C. and D. Blasi, Combustion and gasification rates of lignocellulosic chars, Progress in Energy and Combustion Science, vol.35, issue.2, pp.121-140, 2009.
DOI : 10.1016/j.pecs.2008.08.001

R. F. Service, Sunlight in Your Tank, Science, vol.326, issue.5959, pp.1472-1475, 2009.
DOI : 10.1126/science.326.5959.1472

M. Guerrero, M. Ruiz, M. Alzueta, R. Bilbao, and A. Millera, Pyrolysis of eucalyptus at different heating rates: studies of char characterization and oxidative reactivity, Journal of Analytical and Applied Pyrolysis, vol.74, issue.1-2, pp.1-2, 2005.
DOI : 10.1016/j.jaap.2004.12.008

O. Authier, M. Ferrer, G. Mauviel, A. Khalfi, and J. Lede, Wood Fast Pyrolysis: Comparison of Lagrangian and Eulerian Modeling Approaches with Experimental Measurements, Industrial & Engineering Chemistry Research, vol.48, issue.10, pp.4796-4809000266081300016, 2009.
DOI : 10.1021/ie801854c

URL : https://hal.archives-ouvertes.fr/hal-00402751

J. Lédé, F. Blanchard, and O. Boutin, Radiant flash pyrolysis of cellulose pellets: products and mechanisms involved in transient and steady state conditions, Fuel, vol.81, issue.10, pp.1269-1279, 2002.
DOI : 10.1016/S0016-2361(02)00039-X

A. Galgano and C. D. Blasi, Modeling the propagation of drying and decomposition fronts in wood, Combustion and Flame, vol.139, issue.1-2, pp.1-2, 2004.
DOI : 10.1016/j.combustflame.2004.07.004

W. R. Chan, M. Kelbon, and B. B. Krieger, Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle, Fuel, vol.64, issue.11, pp.1505-151390364, 1985.
DOI : 10.1016/0016-2361(85)90364-3

N. Piatkowski, C. Wieckert, A. W. Weimer, and A. Steinfeld, Solar-driven gasification of carbonaceous feedstock???a review, Energy Environ. Sci., vol.132, issue.1, pp.73-82000285748400006, 2011.
DOI : 10.1115/1.4000749

E. Gordillo and A. Belghit, A bubbling fluidized bed solar reactor model of biomass char high temperature steam-only gasification, Fuel Processing Technology, vol.92, issue.3, pp.314-321, 2011.
DOI : 10.1016/j.fuproc.2010.09.021

X. Li, J. Grace, C. Lim, A. Watkinson, H. Chen et al., Biomass gasification in a circulating fluidized bed, Biomass and Bioenergy, vol.26, issue.2, pp.171-193, 2004.
DOI : 10.1016/S0961-9534(03)00084-9

N. Piatkowski and A. Steinfeld, Solar gasification of carbonaceous waste feedstocks in a packed-bed reactor-Dynamic modeling and experimental validation, AIChE Journal, vol.48, issue.12, pp.3522-3533, 2011.
DOI : 10.1016/j.applthermaleng.2007.05.002

N. Piatkowski, C. Wieckert, and A. Steinfeld, Experimental investigation of a packed-bed solar reactor for the steam-gasification of carbonaceous feedstocks, Fuel Processing Technology, vol.90, issue.3, pp.360-366, 2009.
DOI : 10.1016/j.fuproc.2008.10.007

A. Z. 'graggen and A. Steinfeld, Hydrogen production by steam-gasification of carbonaceous materials using concentrated solar energy ? v. reactor modeling, optimization, and scale-up, International Journal of Hydrogen Energy, vol.33, issue.20, pp.5484-5492, 2008.

J. Chen, Y. Lu, L. Guo, X. Zhang, and P. Xiao, Hydrogen production by biomass gasification in supercritical water using concentrated solar energy: System development and proof of concept, International Journal of Hydrogen Energy, vol.35, issue.13, pp.7134-7141, 2010.
DOI : 10.1016/j.ijhydene.2010.02.023

V. Minkova, S. Marinov, R. Zanzi, E. Björnbom, T. Budinova et al., Thermochemical treatment of biomass in a flow of steam or in a mixture of steam and carbon dioxide, Fuel Processing Technology, vol.62, issue.1, pp.45-52, 2000.
DOI : 10.1016/S0378-3820(99)00065-X

M. Christodoulou, G. Mauviel, J. Lédé, P. Beaurain, M. Weber et al., Novel vertical image furnace for fast pyrolysis studies, Journal of Analytical and Applied Pyrolysis, vol.103, pp.255-260, 2013.
DOI : 10.1016/j.jaap.2012.11.006

URL : https://hal.archives-ouvertes.fr/hal-01377248

E. Kagambage, Etude et conception d'un banc de mesures d'émissivités infrarouges, Tech. rep, 2007.

W. R. Wade, Measurements of total hemispherical emissivity of various oxidized metals at high temperature, 1958.

M. Bordival, F. Schmidt, Y. L. Maoult, and V. Velay, Optimization of preform temperature distribution for the stretch-blow molding of PET bottles: Infrared heating and blowing modeling, Polymer Engineering & Science, vol.9, issue.4, pp.783-793, 2009.
DOI : 10.1007/BF00772717

URL : https://hal.archives-ouvertes.fr/hal-01703247

M. Forsth and A. Roos, Absorptivity and its dependence on heat source temperature and degree of thermal breakdown, Fire and Materials, vol.15, issue.5, pp.285-301, 2011.
DOI : 10.1002/0470091150

M. Gupta, J. Yang, and C. Roy, Specific heat and thermal conductivity of softwood bark and softwood char particles???, Fuel, vol.82, issue.8, pp.919-927, 2003.
DOI : 10.1016/S0016-2361(02)00398-8

A. Gómez-barea, P. Ollero, and R. Arjona, Reaction-diffusion model of TGA gasification experiments for estimating diffusional effects, Fuel, vol.84, pp.12-13, 2005.

S. Youcef-ali and J. Desmons, Numerical and experimental study of a solar equipped with offset rectangular plate fin absorber plate, Renewable Energy, pp.31-2063, 2006.

T. Damartzis, G. Ioannidis, and A. Zabaniotou, Simulating the behavior of a wire mesh reactor for olive kernel fast pyrolysis, Chemical Engineering Journal, vol.136, issue.2-3, pp.320-330, 2008.
DOI : 10.1016/j.cej.2007.04.010

C. , D. Blasi, C. Branca, A. Santoro, E. Gonzalez et al., Pyrolytic behavior and products of some wood varieties, Combustion and Flame, vol.124, issue.12, pp.165-177, 2001.

J. Chern and A. N. Hayhurst, A model for the devolatilization of a coal particle sufficiently large to be controlled by heat transfer, Combustion and Flame, vol.146, issue.3, pp.553-571, 2006.
DOI : 10.1016/j.combustflame.2006.04.011

C. and D. Blasi, Analysis of Convection and Secondary Reaction Effects Within Porous Solid Fuels Undergoing Pyrolysis, Combustion Science and Technology, vol.90, issue.5, pp.5-6, 1993.
DOI : 10.1080/00102209308907620

N. Puiroux, M. Prat, and M. Quintard, Non-equilibrium theories for macroscale heat transfer: ablative composite layer systems, International Journal of Thermal Sciences, vol.43, issue.6, pp.541-554, 2004.
DOI : 10.1016/j.ijthermalsci.2003.11.004

E. Agoua and P. Perre, Mass transfer in wood: Identification of structural parameters from diffusivity and permeability measurements, Journal of Porous Media, vol.13, issue.11, pp.1017-1024000285561200008, 2010.

G. Gauthier, Synthèse de biocarburants de deuxième génération: Etude de la pyrolyse à haute température de particules de bois centimétriques, 2013.

I. I. Kantorovich and E. Bar-ziv, Heat transfer within highly porous chars: a review, Fuel, vol.78, issue.3, pp.279-299, 1999.
DOI : 10.1016/S0016-2361(97)00258-5

J. Blondeau and H. Jeanmart, Biomass pyrolysis at high temperatures: Prediction of gaseous species yields from an anisotropic particle, Biomass and Bioenergy, vol.41, pp.107-121, 2012.
DOI : 10.1016/j.biombioe.2012.02.016

T. Harada, T. Hata, and S. Ishihara, Thermal constants of wood during the heating process measured with the laser flash method, Journal of Wood Science, vol.40, issue.6, pp.425-431, 1998.
DOI : 10.1063/1.1728417

J. Larfeldt, B. Leckner, and M. C. Melaaen, Modelling and measurements of heat transfer in charcoal from pyrolysis of large wood particles, Biomass and Bioenergy, vol.18, issue.6, pp.507-514, 2000.
DOI : 10.1016/S0961-9534(00)00008-8

M. W. Chase, United States, National Bureau of Standards, NIST-JANAF Themochemical Tables, Physics for the National Bureau of Standards, 1998.

J. Millat and W. A. Wakeham, The Thermal Conductivity of Nitrogen and Carbon Monoxide in the Limit of Zero Density, Journal of Physical and Chemical Reference Data, vol.18, issue.2, pp.565-581, 1989.
DOI : 10.1063/1.555827

L. S. Zaitseva, L. V. Yakush, and N. A. Vanicheva, Thermal conductivities of benzene and toluene vapors, Journal of Engineering Physics, vol.31, issue.5, pp.1292-1295, 1976.
DOI : 10.1007/BF00859307

J. V. Sengers, J. T. Watson, R. S. Basu, B. Kamgar-parsi, and R. C. Hendricks, Representative Equations for the Thermal Conductivity of Water Substance, Journal of Physical and Chemical Reference Data, vol.13, issue.3, pp.893-933, 1984.
DOI : 10.1063/1.555718

R. D. Goodwin, Benzene Thermophysical Properties from 279 to 900 K at Pressures to 1000 Bar, Journal of Physical and Chemical Reference Data, vol.17, issue.4, pp.1541-1636, 1988.
DOI : 10.1063/1.555813

E. Vogel, Towards Reference Viscosities of Carbon Monoxide and Nitrogen at Low Density Using Measurements between 290K and 680K as well as Theoretically Calculated Viscosities, International Journal of Thermophysics, vol.38, issue.3, pp.741-757, 2012.
DOI : 10.1063/1.1733455

C. F. Bonilla, R. D. Brooks, and P. L. Walker, The viscosity of steam and of nitrogen at atmospheric pressure and high temperature, Heat-Transfer Discussions, pp.79-85, 1951.

C. Branca, P. Giudicianni, C. D. Blasi, and G. /. , GC/MS Characterization of Liquids Generated from Low-Temperature Pyrolysis of Wood, Industrial & Engineering Chemistry Research, vol.42, issue.14, pp.3190-3202, 2003.
DOI : 10.1021/ie030066d

W. C. Park, A. Atreya, and H. R. Baum, Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis, Combustion and Flame, vol.157, issue.3, pp.481-494, 2010.
DOI : 10.1016/j.combustflame.2009.10.006

P. O. Okekunle, T. Pattanotai, H. Watanabe, and K. Okazaki, Numerical and Experimental Investigation of Intra-Particle Heat Transfer and Tar Decomposition during Pyrolysis of Wood Biomass, Journal of Thermal Science and Technology, vol.6, issue.3, pp.360-375000295920800004, 2011.
DOI : 10.1299/jtst.6.360

P. Perré and I. W. Turner, A 3-D version of TransPore: a comprehensive heat and mass transfer computational model for simulating the drying of porous media, International Journal of Heat and Mass Transfer, vol.42, issue.24, pp.4501-4521, 1999.
DOI : 10.1016/S0017-9310(99)00098-8

B. Moghtaderi, The state-of-the-art in pyrolysis modelling of lignocellulosic solid fuels, Fire and Materials, vol.23, issue.1, pp.1-34, 2006.
DOI : 10.1002/9780470694954.ch85

M. G. Grønli and M. C. Melaaen, Mathematical model for wood pyrolysis comparison of experimental measurements with model predictions, pp.791-800, 2000.

P. Hass, F. K. Wittel, S. A. Mcdonald, and F. Marone, Pore space analysis of beech wood: The vessel network, Holzforschung, vol.46, issue.5, pp.639-644516, 2010.
DOI : 10.1126/science.152.3718.72

K. M. Bryden, K. W. Ragland, and C. J. Rutland, Modeling thermally thick pyrolysis of wood, Biomass and Bioenergy, vol.22, issue.1, pp.41-53, 2002.
DOI : 10.1016/S0961-9534(01)00060-5