Plant community structure and nitrogen inputs modulate the climate signal on leaf traits
Benjamin Borgy, Cyrille Violle, Philippe Choler, Pierre Denelle, François Munoz, Jens Kattge, Sandra Lavorel, Jessy Loranger, Bernard Amiaud, Michael Bahn, et al.

To cite this version:
Benjamin Borgy, Cyrille Violle, Philippe Choler, Pierre Denelle, François Munoz, et al.. Plant community structure and nitrogen inputs modulate the climate signal on leaf traits. Global Ecology and Biogeography, Wiley, 2017, 26 (10), pp.1138-1152. 10.1111/geb.12623. hal-01611445

HAL Id: hal-01611445
https://hal.archives-ouvertes.fr/hal-01611445
Submitted on 7 May 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Plant community structure and nitrogen inputs modulate the climate signal on leaf traits

Benjamin Borgy1,2,3* | Cyrille Violle1,2* | Philippe Choler3 | Pierre Denelle1 | François Munoz4 | Jens Kattge5,6 | Sandra Lavore3 | Jessy Loranger1,7 | Bernard Amiaud8,9 | Michael Bahn10 | Peter M. van Bodegom11 | Henry Brisse12 | Guilhem Debarros13 | Sylvain Diquelou14 | Sophie Gachet12 | Claudy Jolivet15 | Servane Lemaubiel-Lavenant14 | Alexis Mikolajczak16 | Jean Olivier13 | Jenny Ordoñez11 | Patrice de Ruffray17 | Nicolas Viovy18 | Eric Garnier1

1Centre d’Ecologie Fonctionnelle et Evolutive (UMR 5175), CNRS – Université de Montpellier – Université Paul-Valéry Montpellier – EPHE, 1919 route de Mende, 34293 Montpellier Cedex 5, France
2CESAB/FRB, Domaine du Petit Arbois, Avenue Louis Philippe, 13545 Aix-en-Provence, France
3University of Grenoble Alpes – CNRS, LECA, 38000 Grenoble, France
4Montpellier University, AMAP, Boulevard de la Lironde, TA A-51/PS2, 34398 Montpellier, France
5Max Planck Institute for Biogeochemistry, Hans Knoell Straße 10, 07745 Jena, Germany
6German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
7Université de Sherbrooke, 2500 blv. de l’Université, Sherbrooke, Québec, Canada 2R1 J1K
8Ecologie et Ecophysiology Forestières, Université de Lorraine, UMR 1137, 54500 Vandoeuvre-les-Nancy, France
9Ecologie et Ecophysiology Forestières, INRA, UMR 1137, 54280 Champenoux, France
10Institute of Ecology, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria
11Department of Systems Ecology, Institute of Ecological Science, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
12IMBE, Aix Marseille University, Fac Sci St Jerome, UMR 6116, 13397 Marseille 20, France
13Fédération des Conservatoires Botaniques Nationaux, 93511 Montreuil-sous-Bois, France
14Ecophysiologie Végétale Agronomie et nutritions NCS, INRA, Université de Caen, UMR 950, Esplanade de la Paix, 14032 Caen, France
15US1106 InfoSol, INRA, 45075 Orléans, France
16domaine de Charance, Conservatoire Botanique National Alpin, 05000 Gap Cedex 5, France
17Institut de Biologie Moléculaire des Plantes, CNRS, 67084 Strasbourg, France
18Laboratoire des Sciences du climat et de l’Environnement (UMR 8212 CEA/CNRS/UVSQ), Orme des Merisiers, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France

Correspondence
Eric Garnier, Centre d’Ecologie Fonctionnelle et Evolutive (UMR 5175), CNRS – Université de Montpellier – Université Paul-Valéry Montpellier – EPHE, 1919 route de Mende, 34293 Montpellier Cedex 5, France.
Email: eric.garnier@cefe.cnrs.fr

Abstract
Aim: Leaf traits strongly impact biogeochemical cycles in terrestrial ecosystems. Understanding leaf trait variation along environmental gradients is thus essential to improve the representation of vegetation in Earth system models. Our aims were to quantify relationships between leaf traits and climate in permanent grasslands at a biogeographical scale and to test whether these relationships were sensitive to (a) the level of nitrogen inputs and (b) the inclusion of information pertaining to plant community organization.

Location: Permanent grasslands throughout France.

*Benjamin Borgy and Cyrille Violle contributed equally to this work.
INTRODUCTION

Leaf traits strongly impact the nutrient, carbon and water cycles of terrestrial ecosystems (Chapin et al., 2000; Wang et al., 2012); for example, primary productivity across ecosystems is related to foliar nitrogen concentration (Lavorel et al., 2011; Pontes, Soussana, Louault, Andueza, & Carrère, 2007), and litter decomposition to leaf dry matter content (Fortunel et al., 2009; Pakeman, Eastwood, & Scobie, 2011). Scaling information from traits, which are usually measured at the population or species level, to the ecosystem requires accounting for plant community organization (which results from community assembly processes; Lavorel & Garnier, 2002; Suding et al., 2008), which appears to be a pivotal step to predict terrestrial biogeochemistry (Grime, 1998; reviewed by Garnier, Navas, & Grigulis, 2016). These advances contrast with the current representation of vegetation in Earth system models (e.g., Verheijen et al., 2013), in which (a) the existing trait variation within broadly defined plant functional types (e.g., C3 and C4 herbs, deciduous and evergreen trees) is largely ignored (but see Wang et al., 2012), and (b) the plant community, although a relevant level of organization to capture the relationships between traits, environments and ecosystem properties, is overlooked.

So far, studies of leaf trait responses to climate variables over biogeographical gradients reveal inconsistencies (Reich, 2014; Violle, Reich, Pacala, Enquist, & Kattge, 2014). For example, specific leaf area (SLA; the ratio of leaf area to leaf mass) is found to increase (Read, Moorhead, Swenson, Bailey, & Sanders, 2014; Simpson, Richardson, & Laughlin, 2016), decrease (Moles et al., 2014; Wright et al., 2005) or remain invariant (Onoda et al., 2011) with increasing mean annual temperature (MAT). Likewise, although some studies find an increase in SLA with mean annual precipitation (MAP) (Moles et al., 2014; Wright et al., 2004), others show a lack of variation (Sandel et al., 2010) or even a slight decrease (Wright et al., 2005 for deciduous species) with MAP. Such inconsistent patterns might arise for several reasons. First, the climate variables used in these studies might be poor descriptors of the actual bioclimate sensed by plants (van Ommen Kloek, Douma, Ordonez, Reich, & van Bodegom, 2012). Second, analyses across biogeographical and bioclimatic gradients might be influenced by the presence or absence of functional groups (e.g., evergreen versus deciduous) or species with contrasting leaf traits whose response to climate might differ in strength and even direction (Kikuzawa, Onoda, Wright, & Reich, 2013; Wright et al., 2005). Third, large-scale studies generally tend to ignore local drivers, such as soil nutrient availability and land use, which critically affect leaf traits (Cunningham, Summerhayes, & Westoby, 1999; Hodgson et al., 2011; Ordoñez et al., 2009; but see Simpson et al., 2016). Finally, with very few exceptions (Simpson et al., 2016; Wang et al., 2016), studies conducted at large spatial scales ignore the fact that populations of plant species are organized locally in communities, in which they occur almost always at strongly uneven abundances. In the majority of such studies, whether a species is abundant or rare is not accounted for, although it can be hypothesized that the fit between traits and the environment is stronger for abundant species (Cingolani, Cabido, Gurvich, Renison, & Díaz, 2007; Grime, 1998; Muscarello & Uriarte, 2016). Furthermore, to inform a future generation of Earth system models, robust relationships between

Methods: We combined existing datasets on climate, soil, nitrogen inputs (fertilization and deposition), species composition and four traits, namely specific leaf area, leaf dry matter content and leaf nitrogen and phosphorus concentrations, for 15,865 French permanent grasslands. Trait-climate relationships were tested using the following four climatic variables available across 1,833 pixels (5 km x 5 km): mean annual temperature (MAT) and precipitation (MAP), and two indices accounting for the length of the growing season. We compared these relationships at the pixel level using either using community-level or species’ trait means.

Results: Our findings were as follows: (a) leaf traits related to plant nutrient economy shift consistently along a gradient of growing season length accounting for temperature and soil water limitations of plant growth (GSLtw); (b) weighting leaf traits by species abundance in local communities is pivotal to capture leaf trait–environment relationships correctly at a biogeographical scale; and (c) the relationships between traits and GSLtw weaken for grasslands with a high nitrogen input.

Main conclusions: The effects of climate on plant communities are better described using composite descriptors than coarse variables such as MAT or MAP, but appear weaker for high-nitrogen grasslands. Using information at the community level tends to strengthen trait–climate relationships. The interplay of land management, community assembly and bioclimate appears crucial to the prediction of leaf trait variations and their effects on biogeochemical cycles.

KEYWORDS
community functional structure, environmental gradients, fertilization, functional biogeography, functional diversity, growing season length, land management, permanent grasslands, plant traits
climate, soil and traits are required that account for effects of species abundance within communities (encapsulated into so-called ‘community-weighed means’ of traits, hereafter CWM) (Garnier et al., 2016; Reich, 2014). CWMs capture the fact that traits of dominant species have a stronger effect on ecosystem properties than traits of species with low abundance (Garnier et al., 2004; Grime, 1998). To date, however, very few studies have tested to what extent climate and land management control the CWM of leaf traits at a biogeographical scale (but see Pakeman et al., 2009 for an exception).

To investigate the interplay between climate, land management and leaf traits, we assembled a dataset of unprecedented coverage across French permanent grasslands, a case study for semi-natural temperate grasslands dominated by C3 herbaceous species. Based on 15,865 botanical relevés and 1,939 species, leaf trait variations were characterized across 1,833 pixels at a 5 km × 5 km grid resolution. Considering four traits of the leaf economics spectrum (Reich, 2014; Shipley, Lechowicz, Wright & Reich, 2006; Wright et al., 2004), namely SLA, mass-based leaf nitrogen and phosphorus concentrations (LNC and LPC, respectively) and leaf dry matter content (LDMC), we addressed the following questions. (a) Which bioclimatic descriptor best captures the spatial variation of leaf traits across the investigated biogeographical gradients? (ii) What is the benefit of accounting for plant community structure when examining these trait–environment relationships? (c) To what extent do local land management drivers modulate the effect of bioclimatic drivers on trait variation?

2 | METHODS

2.1 | Vegetation relevés, species distribution and trait data

We used several sources to assemble a dataset of 51,485 geo-referenced vegetation relevés (i.e., a list of species with local abundance) in French permanent grasslands (Appendix, Figure S1 in the Supporting Information and see Violle et al., 2015 for further details). The data consist of visually estimated relative cover of all present species in homogeneous plots, usually from 25 to 100 m², using a six-level abundance scale following the Braun-Blanquet method (Braun-Blanquet, 1932): 0%–1%, 1%–5%, 5%–25%, 25%–50%, 50%–75% and 75%–100%. We used the median of each class to estimate species’ local abundance within the community. As a result of varying taxonomic conceptions among authors, we merged all intraspecific ranks (subspecies and varieties) to the species level. In addition to these relevés, the spatial distribution of 2,464 plant species was retrieved from the electronic atlas of the French flora (http://siflore.fcbn.fr). These data, for which the original scale of recording is the administrative territory of councils (‘cantons’), were aggregated at a resolution level of 5 km × 5 km.

We extracted individual values of SLA (in square metres per kilogram), LDMC (in milligrams per gram), LNC (in milligrams per gram) and LPC (in milligrams per gram) from the TRY database (Kattge et al., 2011), complemented by data from regional databases (Appendix) to calculate a mean trait value per species. Trait data from artificial conditions (e.g., greenhouses or growth chambers) were not retained for this analysis. Previous analyses have shown that, in spite of a certain degree of intraspecific variation (e.g., Albert et al., 2010; Kichenin, Wardle, Peltzer, Morse, & Freschet, 2013), species and community rankings for traits values measured on site and in TRY remained generally consistent (Borgy et al., 2017; Kazakou et al., 2014). In addition, a recent meta-analysis has demonstrated that the relative amount of intraspecific compared with interspecific variation decreased with increasing spatial extent (Siefert et al., 2015). We thus assumed that taking a mean trait value per species does not impede the detection of trait–environment relationships at the biogeographical scale of the present study. Further details on trait data availability can be found in the paper by Violle et al. (2015).

2.2 | Bioclimatic and soil data

Monthly means of air temperatures (in degrees Celsius) and monthly sums of rainfall (in millimetres) for the 1961–1990 period over the French metropolitan territory were provided by the 1 km resolution gridded dataset of MétéoFrance (Benichou & Le Breton, 1987). Incom- net radiation accounting for topographic effects was calculated at the French national level according to Piedallu and Gégout (2008). A one-bucket water-balance model was implemented to estimate the dynamics of soil available water content (AW; in millimetres). This model used a Turc-based (Turc, 1961) estimate of potential evapotranspiration (PET; in millimetres). Soil water-holding capacity (WHC) was derived from the 1/1,000,000-scale Soil Geographical Database of France, following the methodology of Le Bas, King, and Daroussin (1997) and using the pedotransfer functions from Al Majou, Bruand, Duval, Le Bas, and Vautier (2008). All climate and soil variables were spatially interpolated to the 5 km × 5 km grid cell resolution to match vegetation data. Monthly climate time series were interpolated at a daily time step to calculate growing season length (GSL). For each pixel, AW of day n equalled AW of day n − 1, plus precipitation and minus PET. AW was bound between 0 and WHC. The model was run for 10 years with the same climate forcing to estimate the yearly time course of AW. Growing season length (GSL, days) corresponded to the number of days in the year for which (a) mean daily temperature was above 5 °C and (b) the ratio AW/WHC was > 0.2. We also estimated a GSL based only on temperature (GSLtemp) or on soil water content (GSLwater; Figures S2 and S3 in Supporting Information).

To compare the climatic space covered by permanent grasslands in France with that covered by grasslands in Europe, MAT (in degrees Celsius) and MAP (in millimetres) were obtained at the European scale from the WorldClim global climate data base (http://www.worldclim.org/current) extracted at a 30 s resolution and aggregated at 5 km × 5 km to match the final grid cell resolution.

2.3 | Nitrogen input data

Nitrogen input was the sum of organic fertilization, mineral fertilization and nitrogen deposition. Data were obtained from the census NopoluAgri information system of the French Ministry of Agriculture (http://
These data were collected in 2010 through national surveys of the amount of nitrogen excreted by herbivores and from statistics of the fertilization industry sector. The dataset for nitrogen atmospheric deposition in 2010 was provided by the European Monitoring and Evaluation Program (http://www.emep.int/mscw/SR_data/sr_grid.html). Given that the current mode of fertilization of French permanent grasslands has been in practice since the beginning of the 1980s (Huyghe, 2009; Palacio-Rabaud, 2000), we assumed that these nitrogen input data are representative of the average input corresponding to the period over which botanical relevés were retained for the analyses (see section 2.4 below). These data were available for each French council, whose mean area is 0.8 km², similar to the order of magnitude of the climate grid cell. Given that these data represent coarse estimates of nitrogen input, they are representative of the average input over the period during which botanical relevés were retained for the analyses.

FIGURE 1 Schematic representation of the four methods used to calculate aggregated trait values. Metrics used to calculate average trait values either take community organization into account (CArM and CWM) or not (GCM_r and GCM_a). For the calculation of community arithmetic mean (CArM), a mean value was calculated for each trait and relevé by giving an equal weight to each species. For the community-weighted mean (CWM) calculation, a mean value was calculated for each trait and relevé by weighting the species trait values by the relative abundances of these species within the community. Averages for these two metrics were then calculated at the 5 km × 5 km grid cell level, by giving an equal weight to each relevé within each cell. For metrics that do not account for community organization, trait values of all species occurring in a grid cell, derived from either vegetation relevés (GCM_r) or distribution maps (GCM_a), were averaged, with an equal weight given to each species. There is therefore one value per 5 km × 5 km grid cell for each of the four metrics. The figure shows examples of calculations for the four metrics using hypothetical trait values for five species; the number of times a letter representing a species is repeated in a plot amounts to the abundance of this species.
inputs in grasslands at the grid cell level (see section 2.4 below and Figure S4 in Supporting Information), we did not use these as a continuous variable, but rather subdivided grasslands into two classes corresponding to low (< 73 kg(N)/ha, the median value of inputs) and high (> 73 kg(N)/ha) inputs.

2.4 | Data analyses

Four averaging metrics were used to derive aggregated values of leaf traits (Figure 1). The first two were calculated at the grid cell level and do not explicitly take into account the organization of species in communities: (a) a grid cell mean (GCM_a hereafter; Figure 1) was calculated by averaging trait values of all species occurring in a 5 km × 5 km grid cell (species presence in a grid cell derived from the electronic atlas of the French flora), irrespective of plant community organization, and with equal weight given to each species, and (b) a GCM where the species presence occurring in a 5 km × 5 km grid cell are derived from the geo-referenced relevés (GCM_r hereafter). Two additional metrics were calculated at the community level: these are (c) community arithmetic means (CArM) assessed for each relevé by calculating a mean trait value in which equal weight was given to each species, and (d) community-weighted means (CWM), calculated as for CArM, but in which trait values were weighted by the relative abundances of species within the community (Borgy et al., 2017; Garnier et al., 2004). In order to be able to compare trait–climate relationships for all four metrics and obtain an accurate estimate of community-level metrics at the pixel level (cf. Borgy et al., 2017), CArM and CWM values were then averaged for all botanical relevés available within a 5 km × 5 km grid cell (Figure 1). Overall, there was therefore a single value per pixel for each of the four metrics compared. To acknowledge the fact that the

FIGURE 2 Climate envelope of grasslands in Europe and in France. Distribution of mean annual temperature (MAT; in degrees Celsius) and mean annual precipitation (MAP; in millimetres) covered by European grasslands (black), French grasslands (red) and the French grasslands investigated in this study (green). Distributions of quartiles are shown at the top and at the right-hand side of the figure for each dataset and each climate variable.
climate signal on traits is more likely to be detected for pixels with a high proportion of grasslands, values of the four metrics were weighted by the proportion of grassland in each pixel.

Only relevés conducted after 1980 were retained, and because trait values were not available for all species (cf. Violle et al., 2015), we removed relevés if the proportion cover (Pcover) of species included for the calculation of the CWM of at least one trait was < 60% (Pakeman & Quested, 2007; see Borgy et al., 2017 for a detailed discussion on issues related to threshold values). Grid cells containing at least 20% grassland cover were retained (cf. Supporting Information Figure S1), and grid cells with fewer than three relevés were discarded (see Borgy et al., 2017; Violle et al., 2015). The final dataset based on vegetation relevés included values of the four averaging metrics calculated for 1,833 pixels, representing 15,865 relevés and 1,939 species (with a median of five relevés per pixel). Of these, 9,692 relevés grouped into 918 pixels corresponded to low-nitrogen-input grasslands, and 6,173 relevés grouped into 915 pixels corresponded to high-nitrogen-input grasslands. The dataset based on the electronic atlas, which corresponds to the approach most used in functional biogeography (e.g., Swenson et al., 2012), included 1,833 pixels.

We used generalized least-squares (GLS) models to test the relationships between metrics of aggregated leaf traits and climatic variables (MAT, MAP, GSLt and GSLtw), while acknowledging the influence of spatial autocorrelation using the R package nlme. For each trait, we selected the most appropriate spatial structure based on the GSL not accounting for soil water limitations (GSL), MAT and MAP explained a lower proportion of leaf trait variation (Supporting Information Application S1). Among the two latter descriptors, trait variations were more strongly related to MAT than to MAP, for all four metrics (Table 1). SLA, LNC and LPC were positively related to GSLtw, GSLt and MAT, and negatively to MAP. For all models, the goodness of fit of relationships of linear models relating leaf traits to climate descriptors

3 | RESULTS

Permanent grasslands in France are found over a broad climatic range, from 600 to > 2,000 mm MAP and from −3 to 15.5 °C MAT (red cloud in the bivariate plot shown in Figure 2); the ranges in precipitations and temperatures covered by the 1,833 pixels of the present study correspond respectively to 91 and 96% of these ranges (green cloud in Figure 2). This climate envelope encompassed nearly 80% of the MAT range and 57% of the MAP range covered by European grasslands (grey cloud in Figure 2).

Whatever the metrics used to calculate aggregated trait values, the GSL that integrates both temperature and soil water limitation on plant growth (GSLtw) was the best descriptor of leaf trait variation (Table 1). Compared with GSLtw, the GSL not accounting for soil water limitations (GSLt), MAT and MAP explained a lower proportion of leaf trait variation (Supporting Information Application S1). Among the two latter descriptors, trait variations were more strongly related to MAT than to MAP, for all four metrics (Table 1). SLA, LNC and LPC were positively related to GSLtw, GSLt and MAT, and negatively to MAP (Table 1, Figure 3, and Figure S5 and Application S1 in Supporting Information); opposite relationships were found for LDMC.

Table 1: Pseudo-R² and direction of relationships of linear models relating leaf traits to climate descriptors

<table>
<thead>
<tr>
<th>Trait</th>
<th>Averaging metrics</th>
<th>MAT</th>
<th>MAP</th>
<th>GSLt</th>
<th>GSLtw</th>
</tr>
</thead>
<tbody>
<tr>
<td>CWM</td>
<td></td>
<td>0.22 (+)</td>
<td>0.038 (-)</td>
<td>0.23 (+)</td>
<td>0.32 (+)</td>
</tr>
<tr>
<td>SLA</td>
<td></td>
<td>0.20 (+)</td>
<td>0.018 (-)</td>
<td>0.21 (+)</td>
<td>0.31 (+)</td>
</tr>
<tr>
<td>GCM_r</td>
<td></td>
<td>0.21 (+)</td>
<td>0.017 (-)</td>
<td>0.21 (+)</td>
<td>0.30 (+)</td>
</tr>
<tr>
<td>GCM_a</td>
<td></td>
<td>0.26 (+)</td>
<td>0.0011 (-)</td>
<td>0.23 (+)</td>
<td>0.38 (+)</td>
</tr>
<tr>
<td>LDMC</td>
<td></td>
<td>0.16 (-)</td>
<td>0.069 (+)</td>
<td>0.17 (-)</td>
<td>0.21 (-)</td>
</tr>
<tr>
<td>GCM_r</td>
<td></td>
<td>0.17 (-)</td>
<td>0.048 (+)</td>
<td>0.17 (-)</td>
<td>0.19 (-)</td>
</tr>
<tr>
<td>GCM_a</td>
<td></td>
<td>0.15 (-)</td>
<td>0.055 (+)</td>
<td>0.15 (-)</td>
<td>0.14 (-)</td>
</tr>
<tr>
<td>LNC_m</td>
<td></td>
<td>0.20 (-)</td>
<td>0.15 (+)</td>
<td>0.21 (-)</td>
<td>0.12 (-)</td>
</tr>
<tr>
<td>LNC_m</td>
<td></td>
<td>0.11 (+)</td>
<td>0.035 (-)</td>
<td>0.12 (+)</td>
<td>0.16 (+)</td>
</tr>
<tr>
<td>CPC_m</td>
<td></td>
<td>0.08 (+)</td>
<td>0.0098 (-)</td>
<td>0.08 (+)</td>
<td>0.14 (+)</td>
</tr>
<tr>
<td>GCM_r</td>
<td></td>
<td>0.061 (+)</td>
<td>0.012 (-)</td>
<td>0.063 (+)</td>
<td>0.11 (+)</td>
</tr>
<tr>
<td>GCM_a</td>
<td></td>
<td>0.041 (+)</td>
<td>0.017 (-)</td>
<td>0.059 (+)</td>
<td>0.11 (+)</td>
</tr>
<tr>
<td>CPC_m</td>
<td></td>
<td>0.14 (+)</td>
<td>0.041 (-)</td>
<td>0.15 (+)</td>
<td>0.19 (+)</td>
</tr>
<tr>
<td>LPC_m</td>
<td></td>
<td>0.16 (+)</td>
<td>0.035 (-)</td>
<td>0.16 (+)</td>
<td>0.23 (+)</td>
</tr>
<tr>
<td>GCM_r</td>
<td></td>
<td>0.14 (+)</td>
<td>0.026 (-)</td>
<td>0.14 (+)</td>
<td>0.21 (+)</td>
</tr>
<tr>
<td>GCM_a</td>
<td></td>
<td>0.092 (+)</td>
<td>0.0091 (-)</td>
<td>0.11 (+)</td>
<td>0.19 (+)</td>
</tr>
</tbody>
</table>

GSLt = growing season length accounting for temperature limitation; GSLtw = growing season length accounting for both temperature and soil water limitations (for further details, see the Methods and Figure S3 in Supporting Information); LDMC = leaf dry matter content; LNC_m = mass-based leaf nitrogen concentration; LPC_m = mass-based leaf phosphorus concentration; MAP = mean annual precipitation; MAT = mean annual temperature; SLA = specific leaf area. Note. Results are given for the four averaging metrics used (see Methods and Figure S4 in Supporting Information); community arithmetic means (CArM), community-weighted means (CWM) and grid cell means calculated from relevés (GCM_r) and from the electronic atlas of the French flora (GCM_a). The direction of the relationship is given in parentheses. For all models, p-value < 10⁻³; n = 1,833 data points were included in the models.
We also investigated whether nitrogen input modulates the climate signal on leaf traits. Nitrogen input had significant impacts on trait values irrespective of climate. For any given value of GSLtw, our results indicated significant upward shifts in SLA, LNC and LPC and a downward shift in LDMC in high-nitrogen-input grasslands (Figure 3). Consequently, the ability to detect significant trait–climate relationships was dependent upon the level of these inputs; under low nitrogen inputs the leaf traits were strongly related to GSLtw whereas under high nitrogen inputs the leaf traits were slightly or not significantly responsive to GSLtw (Figure 3). This translates into significantly higher slope values of trait–environment relationships for low-nitrogen-input compared with high-nitrogen-input grasslands for all metrics apart from GCM_a (Figure 4 and Supporting Information Application S1).

Finally, we tested whether the strength of the climate signal on leaf traits differed when trait means were obtained by accounting for species abundances in plant communities (calculations of CWM values), neglecting species abundances (calculations of CArM values), or by simply averaging trait values of all species occurring within a grid cell (calculations of GCM_r and GCM_a values; see Figure 1). Results for all combinations of (climate descriptors × metrics) analysed separately for the two nitrogen levels are

FIGURE 3 (a) and (b) Relationships between growing season length (GSLtw) and leaf traits with different levels of nitrogen input. GSLtw accounts for growth limitations by temperature and soil water availability (see Figure S2 in Supporting Information). In (a), average leaf traits were calculated taking community organization into account, whereas this is not the case in (b) (see Figure 1 for details). Red and black dots and lines correspond respectively to high (915 pixels grouping 6,173 relevés) and low (918 pixels grouping 9,692 relevés) levels of nitrogen input, as defined by the median of nitrogen input distribution (see Methods section). In (a), the averaging metrics are as follows: community-weighted means (CWM; four panels on the left) and community arithmetic means (CArM; four panels on the right), which average data for all available botanical relevés within a 5 km × 5 km grid cell. In (b), the averaging metrics are as follows: grid cell means based on vegetation relevés (GCM_r; four panels on the left) and grid cell means based on the electronic atlas of the French flora (GCM_a; four panels on the right), which average trait values of all species occurring in a grid cell irrespective of plant community organization. LDMC = leaf dry matter content; LNC = mass-based leaf nitrogen concentration; LPC = mass-based leaf phosphorus concentration; SLA = specific leaf area. Equations of linear regressions between traits and climatic descriptors are given in each panel for each nitrogen level (red characters: high nitrogen; black characters: low nitrogen). For each trait and averaging metrics, an ANCOVA was run to test for the difference between slopes of the two nitrogen input levels. Results are displayed in each panel, showing the value of F statistics and its significance. ***p < .001. **p < .01. *p < .05. p < .1. ns = p > .1. The significance level of each individual regression is given in Supporting Information Application S1.
provided in the Supporting Information Application S1. Here, we focus on the relationships with GSLtw, the best climate predictor of trait–environment relationships. Overall, for a fixed trait × environmental descriptor combination, pseudo-R^2 values were comparable for all metrics (Table 1, Figure 3 and Supporting Information Application S1), but slopes differed substantially among metrics. These were generally steeper for CWMs (Figures 3 and 4 and Supporting Information Application S1). The same conclusion generally held when GSLtw–CWM and GSLtw–GCM_r relationships were compared, with generally even gentler slopes for the latter (Figure 4). There was much less difference between the slopes of the GSLtw–CArM and GSLtw–GCM_r relationships. Finally, the slopes of the GSLtw–GCM relationships assessed with floristic relevés (GCM_r) and species distribution (GCM_a) were steeper for GCM_r (Figures 3 and 4). The spread of data points around the regression lines was substantially lower for the GSLtw–GCM_a relationships than for the three other metrics (compare, in particular, the GSLtw–LNC relationships for the four metrics in Figure 3).

4 | DISCUSSION

The climate space encompassed by the grasslands studied here is relatively wide and covers a fairly broad extent of the climate space covered by European grasslands in particular (Figure 2) and by temperate grasslands in general (cf. Sala, Austin, & Vivanco, 2001). This gives some confidence as to the generality of the trait–climate relationships found in the present study for this type of ecosystem.

Among the four climate descriptors tested here, the growing season length accounting for both temperature and water limitations (GSLtw) was a stronger predictor of trait–climate relationships than basic temperature and rainfall variations (i.e., MAT and MAP) commonly used to study these relationships (e.g., Moles et al., 2014; Onoda et al., 2011; but see Kikuzawa et al., 2013; Ordóñez et al., 2009). Large-scale assessments of climate control on vegetation types have already highlighted the predominant role of soil water balance (Stephenson, 1990) in addition to that of temperature (e.g., Harrison et al., 2010). Given that GSL was estimated using the same temperature and soil water content thresholds for all types of grasslands, its values cannot be considered as an absolute estimate of the time available for plant activity in a particular climate. Instead, it should be regarded as a simple way to quantify the climate constraints that are influential on primary productivity (see below). Depending on plant community, these values may change (i.e., mountain plants having lower threshold values for Growing Degree Day, and Mediterranean plants having the capacity to maintain activity at lower Soil Water Content than other plants). Using the coarser climate descriptors, our study showed that leaf traits were more strongly

FIGURE 3 Continued
related to MAT than to MAP, a result already found in the most extensive study conducted to date at the species level on a worldwide scale for SLA, LNC and LPC, although with low predictive power (Moles et al., 2014).

The predominance of species with high rates of resource acquisition (high SLA, high LNC and low LDMC) under high GSL tw is consistent with the hypothesis that temperature and water-controlled estimates of GSL are proximate drivers of ecosystem primary productivity (Jolly, Nemani, & Running, 2005). Using remotely sensed data to implement a radiation use efficiency model of gross primary productivity (GPP) indeed shows that the annual GPP of the studied grasslands is strongly related to GSL (P. Choler, C. Violle, E. Garnier and the

FIGURE 4
Testing differences in the slopes of trait–climate relationships for the two levels of nitrogen input (N−: low input, in black; N+: high input, in red). Generalized least-squares (GLS) models, taking into account spatial autocorrelation, were tested for each trait between growing season length accounting for temperature limitation (GSLtw) and each trait averaging metric: community arithmetic means (CArM), community-weighted means (CWM) and grid cell mean using relevés (GCM_r) or the electronic atlas of the French flora (GCM_a). For each of the 16 models (four traits and four different metrics), we assessed whether the slope difference between the two nitrogen input levels was significant. Each panel shows the results of the analyses for one trait: LDMC = leaf dry matter content; LNC_m and LPC_m = leaf nitrogen and phosphorus concentration per unit mass, respectively; SLA = specific leaf area. Vertical bars show the 95% confidence intervals of slope estimates for the corresponding GLS model. F statistics from ANOVAs between the two nitrogen levels are shown. ***p < .001, **p < .01, *p < .05, .1p < .1, np > .1.
DIVGRASS consortium, unpublished results), which agrees with the biogeographical trend of grassland yield observed across France (Dziewulski, 1990). The trend in trait variation detected here at a biogeographical scale complies with what is usually found at a local scale, where SLA and leaf nutrient concentrations, including nitrogen, usually increase (e.g., Chollet et al., 2014; Gebauer, Rehder, & Wollenweber, 1988; Poorter & de Jong, 1999), whereas LDMC decreases (e.g., Chollet et al., 2014; Hodgson et al., 2011), along productivity gradients.

Although our results agree qualitatively with those of Moles et al. (2014) in terms of the strength of the relationships between traits and temperature, on the one hand, and traits and precipitation, on the other hand (see above), the slope of most relationships was actually opposite in the two studies. Moles et al. (2014) indeed found that SLA, LNC and LPC tend to decrease with increasing temperature, whereas SLA and LNC (respectively LPC) tend to increase (respectively decrease) with increasing precipitation. Among the potential reasons for such discrepancies, two of them might be particularly relevant here. First, the range of climate conditions covered in the present study represents respectively 40 and 25% of the temperature and precipitation ranges spanned in the study by Moles et al. (2014), which included a broader range of climates from tropical to polar. Given that trait response to environmental factors might not be linear (cf. Poorter, Niinemets, Poorter, Wright, & Villar, 2009 for a curvilinear positive response of SLA to temperature; Wang et al., 2016 for a unimodal relationship between latitude and SLA), spanning different ranges might yield different outcomes. Second, the response of traits to temperature or precipitation of C3 herbaceous species of the temperate grassland biome might be more homogeneous than that of species included in the study by Moles et al. (2014), which encompasses a wide range of species types (herbaceous, woody, deciduous and evergreens); for example, Wright et al. (2005) showed contrasting patterns of SLA variation in response to both temperature and precipitation for deciduous and evergreen shrubs and trees. More generally, inconsistencies in trait–environment relationships have been observed for a wide range of trait–environment combinations, so often that Shipley et al. (2016) identified this area of research as one of the loose foundation stones of trait-based research. These authors stressed that the poor identification of environmental factors that drive trait variations was one of the main factors explaining this state of affairs. Here, we argue that GSLtw represents an ecologically meaningful combination of local environmental parameters (e.g., soil water-holding capacity) and seasonal climatic variations that captures the spatial variation of leaf traits at a biogeographical scale better than the commonly used variables, MAT and MAP.

Differences in the slopes of trait–climate relationships between the two nitrogen levels were mainly attributable to trait differences in the lower part of the GSLtw gradient; SLA, LNC and LPC are higher, whereas LDMC is lower in high-nitrogen grasslands, which are acknowledged effects of nutrient availability on these traits (see Garnier et al., 2016 for a synthesis). These changes between low- and high-nitrogen-input grasslands were much smaller in the upper part of the GSLtw, suggesting that relaxing nutrient stress constraints either by increasing nitrogen or by improving climatic conditions for plant growth leads to comparable effects on leaf traits. Under high GSLtw and high nitrogen inputs, values of SLA, LNC and LPC reached an upper limit, suggesting that factors other than nitrogen (such as light) then become limiting or that plants primarily respond by growing to a larger size while maintaining LNC and LPC. These results differ qualitatively from those obtained in temperate forests across New Zealand, where the increase in SLA (CWM) with temperature was found to be higher with high soil phosphorus availability (Simpson et al., 2016).

The differences in the slopes of the trait–climate relationships between low- and high-nitrogen grasslands might be the consequence of differences in species turnover along the climatic gradient. Further analyses indicated that low-nitrogen grasslands had relatively high species compositional turnover along the GSLtw gradient, whereas species turnover in high-nitrogen grasslands was substantially lower, especially in the upper range of GSLtw values (Figure S6 in Supporting Information). Further refinements on these issues should account for (a) the impact of disturbance regimes (e.g., frequency and intensity or grazing and mowing) in addition to that of fertilization for a better assessment of the effects of grassland management on traits (e.g., Gardarin et al., 2014; McIntyre, Lavorel, Landsberg, & Forbes, 1999) and (b) intraspecific trait variability (Lepi, de Bello, Šmilauer, & Doležal, 2011; Violle et al., 2012); the recent meta-analysis conducted by Sievert et al. (2015) showed that this effect accounted for approximately one-third of the total trait variation among communities on average, a proportion which decreases with increasing spatial extent. This study also showed that the effects were greater for leaf chemical than leaf morphological traits. It is thus likely that trait–environment relationships detected in the present study are noisier for LNC and LPC than for SLA and LDMC. Taking into account these two potential effects would certainly improve our understanding of trait–environment relationships, but there are currently no datasets available at regional to continental scales allowing us to do so.

By neglecting community structuring and/or local species abundance, averaging procedures using GCM and CARM tend to underestimate the effect of climate on leaf trait variations. Our results indicate that accounting for local species abundance (i.e., when CWM and CARM, on the one hand, and CWM and GCM_r, on the other hand, are compared) has the strongest effect on the detection of trait–climate relationships. Accounting for higher local abundance of stress-tolerant species (exhibiting low SLA and high LDMC) in the lower part of the GSLtw gradient and the higher local abundance of species with high rates of resource acquisition in the upper part of the GSLtw gradient led to models of trait–climate relationships with stronger slopes and higher explanatory power. Stronger trait–environment relationships when species abundance is taken into account have also been found at a local scale for several factors (light, soil depth, disturbance, etc.; reviewed by Garnier et al., 2016), suggesting that more abundant species are better fitted to local environmental conditions than less abundant species (Cingolani et al., 2007; Muscarella & Uriarte, 2016). Such effects of varying species abundance across plant communities cannot be captured by solely using species presence/absence information per grid cell, as commonly done in trait-based biogeography (e.g., Šimová et al.,...
The study of trait–environment relationships at the species level is nonetheless relevant to address issues related to species distribution or adaptation, for example. The lack of differences in slopes of the climate–CAR and climate–GCM relationships suggests that considering that species are organized in communities does not carry additional information at this scale, if local species abundance is not taken into account. Finally, the lower variation in trait values observed along the gradient when the GCM metrics is used is likely to be related to the reduced turnover of species between grid cells compared with species turnover between plant communities. Based on these results, we conclude that species abundances within plant communities, and thus accounting for plant community organization, should not be overlooked in further attempts to predict trait–climate relationships at regional or continental scales (Reich, 2014).

4.1 | Conclusions

As the traits investigated are key to plant nutrient economy (Reich, 2014), our findings provide a baseline for improving process-oriented models of biogeochemical cycling in ecosystems. First, we show that the effects of climate on plant communities are better described using composite descriptors involving temperature and soil availability than coarse variables, such as mean annual temperature and/or precipitation. Second, showing that plant community is a relevant level of organization to capture trait–climate relationships should prompt Earth system modellers to pay more attention to ecological processes underlying plant community assembly and dynamics. Third, continuous trait–climate relationships allow one to account for trait variation within vegetation types (here grasslands), and it now becomes feasible to investigate the sensitivity of Earth system model outputs to improved parameterization of vegetation. Finally, the interplay of local nitrogen input and global climate drivers should be given increasing attention in future trait-based models of the biogeochemical cycles in the grassland biome that has been shaped by millennia of agro-pastoral activities (Suttie, Reynolds, & Batteloo, 2005).

ACKNOWLEDGMENTS

This research is supported by the French Foundation for Research on Biodiversity (FRB; www.fondationbiodiversite.fr) in the context of the CESAB (Centre de Synthèse et d’Analyse sur la Biodiversité) project ‘Assembling, analysing and sharing data on plant functional diversity to understand the effects of biodiversity on ecosystem functioning: a case study with French Permanent Grasslands’ (DIVGRASS) and by the TRY initiative on plant traits (http://www.try-db.org). The TRY initiative and database are hosted at the Max Planck Institute for Biogeochemistry, Jena, Germany, and currently supported by DIVERSITAS/Future Earth and the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig. C.V. and P.D. were supported by the European Research Council (ERC) Starting Grant Project ‘Ecophysiological and biophysical constraints on domestication in crop plants’ (Grant ERC-STG-2014–639706-CONSTRAINTS).

DATA ACCESSIBILITY

Archives of data for climatic variables, nitrogen inputs and trait averages calculated using the four metrics at the 5 km × 5 km pixel level will be made available in the Dryad Digital Repository (https://datadryad.org/).

ORCID

Pierre Denelle http://orcid.org/0000-0001-5037-2281
Eric Garnier http://orcid.org/0000-0002-9392-5154

REFERENCES

BIOSKETCH

The DIVGRASS consortium is a CESAB working group involving experts in grassland ecology, soil science, ecosystem modelling and conservation management. The objective of the consortium is to combine existing data on the plant diversity of French permanent grasslands to gain a better understanding of the links between biodiversity and ecosystem functioning.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.

APPENDIX: SOURCES FOR VEGETATION RELEVÉS AND TRAIT DATA

TABLE A1 List of sources for vegetation relevés

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Number of relevés in the dataset</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservatoire Botanique (CNET) et Fédération des CBNs</td>
<td>7,765</td>
<td></td>
</tr>
<tr>
<td>e-FLORA-sys</td>
<td>1,270</td>
<td>Plantureux & Amiaud, 2010</td>
</tr>
<tr>
<td>UCBN (a dataset of permanent grasslands in the north of France)</td>
<td>389</td>
<td></td>
</tr>
<tr>
<td>DivHerbe</td>
<td>60</td>
<td>Gardarin et al., 2014</td>
</tr>
<tr>
<td>SOPHY ('Banque de données botaniques et écologiques') http://sophy.tela-botanica.org/sophy.htm</td>
<td>10,884</td>
<td>Brisse et al., 1995a, 1995b</td>
</tr>
<tr>
<td>Total</td>
<td>20,368</td>
<td></td>
</tr>
</tbody>
</table>

Note. References for vegetation relevés.

TABLE A2 List of sources for trait data

<table>
<thead>
<tr>
<th>Trait</th>
<th>Database(s)</th>
<th>Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLA</td>
<td>TRY, ANDROSACE, DivHerbe, VISTA</td>
<td>Bahn et al., 1999; Bernard-Verdier et al., 2012; Cornelissen, 1996; Cornelissen et al., 2003a, 2004; Cornwell et al., 2008; Díaz et al., 2004; Fonseca et al., 2000; Garnier et al., 2004, 2007; Han et al., 2005; Kattge et al., 2009; Kleyer et al., 2008; Laughlin et al., 2010; Ordonnez et al., 2010; Pyankov et al., 1999; Quested et al., 2003; Shipley, 1995; Shipley & Vu, 2002; Vile et al., 2006; Wright et al., 2004, 2006</td>
</tr>
<tr>
<td>LDMC</td>
<td>TRY, ANDROSACE, DivHerbe, VISTA</td>
<td>Bernard-Verdier et al., 2012; Cornelissen, 1996; Cornelissen et al., 2003a, 2004; Cornwell et al., 2008; Díaz et al., 2004; Garnier et al., 2007, Kazakou et al., 2006; Kleyer et al., 2008; Shipley, 1995; Shipley & Vu, 2002</td>
</tr>
<tr>
<td>LNC</td>
<td>TRY, ANDROSACE, DivHerbe, VISTA</td>
<td>Bahn et al., 1999; Cornelissen, 1996; Cornelissen et al., 2003, 2004; Cornwell et al., 2008; Craine et al., 2005, 2009; Garnier et al., 2007; Han et al., 2005; Kattge et al., 2009; Kazakou et al., 2006; Laughlin et al., 2010; Ordonnez et al., 2010; Quested et al., 2003; Wright et al., 2004, 2006</td>
</tr>
<tr>
<td>LPC</td>
<td>TRY, ANDROSACE, DivHerbe, VISTA</td>
<td>Cornelissen, 1996; Cornelissen et al., 2003a, 2003b; Craine et al., 2009; Garnier et al., 2007; Han et al., 2005; Kazakou et al., 2006; Laughlin et al., 2010; Ordonnez et al., 2010; Wright et al., 2004, 2006</td>
</tr>
</tbody>
</table>

Note. References for trait data. DivHerbe, database from the "Structure, diversité et fonctionnement: des clés multi-échelles pour la gestion des prairies permanentes" project; VISTA, data base from the "Vulnerability of ecosystem services to land use change in traditional agricultural landscapes" project.

(Continues)
TABLE A2 (Continued)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
</table>