A crack propagation criterion based on Delta CTOD measured with 2D-digital image correlation technique

To cite this version:

HAL Id: hal-01612001
https://hal.archives-ouvertes.fr/hal-01612001
Submitted on 7 Nov 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A crack propagation criterion based on ΔCTOD measured with 2D-digital image correlation technique

A. KTARI¹,², M. BACCAR¹, M. SHAH¹, N. HADDAR², H. F. AYEDI² and F. REZAI-ARIA¹
¹Université de Toulouse; INSA, UPS, Mines Albi, ISAE; ICA (Institut Clément Ader) Route de Tiellet, Campus Jauriard, Albi, France, ²Laboratoire de Génie des Matériaux et Environnement (LGME), ENIS, Université de Sfax BP 1173-3038, Tunisia

ABSTRACT

The fatigue cracks growth rate of a forged HSLA steel (AISI 4130) was investigated using thin single edge notch tensile specimen to simulate the crack development on a diesel train crankshafts. The effect of load ratio, R, was investigated at room temperature. Fatigue fracture surfaces were examined by scanning electron microscopy. An approach based on the crack tip opening displacement range (ΔCTOD) was proposed as fatigue crack propagation criterion. ΔCTOD measurements were carried out using 2D-digital image correlation techniques. J-integral values were estimated using ΔCTOD. Under test conditions investigated, it was found that the use of ΔCTOD as a fatigue crack growth driving force parameter is relevant and could describe the crack propagation behaviour, under different load ratio R.

Keywords forged steel; crack propagation; digital image correlation; CTOD; J-integral.

NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Crack length</td>
</tr>
<tr>
<td>COD (or δ)</td>
<td>crack opening displacement</td>
</tr>
<tr>
<td>CTOD (or δt)</td>
<td>crack tip opening displacement</td>
</tr>
<tr>
<td>δ₁₀</td>
<td>constant depending on materials properties</td>
</tr>
<tr>
<td>DIC</td>
<td>digital image correlation</td>
</tr>
<tr>
<td>E</td>
<td>Young modulus</td>
</tr>
<tr>
<td>FCG</td>
<td>fatigue crack growth</td>
</tr>
<tr>
<td>FCGR</td>
<td>fatigue crack growth rate</td>
</tr>
<tr>
<td>J</td>
<td>J-integral</td>
</tr>
<tr>
<td>Jmax</td>
<td>J-integral at maximal load</td>
</tr>
<tr>
<td>Jmin</td>
<td>J-integral at minimum load</td>
</tr>
<tr>
<td>K</td>
<td>Stress intensity factor</td>
</tr>
<tr>
<td>Kₚₒ</td>
<td>Stress intensity factor at the crack opening load</td>
</tr>
<tr>
<td>Kmax</td>
<td>Stress intensity factor at maximal load</td>
</tr>
<tr>
<td>Kmin</td>
<td>Stress intensity factor at minimum load</td>
</tr>
<tr>
<td>n</td>
<td>Strain hardening exponent</td>
</tr>
<tr>
<td>N</td>
<td>The number of cycles</td>
</tr>
<tr>
<td>R</td>
<td>Fatigue load ratio</td>
</tr>
<tr>
<td>SENT</td>
<td>Single edge notch specimen</td>
</tr>
<tr>
<td>SSY</td>
<td>Small scale yielding</td>
</tr>
<tr>
<td>W</td>
<td>Specimen width</td>
</tr>
<tr>
<td>α</td>
<td>Material constant</td>
</tr>
<tr>
<td>δ₁ₚₒ</td>
<td>Crack tip opening displacement at maximal load</td>
</tr>
<tr>
<td>δ₁ₗₒ</td>
<td>Crack tip opening displacement at minimum load</td>
</tr>
<tr>
<td>ΔCOD (or Δδ)</td>
<td>Crack opening displacement range</td>
</tr>
<tr>
<td>ΔCTOD (or Δδₗ)</td>
<td>Crack tip opening displacement range</td>
</tr>
<tr>
<td>ΔJ</td>
<td>Variation of the J-integral = Jmax − Jmin</td>
</tr>
<tr>
<td>ΔJₑ</td>
<td>Variation of the J-integral calculated from experimental Δδₗ</td>
</tr>
</tbody>
</table>

Correspondence: A. Ktari. E-mail: ahmedingmat@yahoo.fr
\[
\Delta K = K_{\text{max}} - K_{\text{min}} = \text{stress intensity factor range}
\]
\[
\Delta K_{\text{eff}} = K_{\text{max}} - K_{\text{op}} = \text{effective stress intensity factor range}
\]
\[
t_{\text{p}} = \text{plastic strain}
\]
\[
\sigma_0 = \text{yield stress}
\]

INTRODUCTION

The crankshaft is an engine component that converts the linear piston movement into rotary motion while the force connecting rod is transformed to torque. It contains geometrical discontinuities or singularities, from which cracks can initiate and propagate until final fracture.\(^1\) To predict the fatigue crack growth rate (FCGR) under different loading conditions, several models are proposed.\(^6\) Nevertheless, there are still significant difficulties to correlate the crack closure measurements with the crack growth behaviour in a consistent way.\(^23\)\(^-\)\(^26\) Several models exist in literature to predict the FCGR within structures. These models are based on the linear elastic fracture mechanics approach that assumes that crack propagates in the small scale yielding (SSY) conditions (i.e. the crack length is much larger than the crack tip plastic zone). Nevertheless, this assumption is not usually prevailed especially at high temperature or even at ambient temperature when the material presents a ductile behaviour (i.e. the crack propagates with considerable plastic deformation in the vicinity of the crack tip). Hence, the FCGR should be studied under elastic plastic fracture mechanics approach. Indeed, an energy criterion based on the \(J\)-integral, defined by Rice\(^27\), is suggested. In order to achieve this, the crack tip opening displacement range (ACTOD) is considered as an FCGR criterion. The use of this parameter is interesting in the way that it allows to establish experimentally the cyclic \(J\)-integral values.\(^28\)\(^29\)

The ACTOD values are estimated from \(\Delta\text{COD}\) measurements, which are carried out using 2D digital image correlation (DIC) methods.\(^30\)\(^31\) The latter are non contact methods that can remove the errors introduced due to probing. Also because it is a ‘post test’ measurement system, the data can be analysed with different parameters. Multiple points of local measurements by ‘virtual strain gauges’ can be applied along the crack line. The data from these points are extrapolated up to the crack tip to obtain the \(\Delta\text{CTOD}\) values.\(^32\)\(^33\) The full-field DIC displacement measurements have been the subject of many research over the past few decades. Dawicke and Sutton\(^34\) have used the DIC method to measure the CTOA during the fracture tests of thin-sheet material (i.e. the CTOA is defined as the angle made by two straight lines: one line contained a point on the upper crack surface and the crack tip and the other line contained the crack tip and a point on the lower crack surface). Yusof and Withers\(^35\) have used also the DIC to determine the crack tip position and stress intensity variations (\(K_I\) and \(K_{II}\)) for a pre-cracked aluminium CT specimen. Lopez-Crespo et al.\(^36\) have applied a generalized approach to determine the SIFs \(K_I\) and \(K_{II}\) for any mixed mode (i.e. the complete range of mixed mode loading from pure mode I to pure mode II) measured directly from DIC displacement fields. This approach is presented using a centre fatigue cracked heat-treated T7010 T7651 aluminium plate. Roux and Hild\(^37\) have also applied DIC to study the crack propagation in ceramic as a brittle material. Becker et al.\(^38\) have presented a new methodology for evaluation of the \(J\)-integral domain based on DIC full-field displacement measurement. This methodology is tested and validated on three different specimen geometries for elastic, elastic-plastic and quasibrittle materials.

\[\text{where } C \text{ and } m \text{ are constants dependent on the materials and the environmental factors. This model can be quite useful in engineering applications. But it does address their important roles that occur during crack propagation especially near the crack tip fields. Measuring changes in the compliance of cracked thin sheets 2024-T3 aluminium alloy, Elber, in 1971 has shown\(^15\) the fatigue closure phenomenon at a remotely applied tensile stress. They attributed it to the formation of a residual compressive stress behind the crack tip. This implies that only the load range between the opening load \(P_{\text{op}}\) and the maximum load \(P_{\text{max}}\) can affect the damage of the crack tip during the load cycle. Hence, they proposed to modify Paris relationship using only the portion of the stress intensity range above the crack opening load, as presented in Eq. (1):}\]

\[\frac{dt}{dN} = C(\Delta K)^m \quad (1)\]

\[\text{where } \Delta K_{\text{eff}} \text{ is the effective SIF range. Most of the researchers consider the concept of crack closure as a crucial mechanism regarding its relationship with load ratio effects on the crack propagation in metallic materials.\(^16\)\(^-\)\(^21\) To measure this crack closure, a number of techniques such as the electrical potential drop, the ultrasonic methods and the eddy current methods \(^22\) were developed. Nevertheless, there are still significant difficulties to correlate the crack closure measurements with the crack growth behaviour in a consistent way.}\]

\[\text{Several models exist in literature to predict the FCGR within structures. These models are based on the linear elastic fracture mechanics approach that assumes that}\]
This paper aims to (i) study the fatigue crack behaviour of AISI 4130 forged steel used in train crankshafts under different load ratio, R, and (ii) apply ΔCTOD as crack propagation criterion micro scale 2D-DIC measurements.

EXPERIENCES

Material and specimen preparation

The experiments were carried out on single edge notched tensile (SENT) specimens machined from AISI 4130 forged steel and were taken from the counterweights of fractured train crankshaft. The chemical analysis of the crankshaft material was carried out using a spectroscopic metal analyzer (Jobin Yvon JY 48®), and the chemical composition is given in Table 1.

As mentioned earlier, fatigue experiments were carried out on SENT specimens (Fig. 1). All of these specimens were machined by a wire electrical discharge machining. Then, they were quenched from austenitizing temperature (900°C) and subsequently tempered at 595 $^\circ$C for 1 h to achieve a hardness of 235 HV_1 and a $R_{0.2}$ of 540 MPa at room temperature. The heat-treated steel (Fig. 2) presents a fine ferritic-perlitic microstructure, in which the grain size is in a range of 3–9 μm and some bainitic lathes. The heat-treated plates were electro-discharged and ground to form specimens’ flat with a thickness of 1 mm. Then, the specimens were polished parallel to the loading axe down to 1 μm diamond pastes. Finally, these specimens were notched by a wire saw with a wire diameter of 0.3 mm and pre-cracked under high-frequency cyclic loading until an initial crack length ranged from 0.8 to 1 mm.

Fatigue crack growth tests

The fatigue crack propagation tests were carried out on a servo-hydraulic universal testing machine ‘WALTER + BAI LFV 40’. Specimens were cycled under purely

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Chemical analysis of the crankshaft forged steel (AISI 4130)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements</td>
<td>C</td>
</tr>
<tr>
<td>Weight %</td>
<td>0.263</td>
</tr>
</tbody>
</table>

Fig. 1 Dimensions of SENT specimen (in mm). (a) Modified specimen and (b) normalized specimen.

Fig. 2 Material microstructure (3% Nital etching) observed after heat treatment with optical microscope.
tensile loading at room temperature using a sine waveform at a frequency of 10 Hz. In addition, two load ratios, \(R = \frac{P_{min}}{P_{max}} \) of 0.1 and 0.7 were applied and held constant for each experiment, to study the effect of \(R \) on the FCGR. The maximum applied loads \((P_{max}) \) ranged from 1.2 to 3.4 kN. This corresponds to a crack length and \(\Delta K \) values ranges of 0.96–4.16 mm and 8–38 MPa√m, respectively. Under these loading conditions, the radius of the cyclic plastic zone around the crack tip is ranged from 0.047 to 0.495 mm \((R=0.1)\) and from 0.022 to 0.08 mm \((R=0.7)\) respectively in the beginning and end of each experiment. These values are calculated using Bathias and Pelloux model\(^9\) as given:

\[
r_{pc} = 0.1 \left(\frac{\Delta K}{\sigma_0} \right)^2
\]

The length of the crack was optically observed, *in situ* using a ‘QUESTAR®’ long distance travelling microscope, which was installed in front of the specimen as shown in Fig. 3.

Fracture surface examination

Fracture surfaces were prepared for examination using scanning electron microscopy (SEM) ‘Nova nano SEM 450’ operated at 20 keV. Several observations were made to characterize the fractography over the whole range of \(\Delta K \) for each tested specimen.

ACTOD measurements

The crack length was observed at different prescribed lengths. A magnification of 1000 with a maximum optical resolution of 1.1 μm/pixel could be achieved. The field of view, depending on zoom, was between 0.375 and 8 mm. The microscope is connected to a CCD camera ‘Sony EXWAVE HAD’ with a resolution of 470 x 300 pixels to capture images throughout measurement cycles. The combination between the microscope and the camera provided 0.4 mm field of view and 400 horizontal lines on the CCD sensor. Theoretically, this configuration allows us to take an image resolution of 1 μm/pixel. Practically, the resolution does not exceed 1.54 μm/pixel. This might principally be due to the errors induced by machine vibrations.

The maximum number of pictures taken with a CCD camera is 25 per second. Indeed, it is impossible to have all details around the crack field under 10 Hz frequency. As a consequence, to record the video of crack while cycling, the frequency was decreased to 0.2 Hz, and loading signal was changed from sine to triangular (Fig. 4). Then, videos were downloaded and transformed into images using image analysis software iMovie HD®. Finally, the DIC was performed on images for each measurement using a commercially image correlation software ‘VIC 2D®’.\(^{40}\) The first measured image in any cycle was used as the reference image. Then, virtual gauges were placed at different distances behind the crack tip using two-subsets DIC displacement gauges (Fig. 5). Mostafavi and Marrow\(^{41}\) have revealed that the size of the virtual gauges and their distance from the crack can noticeably change the COD values. Carrol *et al.*\(^{30}\) have introduced and compared two full-field DIC method to a DIC based on displacement gauge method (i.e. each gauge consists of two subsets, one on each of the crack flanks) at relatively low, medium and high \(K \) experiments. They showed that crack opening levels calculated from the full-field effective \(K \) method is in agreement with displacement gauge closure levels far from the crack tip in the constant opening level region. Indeed, in this study, we supposed that subset size and their distance from the crack have no noticeable effect on the COD values. Subset size of 29 by 29 pixels square

![Fig. 3 General view of experimental setup.](image-url)
was used, corresponding to a gauge width of 45 \(\mu m \) and a typical length of 100 \(\mu m \). Also, a step size of 5 was chosen (i.e. the step size controls the spacing of the points that are analysed during correlation). The accuracy of the subset displacement was fixed at 0.1 pixels that corresponds to a precision of 0.154 \(\mu m \). Figure 6 shows an example of measured \(\Delta COD \) versus \(a \) was extrapolated to \(a = 0 \) to obtain \(\Delta CTOD \) (\(\Delta \delta \)) that is considered as the opening of the crack tip for a given crack length.\(^{43}\) The complete description of \(\Delta CTOD \) calculation is described in Section 3.3.

RESULTS AND DISCUSSIONS

Effect of load ratio, \(R \)

The crack length evolutions versus number of cycle curves were plotted. Then the FCGR (\(da/dN \)) for each curve were presented as a function of the nominal \(\Delta K \) or \(\Delta \sqrt{J_{I,E}} \) in log-log scale to present Paris’s law according to Eqs (3)–(5):

\[
\Delta K_I = \Delta \sigma \sqrt{\pi a} f\left(\frac{a}{W} \right)
\]

\[
f\left(\frac{a}{W} \right) = 1.0869 + 0.2383 \left(\frac{a}{W} \right) + 1.9830 \left(\frac{a}{W} \right)^2 - 2.8373 \left(\frac{a}{W} \right)^3 + 2.5771 \left(\frac{a}{W} \right)^4
\]

\[K_I = \sqrt{J_{I,E}} \Rightarrow \Delta K_I = \Delta \sqrt{J_{I,E}}\]

where ‘a’ is the crack length and ‘W’ is the specimen width. The expression of the correction factor (4) was developed and verified by Shah et al.\(^{44}\) using finite element analysis for elastic and/or an elastoplastic behaviour at room temperature. \(E^* \) is apparent elastic modulus that is
equal to E and $E/(1 - v^2)$ for plane stress and plane strain conditions, respectively, and J is the energy release rate.

The effect of the load ratio on the conducted tests is shown in Fig. 7. The increasing of load ratio shows that threshold value decreases from $11 \text{ MPa} \sqrt{\text{m}}$ at $R = 0.1$ to $8 \text{ MPa} \sqrt{\text{m}}$ at $R = 0.7$. This result is in agreement with previous works conducted on ferrous and non ferrous metal.45,46 The slope of the Paris law m' is constant and about 3.8. As expected, the increase of the R ratio increases da/dN for a given $\Delta \sqrt{J/E}$. It is obvious that the FCGR curve obtained at load ratio $R = 0.7$ is twice higher than that obtained at $R = 0.1$. This is usually explained by the presence of a crack closure effect at lower R ratio, which decreases the crack driving force.

Observation of fatigue fracture surfaces

The SEM fractographs of the tested specimens at load ratio $R = 0.1$ and 0.7 are investigated at different $\Delta \sqrt{J/E}$ values. For the first one, Fig. 8a shows that the fractured surface is flat for relatively low (11–16 MPa \sqrt{m}) and medium values (16–30 MPa \sqrt{m}) of $\Delta \sqrt{J/E}$, and presents several beach marks characteristics of the progressive propagation of the crack front during an experiment. In general, the presence of beach marks on fatigue fracture surface reveals a change in crack growth conditions. However, their presence in this case can be attributed to the frequency changes during the experiment (i.e. when we pass from sine to triangular signal to take video). The SEM observations of the crack front are linear and perpendicular on loading direction. This proves that this specimen is probably tested under plane strain condition at low and medium $\Delta \sqrt{J/E}$ values, which corresponds approximately to a crack length less than 3.6 mm. Additional observations carried out at the specimen crack profile with optical microscope show branching and decohesion of grain boundaries (Fig. 8d), which proves that crack propagation is mostly intergranular in this stage.

For long crack length (i.e. near $\Delta K_{I\text{max}} = \Delta \sqrt{J/E}$), the fractured surface presents several ratchet marks indicating the boundary between adjacent crack planes (Fig. 8b). Also, Fig. 8b shows the presence of river marks that is frequently a characteristic of a relatively fast-growing fatigue crack zone as well as an increase in shearing plane formations due to the large plastic zone size. Relying on the aforementioned information, it is clear that the condition of the crack propagation was changed from SSY to large

Fig. 7 Effect of load ratio R, on da/dN versus $\Delta \sqrt{J/E}$ on FCGR of forged steel at room temperature (room temperature, $f = 10 \text{Hz}$).
scale yielding for approximately high $\Delta \sqrt{J_1/E}$ values ranging from 30 to 38 MPa \sqrt{m}, which corresponds to the fatigue fracture toughness value.

It is to be noted that fatigue striations were observed in all propagation stages (i.e. all $\Delta \sqrt{J_1/E}$ range values), which proves the ductile behaviour of the material. Figure 8c shows fatigue striations near the end of the crack propagation where each striation measures approximately 0.92 μm corresponding to a local FCGR of 9.2×10^{-7} m/cycle ($\Delta \sqrt{J_1/E} \approx 25–30$ MPa \sqrt{m}).

For the second one (i.e. the fatigue fracture surface of the tested specimen at $R = 0.7$), Fig. 9a shows that the fatigue fracture surface was also flat in the beginning of crack propagation (i.e. low $\Delta \sqrt{J_1/E}$ values) with transgranular fracture mode. This fracture mechanism can be explained, in this stage, by the fact that the grain size, and the cyclic plastic zone size are in the same order.

The increase of the crack length and subsequently the value of $\Delta \sqrt{J_1/E}$ changes the propagation mode to mixed intergranular and transgranular with the presence of some beach marks (Fig. 9b). The fatigue fracture surface shows also that the crack front is linear and perpendicular on loading direction in all stages of the fatigue crack propagation. This proves that the specimen is probably tested under plane strain condition. Figure 9c shows intense localized deformation in slip bands near the crack tip that leads to the creation of new crack surfaces by shear decohesion and to create the ‘zig-zag’ crack path. This mechanism is dominant when cyclic plastic zone size is sufficiently large compared to the grain dimension. 47,48

Application of CTOD as a fatigue crack propagation criterion

The J-integral approach presumes deformation plasticity and treats elastic–plastic materials as a nonlinear elastic material. This cause problems when using the cyclic J-integral (ΔJ) approach proposed by Dowling, 29 because the material unloads has to follow the same path as the loading curve. However, this is not the case because common materials show an elastoplastic behaviour, which while unloading simply follows a linear elastic path. Chow 49 has performed a detailed critical analysis of ΔJ parameters. Despite this critical analysis, ΔJ has been successfully applied to elastic–plastic fatigue crack growth. $^{50–53}$

Fig. 8 Fatigue fractured surface of tested specimen $R = 0.1$ observed with SEM. (a) Low and medium $\Delta \sqrt{J_1/E}$ values, (b) high $\Delta \sqrt{J_1/E}$ values, (c) fatigue striation and micro-cracks (shear planes) and (d) crack branching and grain boundary decohesion.
The relationship between J and CTOD is proposed by Rice27 and extensively reviewed by Shih28 among others, principally Hutchinson, Tracey, McMeeking and McClintock.$^{54-57}$ The calculations are based on monotonic loading of the crack tip. The monotonic plastic strain is related to the stress in power law hardening material relationship given in Eq. (6):

$$\varepsilon_p = \alpha \left(\frac{\sigma}{\sigma_0} \right)^{n-1} \frac{\sigma}{E}$$

(6)

where E, α, n and σ_0 represent Young’s modulus, a material constant, the hardening exponent and the yield stress of the material, respectively.

Based on the power low description, Hutchinson,54 Rice and Rosengren58 (HRR) showed that the stress and strain field in the vicinity of the crack are

$$\sigma_0 = \sigma_0 \left(\frac{JE}{\alpha \sigma_0^2 L_\sigma} \right)^{1/(n+1)} \sigma_0(\theta, n)$$

(7)

$$\varepsilon_0 = \frac{a \sigma_0}{E} \left(\frac{JE}{\alpha \sigma_0^2 L_\sigma} \right)^{n/(n+1)} \varepsilon_0(\theta, n)$$

(8)

where r, θ are polar coordinates centred at crack tip, L_σ is an integration constant and $\sigma_0(\theta, n)$ and $\varepsilon_0(\theta, n)$ are dimensionless functions of the hardening exponent n. Equations (7) and (8) are valid for both plane stress or plane strain conditions. The J-integral represents the amplitude of HRR singularity described by Eq. (9). The crack opening profile δ may be presented in a similar form (Fig. 10a). Thus, the edge of the crack ($\theta = \pm \pi$) are given by

$$\delta = \frac{a \sigma_0}{E} \frac{JE}{\alpha \sigma_0^2 L_\sigma} \left(\frac{\sigma}{\sigma_0} \right)^{n/(n+1)} r^{1/(n+1)} u_y(n)$$

(9)

$$u_x = \frac{a \sigma_0}{E} \frac{JE}{\alpha \sigma_0^2 L_\sigma} \left(\frac{\sigma}{\sigma_0} \right)^{n/(n+1)} r^{1/(n+1)} u_x(n)$$

where u_x and u_y are displacement in the x and y directions respectively, while $\delta = 2u_y$. The definition of δ suggested by Rice27 and reviewed by Tracey53 (Fig. 10b) defines δ as the opening distance between the intercept of two 45° lines drawn back from the crack tip with the deformed profile. At the intercept,

$$r - u_x = \frac{\delta}{2}$$

(10)

Under linear elastic conditions, the value of δ that satisfies Eqs (9) and (10) is given by Shih28 (Eq. (11)):

$$\delta_0 = \frac{2}{\alpha} \left(\frac{\sigma_0 E}{\alpha \sigma_0^2 L_\sigma} \right)^{1/(n+1)} \frac{J}{E}$$

(11)
variable total strain range (tests are conducted on a 250 kN servo-hydraulic machine strain condition. The coefficient d_a is a function of the material properties. It varies slightly with σ_y/E but significantly with n. For elastic-perfectly plastic materials and under plain strain condition, the value of d_a approaches 0.78 when $n \to \infty$. The complete evolution of d_a with respect to n and σ_y/E is shown in Fig. 11.

Eq. (5)($K_f^2 = J_f/E$) and

$$\Delta \delta_t = d_a \Delta J / \sigma_0 \quad \text{with} \quad \delta_t = \delta_t^{\text{max}} - \delta_t^{\text{min}}$$

Fig. 10 Sharp and deformed crack showing the 45° procedure for defining δ_t.

This expression is valid for both plane stress and plane strain condition. The model presented earlier is basically used for the monotonic loading of the cracked specimen. However, in this study, the model should be adapted in such a way to be coherent with the cyclic loading of the cracked SENT specimen. Indeed, some assumptions that have been made regarding to the state of stress and strain in SENT specimens are (i) specimen is loading under plane strain condition according to SEM fractured surfaces observation and (ii) all used material properties are obtained from cyclic tests (i.e. LCF total strain ($R = -1$)); control tests are conducted on a 250 kN servo-hydraulic machine ‘Schenck Hydropuls PSB®’ at room temperature for variable total strain range ($\varepsilon = \pm 0.3$–1%). Shih’s model has been modified in such a way that we can calculate the crack driven force from $\Delta \delta_t$ as presented in Eq. (12):28

$$\Delta \delta_t = d_a \Delta J / \sigma_0 \quad \text{with} \quad \delta_t = \delta_t^{\text{max}} - \delta_t^{\text{min}}$$

Eq. (12)52 (where δ_t^{max} and δ_t^{min} are the maximum and minimum crack opening displacements, respectively, and ΔJ is the net change in the strain energy release rate) and

$$\Delta \delta_t = d_a \left(K_{I_{\text{max}}}^2 / \sigma_0 - K_{I_{\text{min}}}^2 / \sigma_0 \right)$$

Equation (14) shows that ΔK_t depends on the square root of the $\Delta \delta_t$. The load ratio is also taken into account to present a coherent fatigue crack propagation law:

$$R = K_{I_{\text{min}}} / K_{I_{\text{max}}}$$

All mathematical treatment from Eqs (16) to (21) are formulated by Shah.29

$$\Delta \delta_t = d_a \left(K_{I_{\text{max}}}^2 / \sigma_0 - R K_{I_{\text{max}}}^2 \right)$$

Equation (17) may be used to calculate the SIF range from ΔCTOD denoted $\Delta K_{I_{\text{max}}}^{\Delta \delta_t}$:

$$K_I^{\Delta \delta_t} = \sqrt{E \sigma_0 \Delta \delta_t / d_a (1 - R^2)}$$

$$\Delta K_I^{\Delta \delta_t} = K_{I_{\text{max}}}^{\Delta \delta_t} - K_{I_{\text{min}}}^{\Delta \delta_t} = (1 - R_{\text{app}}) \sqrt{E \sigma_0 \Delta \delta_t / d_a (1 - R^2)}$$

where R is used to calculate $K_{I_{\text{max}}}^{\Delta \delta_t}$ parameter and R_{app} is any value of the applied load ratio. In the case where
the plasticity at the crack tip cannot be ignored, we replace $K_{\text{Imax}}^2/E^*_{\text{Imax}}$ by J_{Imax}:

$$J_{\text{Imax}} = \frac{\sigma_0 \Delta \delta}{d_o (1 - R^2)}$$ \hspace{1cm} (20)

$$\Delta J_{\text{Imax}} = \left(1 - R_{\text{app}}^2\right) \frac{\sigma_0 \Delta \delta}{d_o (1 - R^2)}$$ \hspace{1cm} (21)

The $\Delta \delta$ is calculated from optical measurements of ΔCTOD (or $\Delta \delta$). Taking the crack tip as the origin, a number of virtual extensometers at specified distances are placed in the order behind the crack tip. Each extensometer gives a $\Delta \delta$ (or ΔCOD) values. Obviously the extensometer that is further away will show higher ΔCOD values (Fig. 6). Thus all the $\Delta \delta$ values are plotted against the position of the extensometer and extrapolated to the crack tip as shown in Figs 12 and 13. The evolution of $\Delta \delta_t$ versus the crack length is presented in Fig. 14. It appears that the difference between these curves is relatively small at short crack length and increases continuously with the crack length. The FCGR criterion based on J-integral is defined as:

$$\frac{da}{dN} = A \left(\sqrt{\Delta J_{\delta_t} E^*} \right)^m$$ \hspace{1cm} (22)

The evolution of $\sqrt{\Delta J_{\delta_t} E^*}$ measured by using $\Delta \delta_t$ at room temperature and for two conditions of crack propagation of $R=0.1$ and 0.7 are compared in the Fig. 15. The values of the $\sqrt{\Delta J_{\delta_t} E^*}$ are higher for the specimen tested at $R=0.1$. The FCGR curves based on this criterion are plotted in Fig. 16. It is clear that curves are superposed and can generate a master FCGR curve in which crack closure phenomena is ignored in a greater part. The advantage of this approach, based on the calculation of ΔCTOD with optical techniques, is that ΔJ_{δ_t} is a macroscopic parameter that does not need any other detailed quantitative microscopic models to describe FCGR.

Fig. 12 Evolution of $\Delta \delta$ as a function of extensometer position behind the crack tip ($R=0.1$).

Fig. 13 Evolution of $\Delta \delta$ as a function of extensometer position behind the crack tip ($R=0.7$)

Fig. 14 ΔCTOD variation law as a function of crack length ($R=0.1$ and 0.7) (room temperature, $f=10$ Hz).

Fig. 15 Evolution of $\sqrt{\Delta J_{\delta_t} E^*}$ versus Crack length for different stress ratio ($R=0.1$ and 0.7) (room temperature, $f=10$ Hz).
CONCLUSION

The FCG behaviour of AISI 4130 forged steel used in train crankshaft applications was studied for two different load ratio ($R=0.1$ and 0.7) at room temperature. It was found that FCGR at load ratio, $R=0.7$ was twice higher than that obtained at $R=0.1$. The increase of FCGR was mostly explained by the presence of the crack closure phenomenon at $R=0.1$, which can decrease the crack tip driven force.

The cyclic J-Integral as fatigue crack propagation criterion was used. It was determined from the experimental ΔCTOD ($\Delta\delta$) measured using direct optical observation of the fatigue crack propagation. It was found that the use of ΔCTOD as a crack driving force parameter, under tested parameter is interesting and presents an R independent alternative to the simulated ΔK parameter. This method, which is based on an optical measurement, can be a very interesting technique to predict the structures lifetime especially when SSY condition is not respected (i.e. when plasticity around the crack tip becomes important). However, it will be interesting to check the validity of this presented methodology for other experimental conditions, especially at high temperature.

REFERENCES