A. Pandey, C. R. Soccol, P. Nigam, and V. T. Soccol, Biotechnological potential of agro-industrial residues. I: sugarcane bagasse, Bioresource Technology, vol.74, issue.1, pp.74-69, 2000.
DOI : 10.1016/S0960-8524(99)00142-X

S. Kim and B. E. Dale, Global potential bioethanol production from wasted crops and crop residues, Biomass and Bioenergy, vol.26, issue.4, pp.361-375, 2004.
DOI : 10.1016/j.biombioe.2003.08.002

M. L. Carvalho, R. Sousa, U. F. Rodriguez-zuniga, C. A. Suarez, D. S. Rodrigues et al., Kinetic study of the enzymatic hydrolysis of sugarcane bagasse, Brazilian Journal of Chemical Engineering, vol.88, issue.No. 7, pp.30-437, 2013.
DOI : 10.1002/bit.20282

L. M. Gottschalk, R. A. Oliveira, and E. P. Bon, Cellulases, xylanases, ??-glucosidase and ferulic acid esterase produced by Trichoderma and Aspergillus act synergistically in the hydrolysis of sugarcane bagasse, Biochemical Engineering Journal, vol.51, issue.1-2, pp.51-72, 2010.
DOI : 10.1016/j.bej.2010.05.003

X. B. Zhao, L. Dong, L. Chen, and D. H. Liu, Batch and multi-step fed-batch enzymatic saccharification of Formiline-pretreated sugarcane bagasse at high solid loadings for high sugar and ethanol titers, Bioresource Technology, vol.135, pp.350-356, 2013.
DOI : 10.1016/j.biortech.2012.09.074

A. A. Modenbach and S. E. Nokes, Enzymatic hydrolysis of biomass at high-solids loadings ??? A review, Biomass and Bioenergy, vol.56, pp.526-544, 2013.
DOI : 10.1016/j.biombioe.2013.05.031

B. Palmqvist and G. Lidén, Torque measurements reveal large process differences between materials during high solid enzymatic hydrolysis of pretreated lignocellulose, Biotechnology for Biofuels, vol.5, issue.1, pp.1-9, 2012.
DOI : 10.1016/0168-1656(94)90016-7

URL : https://biotechnologyforbiofuels.biomedcentral.com/track/pdf/10.1186/1754-6834-5-57?site=biotechnologyforbiofuels.biomedcentral.com

N. V. Pimenova and A. R. Hanley, Effect of corn stover concentration on rheological characteristics, Appl. Biochem. Biotechnol, vol.113, pp.347-360, 2004.
DOI : 10.1385/abab:114:1-3:347

J. S. Knutsen and M. W. Liberatore, Rheology of high-solids biomass slurries for biorefinery applications, Journal of Rheology, vol.53, issue.4, pp.877-892, 2009.
DOI : 10.1122/1.3143878

S. Viamajala, J. D. Mcmillan, D. J. Schell, and R. T. Elander, Rheology of corn stover slurries at high solids concentrations ??? Effects of saccharification and particle size, Bioresource Technology, vol.100, issue.2, pp.925-934, 2009.
DOI : 10.1016/j.biortech.2008.06.070

B. H. Um and T. R. Hanley, A comparison of simple rheological parameters and simulation data for Zymomonas mobilis fermentation broths with high substrate loading in a 3-L bioreactor, Appl. Biochem. Biotechnol, pp.145-174, 2008.

R. K. Dasari and R. E. Berson, The effect of particle size on hydrolysis reaction rates and rheological properties in cellulosic slurries, Appl. Biochem. Biotechnol, vol.137, pp.289-299, 2007.

S. Rezania, Z. L. Ye, and R. E. Berson, Enzymatic Saccharification and Viscosity of Sawdust Slurries Following Ultrasonic Particle Size Reduction, Applied Biochemistry and Biotechnology, vol.84, issue.86, pp.103-115, 2009.
DOI : 10.1002/(SICI)1097-4660(199601)65:1<86::AID-JCTB394>3.0.CO;2-L

J. S. Knutsen and M. W. Liberatore, Rheology Modification and Enzyme Kinetics of High Solids Cellulosic Slurries, Energy & Fuels, vol.24, issue.5, pp.3267-3274, 2010.
DOI : 10.1021/ef100140g

T. Nguyen, D. Anne-archard, V. Coma, X. Cameleyre, E. Lombard et al., In situ rheometry of concentrated cellulose fibre suspensions and relationships with enzymatic hydrolysis, Bioresource Technology, vol.133, pp.133-563, 2013.
DOI : 10.1016/j.biortech.2013.01.110

URL : https://hal.archives-ouvertes.fr/hal-00932359

C. J. Dibble, T. A. Shatova, J. L. Jorgenson, and J. J. Stickel, Particle morphology characterization and manipulation in biomass slurries and the effect on rheological properties and enzymatic conversion, Biotechnology Progress, vol.101, issue.3, pp.27-1751, 2011.
DOI : 10.1016/j.biortech.2009.10.076

L. T. Pereira, L. T. Pereira, R. S. Teixeira, E. P. Bon, and S. P. Freitas, Sugarcane bagasse enzymatic hydrolysis: rheological data as criteria for impeller selection, Journal of Industrial Microbiology & Biotechnology, vol.50, issue.1, pp.38-901, 2011.
DOI : 10.1016/0960-8524(94)90214-3

K. W. Dunaway, R. K. Dasari, N. G. Bennett, and R. E. Berson, Characterization of changes in viscosity and insoluble solids content during enzymatic saccharification of pretreated corn stover slurries, Bioresource Technology, vol.101, issue.10, pp.3575-3582, 2010.
DOI : 10.1016/j.biortech.2009.12.071

C. C. Geddes, J. J. Peterson, M. T. Mullinnix, S. A. Svoronos, K. T. Shanmugam et al., Optimizing cellulase usage for improved mixing and rheological properties of acid-pretreated sugarcane bagasse, Bioresource Technology, vol.101, issue.23, pp.9128-9136, 2010.
DOI : 10.1016/j.biortech.2010.07.040

H. Jørgensen, J. Vibe-pedersen, J. Larsen, and C. Felby, Liquefaction of lignocellulose at high-solids concentrations, Biotechnology and Bioengineering, vol.113, issue.16, pp.862-870, 2007.
DOI : 10.1002/bit.21115

C. Cara, M. Moya, I. Ballesteros, M. J. Negro, A. González et al., Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass, Process Biochemistry, vol.42, issue.6, pp.42-1003, 2007.
DOI : 10.1016/j.procbio.2007.03.012

C. Roche, C. Dibble, and J. Stickel, Laboratory-scale method for enzymatic saccharification of lignocellulosic biomass at high-solids loadings, Biotechnology for Biofuels, vol.2, issue.1, pp.1-11, 2009.
DOI : 10.1186/1754-6834-2-28

J. J. Stickel, J. S. Knutsen, M. W. Liberatore, W. Luu, D. W. Bousfield et al., Rheology measurements of a biomass slurry: an inter-laboratory study, Rheologica Acta, vol.52, issue.4, pp.1005-1015, 2009.
DOI : 10.1007/s00397-009-0382-8

Y. Liu, J. Xu, Y. Zhang, Z. Yuan, and J. Xie, Optimization of high solids fed-batch saccharification of sugarcane bagasse based on system viscosity changes, Journal of Biotechnology, vol.211, pp.211-216, 2015.
DOI : 10.1016/j.jbiotec.2015.06.422

J. H. Sánchez, G. C. Quintana, and M. E. Fajardo, Rheology of pulp suspensions of bleached sugarcane bagasse: effect of consistency and temperature, Tappi J, vol.14, pp.601-606, 2015.

P. J. Van-soest, Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin, J. A.O.A.C, vol.46, pp.829-835, 1963.

R. Simha, A Treatment of the Viscosity of Concentrated Suspensions, Journal of Applied Physics, vol.102, issue.9, pp.1020-1024, 1952.
DOI : 10.1063/1.1700493

K. Riedel, J. Ritter, and K. Bronnenmeier, Synergistic interaction of the Clostridium stercorarium cellulases Avicelase I (CelZ) and Avicelase II (CelY) in the degradation of microcrystalline cellulose, FEMS Microbiology Letters, vol.147, issue.2, pp.147-239, 1997.
DOI : 10.1111/j.1574-6968.1997.tb10248.x

A. B. Metzner and R. E. Otto, Agitation of non-Newtonian fluids, AIChE Journal, vol.3, issue.1, pp.3-10, 1957.
DOI : 10.1002/aic.690030103

M. Jahangiri, M. R. Golkar-narenji, N. Montazerin, and S. Savarmand, Investigation of the viscoelastic effect on the metzner and otto coefficient through LDA velocity measurements, Chin. J. Chem. Eng, vol.9, pp.77-83, 2001.

T. C. Nguyen, D. Anne-archard, and L. Fillaudeau, Rheology of Lignocellulose Suspensions and Impact of Hydrolysis: A Review, Adv. Biochem. Eng. Biotechnol, vol.149, pp.325-357, 2015.
DOI : 10.1007/10_2015_323

URL : https://hal.archives-ouvertes.fr/hal-01269476

H. Giesekus, Disperse systems: dependence of rheological properties on the type of flow with implications for food rheology, Physical Properties of Foods, p.13, 1983.

G. P. Roberts, H. A. Barnes, and C. Mackie, Using the microsoft excel solver tool to perform non-linear curve fitting, using a range of non-Newtonian flow curves as examples, Appl. Rheol, pp.11-271, 2001.

L. J. Correa, A. C. Badino, and A. J. Cruz, Power consumption evaluation of different fed-batch strategies for enzymatic hydrolysis of sugarcane bagasse, Bioprocess and Biosystems Engineering, vol.112, issue.4, pp.39-825, 2016.
DOI : 10.1002/bit.25465

J. R. Samaniuk, C. T. Scott, T. W. Root, and D. J. Klingenberg, Effects of process variables on the yield stress of rheologically modified biomass, Rheologica Acta, vol.178, issue.11-12, pp.941-949, 2015.
DOI : 10.1016/S0927-7757(00)00704-4

G. Radeva, I. Valchev, S. Petrin, E. Valcheva, and P. Tsekova, Kinetic model of enzymatic hydrolysis of steam-exploded wheat straw, Carbohydrate Polymers, vol.87, issue.2, pp.1280-1285, 2012.
DOI : 10.1016/j.carbpol.2011.09.012

B. B. Derakhshandeh, R. J. Kerekes, S. G. Hatzikiriakos, and C. P. Bennington, Rheology of pulp fibre suspensions: A critical review, Chemical Engineering Science, vol.66, issue.15, pp.66-3460, 2011.
DOI : 10.1016/j.ces.2011.04.017

L. Rosgaard, P. Andric, K. Dam-johansen, S. Pedersen, and A. S. Meyer, Effects of Substrate Loading on Enzymatic Hydrolysis and Viscosity of Pretreated Barley Straw, Applied Biochemistry and Biotechnology, vol.37, issue.5, pp.143-170, 2007.
DOI : 10.1007/s12010-007-0028-1

N. Szijártó, M. Siika-aho, T. Sontag-strohm, and L. Viikari, Liquefaction of hydrothermally pretreated wheat straw at high-solids content by purified Trichoderma enzymes, Bioresource Technology, vol.102, issue.2, pp.1968-1974, 2011.
DOI : 10.1016/j.biortech.2010.09.012

M. Wiman, B. Palqvist, E. Tornberg, and G. Liden, Rheological characterization of dilute acid pretreted softwood, Biotechnol. Bioeng, vol.100, pp.1031-1041, 2011.
DOI : 10.1002/bit.23020