm is a Gauss sum. One has the following bounds:

• for every m ∈ Z, τm = θm
√
q with θm := θm(p/q) satisfying

0 ≤ |θm| ≤
√

2.

• if q = 2 ∗ odd, then θ0 = 0.
• if q 6= 2 ∗ odd, then 1 ≤ θ0 ≤

√
2.

Finally, we get the summation formula (3.2). �

3.3. Behavior of the Fourier transform of wψR. To use formula (3.2), one

needs to understand the behavior of the Fourier transform of wψR

ŵψR(ξ) =

∫
R
ψ(t)e2iπ(Rt2−ξt) dt.

On one hand, we have the trivial bound |ŵψR(ξ)| � 1 since ψ is C∞, bounded
by 1 and compactly supported. On the other hand, one has

Lemma 3.4. Let R > 0 and ξ ∈ R. Let ψ be a C∞ function compactly supported

inside [1/2, 2]. Let us introduce the mapping gψR : R→ C

gψR(ξ) = eiπ/4
e−iπξ

2/(2R)

√
2R

ψ

(
ξ

2R

)
.

Then one has

(3.3) ŵψR(ξ) = gψR(ξ) +Oψ
(
ρR,ξ√
R

+
1

(1 +R+ |ξ|)3/2

)
,

with ρR,ξ =

{
1 if ξ/2R ∈ [1/2, 2] and R < 1,

0 otherwise.
. Moreover, one has

(3.4) ŵψ2R(ξ)− ŵψR(ξ) = gψ2R(ξ)− gψR(ξ) +Oψ
(
ρR,ξ
√
R+

R

(1 +R+ |ξ|)5/2

)
,
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Moreover, the constant implicit in Oψ depends just on the L∞-norm of a finite
number of derivatives of ψ.

Proof. For ξ/2R 6∈ [1/2, 2] the upper bound (3.3) comes just from integrating by
parts several times; for ξ,R � 1 the bound (3.3) is trivial. The same properties
hold true for the upper bound in (3.4).

Let us assume ξ/2R ∈ [1/2, 2], and R > 1. The lemma is just a consequence
of the stationary phase theorem. Precisely, Proposition 3 in Chapter VIII of [13]
(and the remarks thereafter) implies that for some suitable functions f, g : R→ R,
and if g is such that g′(t0) = 0 at a unique point t0, if one sets

S(λ) =

∫
R
f(t)eiλg(t) dt−

√
2π

−iλg′′(t0)
f(t0)eiλg(t0),

then |S(λ)| � λ−3/2 and also |S′(λ)| � λ−5/2, where the implicit constants depend
just on upper bounds for some derivatives of f and g, and also on a lower bound
for g′′.

In our case, we can apply it with f = ψ, λ = R, and g(t) = 2π(t2 − ξ/λ) to get
precisely (3.3).

With the same choices for f and g, by applying the Mean Value Theorem and
our bound for S′(λ), we finally obtain formula (3.4). �

3.5. Summation formula for the partial series Fs,N . This important formula
will be useful to study the convergence of Fs(x).

Proposition 3.6. Let p, q be two coprime integers. For N ≥ q and 0 ≤ h ≤ q−1,
we have

Fs,2N

(
p

q
+ h

)
− Fs,N

(
p

q
+ h

)
=

θ0√
q

∫ 2N

N

e2iπht2

ts
dt

+Gs,2N (h)−Gs,N (h) +O(N
1
2
−s log q),

where

(3.5) Gs,N (h) = (2hq)s−
1
2 eiπ/4

b2Nhqc∑
m=1

θm
ms

e
−iπ m

2

q2h .

Pay attention to the fact that Gs,N depends on p and q. We omit this depen-
dence in the notation for clarity.

Proof. We can write

Fs,2N (x)− Fs,N (x) = F
11[1,2]

s,N (x).

Hence, we would like to use the formulas proved in the preceding section, but those
formulas apply only to compactly supported C∞ functions. We thus decompose
the indicator function 11[1,2] into a countable sum of C∞ functions, as follows. Let
us consider η, a C∞ function with support [1/2, 2] such that

η(t) = 1− η(t/2) 1 ≤ t ≤ 2.
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Then, the function

ψ(t) =
∑
k≥2

η

(
t

2−k

)
has support in [0, 1/2], equals 1 in [0, 1/4] and is C∞ in [1/4, 1/2]. Therefore, we
have

(3.6) 11[1,2](t) = ψ(t− 1) + ψ(2− t) + ψ̃(t)

with ψ̃ some C∞ function with support included in [1, 2].

In order to get a formula for F
11[1,2]

s,N (x), we are going to use (3.6) and the linearity

in ψ of the formula (2.4).

We will first get a formula for F φs,N , where φ is any C∞ function supported in

[1/2, 2]. In particular, this will work with φ = ψ̃.

Lemma 3.7. Let φ be a C∞ function supported in [1/2, 2]. Then,

(3.7) F φs,N

(
p

q
+ h

)
=
N1−sθ0√

q

∫
R

e2iπN2ht2

ts
φ(t)dt+Gφs,N (h) +Oφ

( q

N1/2+s

)
,

where

(3.8) Gφs,N (h) = (2hq)s−
1
2 eiπ/4

∑
m 6=0

θm
ms

e
−iπ m2

2q2hφ

(
m

2Nhq

)
.

Proof. First, by (2.5) one has F φs,N (x) = N1−sEφsN (x). Further, by (3.2) one has

EφsN

(
p

q
+ h

)
=

1
√
q

∑
m∈Z

θm · ŵφsN2h

(
Nm

q

)
,

and then, applying Lemma 3.4 with ξ = Nm
q and R = N2h, one gets

EφsN

(
p

q
+ h

)
= θ0

ŵφs
N2h

(0)
√
q

+
eiπ/4
√
q

∑
m6=0

θmφs( m

2Nqh

)
e
−iπ m2

2q2h

√
2N2h

+O
(

(Nm/q)−3/2
))

.

When ξ
2R = m

2Nqh > 2, φs

(
m

2Nqh

)
= 0. Recalling that N ≥ q, since φs(t) =

φ(t)t−s, the above equation can be rewritten

F φs,N

(
p

q
+ h

)
=

N1−sθ0√
q

∫
R

e2iπN2ht2

ts
φ(t)dt+GφN (h)(3.9)

+
N1−s
√
q

∑
m≥1

Oφ
(

(Nm/q)−3/2
)
.
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The last term is controlled by

N1−s
√
q

(
1

(N/q)3/2

)
=

q

N1/2+s
,

which yields (3.7). �

Now, one wants to obtain a comparable formula for ηk(t) := η((t− 1)/2−k) for
all k ≥ 1. We begin with a bound which is good just for large k.

Lemma 3.8. For any k ≥ 1 and 0 < h ≤ 1/q, one has

F η
k

s,N

(
p

q
+ h

)
=
θ0N

1−s
√
q

∫
R

e2iπN2ht2

ts
ηk(t)dt+Gη

k

s,N (h) +Oη
(
N1−s2−k

)
.

Proof. First, when k becomes large, since η has support in [1/2, 2], one has directly:
- by (2.4):

|F η
k

s,N (x)| ≤
+∞∑
n=1

1

ns

∣∣∣∣η( n
N − 1

2−k

)∣∣∣∣ ≤ N+N2−k+1∑
n=N+N2−k−1

1

ns
� N1−s2−k

- by (3.8):

|Gη
k

s,N (h)| � (qh)s−
1
2

∑
m: ηk( m

2Nhq
)6=0

1

ms
� (qh)s−

1
2

2Nhq2−k

(2Nhq)s
�
√
qh2−kN1−s

- and∣∣∣∣∣θ0N
1−s
√
q

∫
R

e2iπN2ht2

ts
ηk(t)dt

∣∣∣∣∣� N1−sq−1/2

∫ 1+2−k+1

1+2−k−1

dt

ts
� 2−kN1−sq−1/2,

hence the result by (3.9), where we used that qh ≤ 1. �

One can obtain another bound that is good for any k.

Lemma 3.9. For every k ≥ 2 and 0 < h ≤ 1, one has

F η
k

s,N

(
p

q
+ h

)
=
θ0N

1−s
√
q

∫
R

e2iπN2ht2

ts
ηk(t)dt+Gη

k

s,N (h) +Oη
(√

q

N s
+N1/2−sγk

)
,

where the sequence (γk)k≥1 is positive and satisfies
∑

k≥1 γk � 1.

Proof. The proof starts as the one of Lemma 3.7. Using the fact that for any

(ηk)s(t) = η((t−1)/2−k)
ts and that

ŵ
(ηk)s
R (ξ) =

∫
R

(ηk)s(t)e
2iπ(Rt2−tξ)dt =

∫
R

η( t−1
2−k

)

ts
e2iπ(Rt2−tξ)dt

= 2−ke2iπ(R−ξ)
∫
R

η(u)

(1 + u2−k)s
e2iπ(R2−2ku2−2−k(ξ−2R)u)du

= 2−ke2iπ(R−ξ) ̂
wη̃

k

R2−2k(2−k(ξ − 2R)),



LOCAL L2-REGULARITY OF RIEMANN’S FOURIER SERIES 11

where η̃k(u) = η(u)
(1+u2−k)s

. Hence,

E
(ηk)s
N

(
p

q
+ h

)
=

1
√
q

∑
m∈Z

θm · ŵ(ηk)s
N2h

(
Nm

q

)

=
2−k
√
q

∑
m∈Z

θm · e2iπ(N2h−Nm
q

) ̂
wη̃

k

N2h2−2k

(
2−k

(
Nm

q
− 2N2h

))
(3.10)

Here we apply again Lemma 3.4 and we obtain

E
(ηk)s
N

(
p

q
+ h

)
=

2−k
√
q

∑
m6=0

θme
2iπ(N2h−Nm

q
)

×

eiπ/4η̃k
2−k

(
Nm
q − 2N2h

)
2N2h2−2k

 e
−iπ

2−2k(Nmq −2N2h)
2

2N2h2−2k

√
2N2h2−2k

+O
η̃k

(
ρRk,ξk√
2−2kN2h

+

(
1 + 2−k

∣∣∣∣Nmq − 2N2h

∣∣∣∣+N2h2−2k

)−3/2
))

.

with Rk = 2−2kN2h and ξk = 2−k|Nm/q − 2N2h|. Finally, after simplification,
one gets

F η
k

s,N

(
p

q
+ h

)
= N1−sE

(ηk)s
N

(
p

q
+ h

)
=

(2qh)s−
1
2

e−iπ/4

∑
m∈Z

θm
ms

e
−2iπ m

2

q2h ηk
(

m

2Nhq

)
(3.11)

(3.12)

=
θ0N

1−s
√
q

∫
R

e2iπN2ht2

ts
ηk(t)dt+Gη

k

s,N (h) + LkN ,

where by Lemmas 3.7 and 3.8 one has

LkN = O
η̃k

 ∑
m∈JkN∩Z∗

2−kN1−s/
√
q

√
2−2kN2h

+
∑
m∈Z∗

2−kN1−s/
√
q

(1 + 2−k|Nmq − 2N2h|+N2h2−2k)3/2

,
with JkN =

[
(2 + 2−k−1)Nqh, (2 + 2−k+1)Nqh

]
.

First, as specified in Lemma 3.4, the constants involved in the O
η̃k

depend on

upper bounds for some derivatives of η̃k, and then by the definition of η̃k we can
assume they are fixed and independent on both k and s.

Let {x} stand for the distance from the real number x to the nearest integer.
The first sum in LkN is bounded above by:

• √qN−s +N1/2−s when 2−k ∈
[
{2Nhq}/4Nhq, {2Nhq}/Nhq

]
,

• √qN−s otherwise.
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In particular, x being fixed, the term N1/2−s may appear only a finite number
of times when k ranges in N.

In the second sum, there is at most one integer m for which |Nm/q− 2N2h| <
N/2q, and the corresponding term is bounded above by

2−kN1−sq−1/2(1 +N/q2−k + |N2h|−2k)−3/2

≤ 2−kN1−sq−1/2(1 +N/q2−2k)−3/2

= N1/2−s N1/2q−1/22−k

(1 +N/q2−2k)−3/2

≤ N1/2−sγk,

where γk =
√

uk
(1+uk)3

and uk = 2−2kN/q. The sum over k of this upper bound is

finite, and this sum can be bounded above independently on N and q.

The rest of the sum is bounded, up to a multiplicative constant, by∫ +∞

u=0

√
qN−s (2−kN/q)du

(1 +N2h2−2k + 2−k|Nuq − 2N2h|)3/2
�

√
qN−s

(1 +N2h2−2k)1/2
� √qN−s,

hence the result. �

Now we are ready to prove Proposition 3.6.

Recall that N ≥ q and 0 ≤ h ≤ q−1. Let K be the unique integer such that

2−K ≤
√
q
N < 2−(K+1). We need to bound by above the sum of the errors LkN :

• when k ≥ K: we use Lemma 3.8 to get∑
k≥K
|LkN | � N1−s2K � N1−s

√
q

N
=

√
q

N s
≤ 1

N s−1/2
.

• the remaining terms are simply bounded using Lemma 3.9 by

K∑
k=2

|LkN | � K

√
q

N s
+N1/2−s � logN

√
q

N s
+N1/2−s � log q

√
N

N s
=

log q

N s−1/2
,

where we use that the mapping x 7→
√
x

log x is increasing for large x.

Gathering all the informations, and recalling that
∑+∞

k=2 η
k(t) = ψ(t − 1), we

have that

F
ψ(·−1)
s,N

(
p

q
+ h

)
=
N1−sθ0√

q

∫
R

e2iπN2ht2

ts
ψ(t− 1)dt+G

ψ(·−1)
s,N (h) +Oη

(
log q

N s−1/2

)
.

The same inequalities remain true if we use the functions η̃k = η((2− t)/2−k),
so the last inequality also holds for ψ(2− ·)

Finally, recalling the decomposition (3.6) expressing 11[1,2] in terms of smooth
functions, we get

(3.13) F
11[1,2]

s,N

(
p

q
+ h

)
=
N1−sθ0√

q

∫ 2

1

e2iπN2ht2

ts
dt+G

11[1,2]

s,N (h) +Oη
(

log q

N s−1/2

)
,
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and the result follows. �

4. Proof of the convergence theorem 1.4

4.1. Convergence part: item (i). Let x be such that (1.4) holds true.
Recall the definition (1.2) of the convergents of x. We begin by bounding

Fs,M (x)− Fs,N (x) for any

qj/4 ≤ N < M < qj+1/4.

We apply Proposition 3.6 with p/q = pj/qj and h = hj , so that x = p/q + h.
Due to (3.1), we can assume that hj > 0. It is known that for 1

2qjqj+1
≤ hj =

|x− pj/qj | < 1
qjqj+1

.

First, since 4Nhjqj < 4N/qj+1 < 1, the sums (3.5) appearing in Gs,2N (hj) and
Gs,N (hj) have no terms, hence are equal to zero. This yields

Fs,2N (x)− Fs,N (x) =
θ0√
qj

∫ 2N

N

e2iπhjt
2

ts
dt+O(N

1
2
−s log qj).

It is immediate to check that
∫ 2a
a t−se2iπt2 dt� min(a−s−1, a−s+1), thus∣∣∣∣∣

∫ 2N

N

e2iπhjt
2

ts
dt

∣∣∣∣∣ � |hj |s/2−1/2

∣∣∣∣∣
∫ 2N

√
hj

N
√
hj

e2iπu2

us
du

∣∣∣∣∣
� |hj |−1/2N−s min(|N

√
hj |−1, |N

√
hj |).

One deduces (using that qjhj is equivalent to q−1
j+1) that

|Fs,2N (x)− Fs,N (x)| � |θ0|
√
qj+1

N s
min(

N
√
qjqj+1

,

√
qjqj+1

N
) +N

1
2
−s log qj .

Thus, by writing Fs,M (x)− Fs,N (x) as a dyadic sum we have

|Fs,M (x)− Fs,N (x)| � |θ0|δj
√
qj+1

(
√
qjqj+1)s

+
log qj

q
s−1/2
j

.

Recalling that θ0 is equal to zero when qj 6= 2×odd, fixing an integer j0 ≥ 1, for
any M > N > qj0 , one has

|Fs,M (x)− Fs,N (x)| �
∑

j≥j0,qj 6=2∗odd

δj

√
qj+1

(
√
qjqj+1)s

+
∑
j≥j0

log qj

q
s−1/2
j

+
∑
j≥j0

1

q
s−1/2
j+1

.

The second and third series always converge when j0 → ∞, and the first does
when Σs(x) <∞.
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4.2. Divergence part: item (ii). Let 0 < ε < 1/2 a small constant. Let
Nj = εqj and Mj = 2ε

√
qjqj+1. Proceeding exactly as in the previous proof we

get

Fs,Mj (x)− Fs,Nj (x) =
θ0√
qj

∫ Mj

Nj

e2iπhjt
2

ts
dt+O

(
q

1
2
−s

j log qj

)
.

Since e2iπhjt
2

= 1 +O(ε) inside the integral, as soon as qj 6= 2 ∗ odd, one has

|Fs,Mj (x)−Fs,Nj (x)| ≥ |θ0|√
qj

Mj −Nj

2 ·M s
j

≥ |θ0|ε
2
√
qj+1 −

√
qj

21+s · εs · (qjqj+1)s/2
�
√

qj+1

(qjqj+1)s
,

which is infinitely often large by our assumption. Hence the divergence of the
series.

5. Local L2 bounds for the function Fs

Further intermediary results are needed to study the local regularity of Fs.

Proposition 5.1. Let h > 0, 1/2 < s < 3/2 and q2h� 1. We have

Fs,N

(
p

q
+ 2h

)
− Fs,N

(
p

q
+ h

)
=

θ0√
q

∫ N

0

e2iπ2ht2 − e2iπht2

ts
dt(5.1)

+Gs,N (2h)−Gs,N (h)

+O
(
|qh|s−1/2

)
.

Proof. First, one writes

(5.2) Fs,N (x) = F
11[0,1]

s,N (x) =
∑
m≥1

F
11[1,2]

s,N/2m(x).

Observe that when N is divisible by 2, there may be some terms appearing
twice in the preceding sum, so there is not exactly equality. Nevertheless, in this
case, only a few terms are added and they do not change our estimates. This is
left to the reader.

We are going to estimate (5.1) but with F
11[1,2]

s,N and G
11[1,2]

s,N instead of Fs,N and
Gs,N , with an error term suitably bounded by above. Then, using this result with
N substituted by N/2m, and then summing over m = 1, ..., blog2Nc will give the

result (for m > blog2Nc, the sum F
11[1,2]

s,N/2m is empty).

We start from equation (3.10) applied with h and 2h, and then we apply Lemma
3.4, but this time equation (3.4) instead of (3.3). Let us introduce for all integers
k the quantity

EkN := F η
k

s,N

(
p

q
+ 2h

)
− F η

k

s,N

(
p

q
+ h

)
(5.3)

+
θ0N

1−s
√
q

∫
R

e2iπN22ht2 − e2iπN2ht2

ts
ηk(t)dt

+Gη
k

s,N (2h)−Gη
k

s,N (h),
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with ηk defined as in Proposition 3.6. By the exact same computations as in
Lemma 3.9, one obtains the upper bound

|EkN | � βkN
∑

m∈Jk∩Z∗

2−kN1−s/
√
q

(2−2kN2h)−1/2
+
∑
m∈Z∗

(2−kN1−s/
√
q)N2h2−2k

(1 +N2h2−2k + 2−k|Nmq − 2N2h|)5/2
,

with JkN =
[
(2 + 2−k−1)Nqh, (2 + 2−k+1)Nqh

]
and

βkN =

{
1 if 2−2kN2h ≤ 1,

0 otherwise.

Then, as at the end of the proof of Lemma 3.9, since h� q−2, we can bound the
sums by

|EkN | � βkN2−2kN2−s
√
h
√
q

+
(N1/2−s)

√
(N/q)2−2kN2h2−2k

(1 +N2h2−2k + (N/q)2−2k)5/2
+

(
√
qN−s)N2h2−2k

(1 +N2h2−2k)3/2

and then adding up in k ≥ 1 we get
∞∑
k=1

|EkN | � ẼN =

√
1/hq

N s
min(1, Nqh) +

√
N

N s
min(1, Nqh) +

√
q

N s
min(1, N2h).

The same holds true for the functions η̃k = η((2 − t)/2−k), and for ψ̃ since it is
similar to η1, so by (3.6) we finally obtain that

F
11[1,2]

s,N

(
p

q
+ 2h

)
− F 11[1,2]

s,N

(
p

q
+ h

)
=

θ0√
q

∫ N

0

e2iπ2ht2 − e2iπht2

ts
dt(5.4)

+G
11[1,2]

s,N (2h)−G11[1,2]

s,N (h)

+O
(
ẼN

)
.

The same holds true with N/2m instead of N . To get the result, using (5.2),
it is now enough to sum the last inequality over m = 1, ..., blog2Nc. Let us treat
the first term. One has

blog2Nc∑
m=1

√
1/hq

N s
min(1, Nqh) =

blog2Nc∑
m=1

√
1/hq

(N2m)s
min(1, N2mqh)

=

√
1/hq

N s

blog2Nc∑
m=1

min(2ms, N2m(1−s)qh)

≤
√

1/hq

N s

+∞∑
m=1

min(2ms, N2m(1−s)qh)

�
√

1/hq

N s
2Ms,

where M is the integer part of the solution of the equation 2Ms = N2m(1−s)qh, i.e.

2M h Nqh. Hence the first sum is bounded above by

√
1/qh

(1/qh)s . The other terms are
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treated similarly, and finally (5.1) is true with an error term bounded by above by

O

(√
1/qh

(1/qh)s
+

√
q

(h−1/2)−s

)
which is O((qh)s−1/2) on h� q−2. �

We also need to control the L2 norm of the main term.

Lemma 5.2. Let 0 < s ≤ 1 and fix 0 < H < 1. Let

fs,N (·) =

∫ N

0

e2iπt2(δ+2·) − e2iπt2(δ+·)

ts
dt.

Then for any N > 0 , ‖fs,N (·)‖L2(µ̃H) � min
(
H(s−1)/2, H|δ|(s−3)/2

)
.

Proof. • Let us treat first the case |δ| < H/4. Using a change of variable, one has

fs,N (h) = H(s−1)/2

∫ N
√
H

0

e2iπt2 δ+2h
H − e2iπt2 δ+h

H

ts
dt.

We are interested in the range H < h < 2H, and in this case the ratios δ+2h
H ,

δ+h
H are bounded, so that the integral is bounded by a constant independent of N .

One deduces that ‖fs,N (·)‖L2(µ̃H) � H(s−1)/2.

• Assume then that |δ| > 4H. Assume that δ > 0 (the same holds true with
negative δ’s). Using a change of variable, one has

fs,N (h) = |δ|(s−1)/2

∫ N
√
|δ|

0

e2iπt2(1+ 2h
δ

) − e2iπt2(1+h
δ

)

ts
dt.

The integral between 0 and 1 is clearly O(h/|δ|). For the other part, one has (after
integration by parts)∫ N

√
δ

1

e2iπt2(1+ 2h
δ

) − e2iπt2(1+h
δ

)

ts
dt = O (h/|δ|) ,

so that |fs,N (h)| � H|δ|(s−3)/2 for any H < h < 2H. Hence ‖fs,N (·)‖L2(µ̃H) �
H|δ|(s−3)/2.

• It remains us to deal with the case H/4 < δ ≤ 4H. One observes that

fs,N (h) = D(δ + 2h)−D(δ + h) +O(H), where D(v) =

∫ N

1
t−se2iπvt2 dt.

It is enough to get the bound∫ H

0
|D(v)|2 dv � Hs,

which follows from the fact that |D(v)| � |v|(s−1)/2 when s < 1 and |D(v)| �
1 + log(1/|v|) when s = 1.

�
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Finally, the oscillating behavior of Gs,N (h) gives us the following.

Proposition 5.3. Let 0 < H ≤ q−2 and |δ| ≤
√
H/q. Let

gs,N (·) = Fs,N

(
p

q
+ δ + 2 ·

)
− Fs,N

(
p

q
+ δ + ·

)
− θ0√

q
fs,N (·).

One has ‖gs,N‖L2(µ̃H) � H
s−1/2

2 .

Proof. We consider µH = (µ̃H)|R+ . By (3.1), it is enough to treat the case δ+h > 0

and δ + 2h > 0. Proposition 5.1, applied successively with hn := 2−n(δ + h) and

h̃n := 2−n(δ + h/2), and summing over n ≥ 0, we get that

gs,N (h) = Gs,N (δ + 2h)−Gs,N (δ + h) +O
(

(q(|δ|+ |h))s−1/2
)
.(5.5)

Thus, since q(|δ|+ |h|)�
√
H, it is enough to show that

(5.6) ‖Gs,N (δ + ·)‖L2(µH) � H
s−1/2

2 .

Assume first that |δ| ≥ 3H. By expanding the square and changing the order of
summation, and using that δ + 2H ≤ 2|δ|, we have for some cn,m ≥ 0

‖Gs,N (δ + ·)‖2L2(µH) � (q|δ|)2s−1

2b2N |δ|qc∑
n,m=1

|θm|
ms

|θn|
ns

∣∣∣∣∣
∫ δ+2H

δ+H+cn,m

e
2iπ n

2−m2

q2h
dh

H

∣∣∣∣∣
� (q|δ|)2s−1

2b2N |δ|qc∑
n,m=1

|θm|
ms

|θn|
ns

∣∣∣∣∫ δ+2H

δ+H
e

2iπ n
2−m2

q2h
dh

H

∣∣∣∣ .
Since for |M | ≥ 1 and 0 < ε� 1∫ 1+ε

1
e2iπM

t dt� 1

|M |
,

the previous sum is bounded above by

(q|δ|)2s−1

∑
m≥1

1

m2s
+
|δ|
H
q2|δ|

∑
m≥1

1

m1+s

∑
j≥1

1

j1+s

 ,
with j = |n−m|. The term between brackets is bounded by a universal constant
(since q2δ2/H ≤ 1), hence (5.6) holds true. It is immediate that the same holds
true with (µ̃H)|R− .

Further, assume that |δ| < 3H. Setting Hk = 2−kH, one has

‖Gs,N (δ + ·)‖2L2(µ̃H) ≤
∫ 5H

0
|Gs,N (h)|2dh

H
≤
∑
k≥−2

2−k‖Gs,N (·)‖2L2(µHk ).

Now, observing that [Hk, Hk−1] ⊂ 3Hk + ([−2Hk,−Hk] ∪ [Hk, 2Hk]), one can
apply (5.6) with H = Hk and δ = 3Hk to get

‖Gs,N (·)‖2L2(µHk ) ≤ ‖Gs,N (δk + ·)‖L2(µHk ) ≤ H
s−1/2

2
k = H

s−1/2
2 2−k

s−1/2
2 .
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Summing over k yields the result. �

6. Proof of Theorem 1.5

6.1. Lower bound for the local L2-exponent αFs. Assume that Σs(x) < ∞
(see equation (1.4)), so that the series Fs,N (x) converges to Fs(x). Recall that
pj/qj stands for the partial quotients of x.

Pick N such that 0 ≤ |Fs(x)− Fs,N (x)| < H and N
1
2
−s ≤ H2. Since

‖Fs(x+ ·)− Fs,N (x+ ·)‖L2(µ̃H) ≤
‖Fs(x+ ·)− Fs,N (x+ ·)‖L2([0,1])

H/2

� N
1
2
−s

H
≤ H,

and since one has

Fs(x+ ·)−Fs(x) = Fs(x+ ·)−Fs,N (x+ ·)+Fs,N (x+ ·)−Fs,N (x)+Fs,N (x)−Fs(x),

one deduces that

‖Fs(x+ ·)− Fs(x)‖L2(µ̃H) = ‖Fs,N (x+ ·)− Fs,N (x)‖L2(µ̃H) +O(H).

Thus, it is enough to take care of the local L2-norm of Fs,N (x+h)−Fs,N (x). One
has

‖Fs,N (x+ h)− Fs,N (x)‖L2(µ̃H) ≤
∑
k≥1

∥∥∥Fs,N (x+ 2
·

2k
)− Fs,N (x+

·
2k

)
∥∥∥
L2(µ̃H)

≤
∑
k≥1

‖Fs,N (x+ 2 ·)− Fs,N (x+ ·)‖L2(µ̃Hk ) ,(6.1)

where Hk = H2−k. Let us introduce the function f(h) = Fs,N (x+ 2h)−Fs,N (x+
h).

Let jH be the smallest integer such that q−2
j ≤ H. For every k ≥ 1, and let j

be the unique integer such that q−2
j+1 ≤ Hk < q−2

j (necessarily j ≥ jH − 1). Using

that |x− pj/qj | = |hj | ≤ q−2
j , one sees that

‖f‖L2(µ̃Hk ) =

∥∥∥∥Fs,N (pjqj + hj + 2 ·
)
− Fs,N

(
pj
qj

+ hj + ·
)∥∥∥∥

L2(µ̃Hk )

.

Since |hj | < 1/qjqj+1 ≤
√
Hk/qj , we can apply Proposition 5.3 and Lemma 5.2

with Hk and δ = hj to get

‖f‖L2(µ̃Hk ) � H
s−1/2

2
k +

|θ0|√
qj

min
(
H

(s−1)/2
k , Hk|hj |(s−3)/2

)
� H

s−1/2
2

k +
|θ0|√
qj
H

(s−1)/2
k min

(
1,

∣∣∣∣ hjHk

∣∣∣∣(s−3)/2
)
.

In order to finish the proof we are going to consider three different cases:
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(1) s− 1 + 1/2rodd(x) > 0: Since hj = q
−rj
j we have

‖f‖L2(µ̃Hk ) � H
s−1/2

2
k + |θ0|H(s−1)/2

k min

|hj | 1
2rj ,

Hk
(3−s)/2

|hj |
3−s
2
− 1

2rj

 ,

and optimizing in |hj | we get

‖f‖L2(µ̃Hk ) � H
s−1/2

2
k + |θ0|H

s−1+1/2rj
2

k � H
(s−1+1/2rodd(x)+o(Hk))/2
k

by the definition of rodd(x). Adding up in k finishes the proof in this case.

(2) s − 1 + 1/2rodd(x) = 0 and s = 1: In this case it is enough to show that∑
k≥1 ‖f‖L2(µ̃Hk ) <∞. We have

‖f‖L2(µ̃Hk ) � H
s−1/2

2
k +

|θ0|√
qj

which implies∑
q−2
j+1≤Hk≤q

−2
j

‖f‖L2(µ̃Hk ) �
∑

q−2
j+1≤Hk≤q

−2
j

H
s−1/2

2
k +

|θ0|√
qj

log(qj+1/qj).

This yields∑
k≥1

‖f‖L2(µ̃Hk ) � H
s−1/2

2 +
∑

j: qj 6=2∗odd

1
√
qj

log
qj+1

qj
� 1 + Σs(x) < +∞.

(3) s− 1 + 1/2rodd(x) = 0 and s < 1: Since hj � 1/qjqj+1, we have

‖f‖L2(µ̃Hk ) � H
s−1/2

2
k +

|θ0|√
qj

min

(
H

(s−1)/2
k ,

Hk

(qjqj+1)(s−3)/2

)
,

so ∑
q−2
j+1≤Hk≤q

−2
j

‖f‖L2(µ̃Hk ) � (
∑

q−2
j+1≤Hk≤q

−2
j

H
s−1/2

2
k ) +

|θ0|√
qj

(
1

qjqj+1
)(s−1)/2.

Finally,∑
k≥1

‖f‖L2(µ̃Hk ) � H
s−1/2

2 +
∑

j,qj 6=2∗odd

√
qj+1

(qjqj+1)s
� 1 + Σs(x) <∞.

6.2. Upper bound for the local L2-exponent. Assume first that s < 1.

Let K be a large constant. Let 0 < H ≤ (1/K)q−2, with q 6= 2 ∗ odd and
N > H−2. We apply Propositions 5.1 and 5.3 to get∥∥∥∥Fs,N (pq + 2·

)
− Fs,N

(
p

q
+ ·
)∥∥∥∥

L2(µ̃H)

=
|θ0|√
q

∥∥∥F̃s(·)∥∥∥
L2(µ̃H)

+O(H
s−1/2

2 )

with

F̃s(h) =

∫ N

0

e4iπht2 − e2iπht2

ts
dt.
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Using a change of variable, and then after integrating by parts, one obtains

F̃s(h) = h
s−1
2

∫ N
√
h

0

e4iπt2 − e2iπt2

ts
dt

= h
s−1
2

(
(2s − 1)

∫ +∞

0

e2iπt2

ts
dt+O

(
(N
√
|h|)−s−1

))
.

It is easily checked that
∫ +∞

0
e2iπt

2

ts dt is not zero. This leads us to the estimate∥∥∥F̃s(·)∥∥∥
L2(µ̃H)

= CsH
s−1
2 (1 +O(H))

for some non-zero constant Cs. Since 0 < H ≤ q−2/K, we deduce that

(6.2)

∥∥∥∥Fs,N (pq + 2·
)
− Fs,N

(
p

q
+ ·
)∥∥∥∥

L2(µ̃H)

≥ H
s−1
2

√
q

when H becomes small enough.

Now, pick a convergent pj/qj of x with qj 6= 2 ∗ odd, and take Hj = (1/K)|hj |.
One can check that

Hj ≤ (1/K)
1

qjqj+1
≤ (1/K)

1

q2
j

.

Then, we apply (6.2) to obtain that for every N ≥ H−2
j , one has∥∥∥∥Fs,N (pjqj + 2·

)
− Fs,N

(
pj
qj

+ ·
)∥∥∥∥

L2(µ̃Hj )

≥
H

s−1
2

j√
qj

= H
s−1
2

j h
1/(2rj)
j � H

s−1+1/rj
2

j .

On the other hand, by the triangular inequality,∣∣∣∣Fs,N (pjqj + 2h

)
− Fs,N

(
pj
qj

+ h

)∣∣∣∣ ≤ ∣∣∣∣Fs,N (pjqj + 2h

)
− Fs,N (x)

∣∣∣∣
+

∣∣∣∣Fs,N (pjqj + h

)
− Fs,N (x)

∣∣∣∣ ,
which implies that for H̃j = Hj or H̃j = 2Hj , one has

‖Fs,N (x+ ·)− Fs,N (x)‖L2(µ̃
H̃j

) ≥ 1

2

∥∥∥∥Fs,N (pjqj + 2·
)
− Fs,N

(
pj
qj

+ ·
)∥∥∥∥

L2(µ̃Hj )

� H
s−1+1/rj

2
j

Now, we can choose N so large that

‖Fs,N (x+ ·)− Fs,N (x)‖L2(µ̃
H̃j

) = ‖Fs(x+ ·)− Fs(x)‖L2(µ̃
H̃j

) +O(H̃j),

and we finally obtain

‖Fs(x+ ·)− Fs(x)‖L2(µ̃
H̃j

) � H̃
s−1+1/rj

2
j .
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Since this occurs for an infinite number of j, i.e. for an infinite number of small

real numbers H̃j converging to zero, one concludes that

αFs(x) ≤ lim inf
j→+∞

s− 1 + 1/rj
2

=
s− 1 + 1/rodd(x)

2
.
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