A. Bester, M. Roniger, Y. Oren, M. Im, D. Sarni et al., Nucleotide Deficiency Promotes Genomic Instability in Early Stages of Cancer Development, Cell, vol.145, issue.3, pp.435-446, 2011.
DOI : 10.1016/j.cell.2011.03.044

J. Stagg and M. Smyth, Extracellular adenosine triphosphate and adenosine in cancer, Oncogene, vol.283, issue.39, pp.5346-5358, 2010.
DOI : 10.4049/jimmunol.173.2.932

URL : http://www.nature.com/onc/journal/v29/n39/pdf/onc2010292a.pdf

J. Spychala, Tumor-promoting functions of adenosine, Pharmacology & Therapeutics, vol.87, issue.2-3, pp.161-173, 2000.
DOI : 10.1016/S0163-7258(00)00053-X

V. Bianchi and J. Spychala, Mammalian 5???-Nucleotidases, Journal of Biological Chemistry, vol.1091, issue.47, pp.46195-46198, 2003.
DOI : 10.1038/nm0595-417

URL : http://www.jbc.org/content/278/47/46195.full.pdf

J. Buschmann, B. Moritz, M. Jeske, H. Lilie, A. Schierhorn et al., and Human 7-Methyl GMP-specific Nucleotidases, Journal of Biological Chemistry, vol.66, issue.4, pp.2441-2451, 2013.
DOI : 10.1101/gad.1183804

URL : http://www.jbc.org/content/288/4/2441.full.pdf

M. Tozzi, R. Pesi, and S. Allegrini, On the Physiological Role of Cytosolic 5???-nucleotidase II (cN-II): Pathological and Therapeutical Implications., Current Medicinal Chemistry, vol.20, issue.34, pp.4285-4291, 2013.
DOI : 10.2174/0929867311320340007

C. Galmarini, K. Graham, X. Thomas, F. Calvo, P. Rousselot et al., Expression of high Km 5'-nucleotidase in leukemic blasts is an independent prognostic factor in adults with acute myeloid leukemia, Blood, vol.98, issue.6, pp.1922-1926, 2001.
DOI : 10.1182/blood.V98.6.1922

L. Jordheim, J. Puy, E. Cros-perrial, S. Peyrottes, I. Lefebvre et al., Determination of the enzymatic activity of cytosolic 5???-nucleotidase cN-II in cancer cells: development of a simple analytical method and related cell line models, Analytical and Bioanalytical Chemistry, vol.77, issue.19, pp.5747-5758, 2015.
DOI : 10.1016/j.ejmech.2014.02.055

F. Cividini, R. Pesi, L. Chaloin, S. Allegrini, M. Camici et al., The purine analog fludarabine acts as a cytosolic 5???-nucleotidase II inhibitor, Biochemical Pharmacology, vol.94, issue.2, pp.63-68, 2015.
DOI : 10.1016/j.bcp.2015.01.010

F. Gallier, P. Lallemand, M. Meurillon, L. Jordheim, C. Dumontet et al., Structural Insights into the Inhibition of Cytosolic 5???-Nucleotidase II (cN-II) by Ribonucleoside 5???-Monophosphate Analogues, PLoS Computational Biology, vol.259, issue.12, p.1002295, 2011.
DOI : 10.1371/journal.pcbi.1002295.s002

URL : https://hal.archives-ouvertes.fr/hal-00813088

L. Jordheim, Z. Marton, M. Rhimi, E. Cros-perrial, C. Lionne et al., Identification and characterization of inhibitors of cytoplasmic 5???-nucleotidase cN-II issued from virtual screening, Biochemical Pharmacology, vol.85, issue.4, pp.497-506, 2013.
DOI : 10.1016/j.bcp.2012.11.024

URL : https://hal.archives-ouvertes.fr/hal-00784297

Z. Marton, R. Guillon, I. Krimm, . Preeti, R. Rahimova et al., Identification of Noncompetitive Inhibitors of Cytosolic 5???-Nucleotidase II Using a Fragment-Based Approach, Journal of Medicinal Chemistry, vol.58, issue.24, pp.9680-9696, 2015.
DOI : 10.1021/acs.jmedchem.5b01616

URL : https://hal.archives-ouvertes.fr/hal-01251800

M. Marton, Z. Hospital, A. Jordheim, L. Bejaud, J. Lionne et al., Structure-activity relationships of beta-hydroxyphosphonate nucleoside analogues as cytosolic 5'-nucleotidase II potential inhibitors: synthesis, in vitro evaluation and molecular modeling studies, Eur J Med Chem, vol.77, pp.18-37, 2014.

J. Meyer, J. Wang, L. Hogan, J. Yang, S. Dandekar et al., Relapse-specific mutations in NT5C2 in childhood acute lymphoblastic leukemia, Nature Genetics, vol.48, issue.3, pp.290-294, 2013.
DOI : 10.1002/1097-0282(2001)60:2<124::AID-BIP1008>3.0.CO;2-S

G. Tzoneva, A. Perez-garcia, Z. Carpenter, H. Khiabanian, V. Tosello et al., Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL, Nature Medicine, vol.39, issue.3, pp.368-371, 2013.
DOI : 10.1093/nar/gkr363

M. Careddu, S. Allegrini, R. Pesi, M. Camici, M. Garcia-gil et al., Knockdown of cytosolic 5???-nucleotidase II (cN-II) reveals that its activity is essential for survival in astrocytoma cells, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1783, issue.8, pp.1529-1535, 2008.
DOI : 10.1016/j.bbamcr.2008.03.018

S. Kulkarni, H. Karlsson, F. Szekeres, A. Chibalin, A. Krook et al., Suppression of 5???-Nucleotidase Enzymes Promotes AMP-activated Protein Kinase (AMPK) Phosphorylation and Metabolism in Human and Mouse Skeletal Muscle, Journal of Biological Chemistry, vol.54, issue.40, pp.34567-34574, 2011.
DOI : 10.1093/emboj/19.23.6371

G. Bricard, E. Cros-perrial, C. Machon, C. Dumontet, and L. Jordheim, Stably transfected adherent cancer cell models with decreased expression of 5???-nucleotidase cN-II, Nucleosides, Nucleotides and Nucleic Acids, vol.253, issue.10-12, pp.604-612, 2016.
DOI : 10.1046/j.1432-1327.1999.00320.x

F. Cividini, E. Cros-perrial, R. Pesi, C. Machon, S. Allegrini et al., Cell proliferation and drug sensitivity of human glioblastoma cells are altered by the stable modulation of cytosolic 5???-nucleotidase II, The International Journal of Biochemistry & Cell Biology, vol.65, pp.222-229, 2015.
DOI : 10.1016/j.biocel.2015.06.011

F. Cividini, M. Tozzi, A. Galli, R. Pesi, M. Camici et al., Cytosolic 5???-Nucleotidase II Interacts with the Leucin Rich Repeat of NLR Family Member Ipaf, PLOS ONE, vol.341, issue.3, p.121525, 2015.
DOI : 10.1371/journal.pone.0121525.s003

C. Wu, Y. Chao, S. Shiah, and W. Lin, Nutrient deprivation induces the Warburg effect through ROS/AMPK-dependent activation of pyruvate dehydrogenase kinase, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1833, issue.5, pp.1147-1156, 2013.
DOI : 10.1016/j.bbamcr.2013.01.025

Y. Minokoshi, Y. Kim, O. Peroni, L. Fryer, C. Muller et al., Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase, Nature, vol.415, issue.6869, pp.339-343, 2002.
DOI : 10.1038/415339a

A. West, G. Shadel, and S. Ghosh, Mitochondria in innate immune responses, Nature Reviews Immunology, vol.278, issue.6, pp.389-402, 2011.
DOI : 10.1074/jbc.M210269200

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281487

N. Denko and . Hypoxia, Hypoxia, HIF1 and glucose metabolism in the solid tumour, Nature Reviews Cancer, vol.554, issue.9, pp.705-713, 2008.
DOI : 10.4161/cc.5.8.2681

T. Hagen, Oxygen versus reactive oxygen in the regulation of HIF-1alpha: the balance tips, Biochem Res Int, vol.2012, p.436981, 2012.

L. Jordheim and L. Chaloin, Therapeutic Perspectives for cN-II in Cancer., Current Medicinal Chemistry, vol.20, issue.34, pp.4292-4303, 2013.
DOI : 10.2174/0929867311320340008

URL : https://hal.archives-ouvertes.fr/hal-00872709

F. Cividini, D. Filoni, R. Pesi, S. Allegrini, M. Camici et al., IMP???GMP specific cytosolic 5???-nucleotidase regulates nucleotide pool and prodrug metabolism, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1850, issue.7, pp.1354-1361, 2015.
DOI : 10.1016/j.bbagen.2015.03.017

N. Graham, M. Tahmasian, B. Kohli, E. Komisopoulou, M. Zhu et al., Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death, Molecular Systems Biology, vol.9, p.589, 2012.
DOI : 10.1021/pr901194x

URL : http://msb.embopress.org/content/msb/8/1/589.full.pdf

K. Bogan, C. Evans, P. Belenky, P. Song, C. Burant et al., Identification of Isn1 and Sdt1 as Glucose- and Vitamin-regulated Nicotinamide Mononucleotide and Nicotinic Acid Mononucleotide 5???-Nucleotidases Responsible for Production of Nicotinamide Riboside and Nicotinic Acid Riboside, Journal of Biological Chemistry, vol.48, issue.50, pp.34861-34869, 2009.
DOI : 10.1083/jcb.200404002

V. Kulikova, K. Shabalin, K. Nerinovski, C. Dolle, M. Niere et al., Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells, Journal of Biological Chemistry, vol.4, issue.45, pp.27124-27137, 2015.
DOI : 10.5936/csbj.201301012

A. Terakawa, A. Natsume, A. Okada, S. Nishihata, J. Kuse et al., Bacillus subtilis 5???-nucleotidases with various functions and substrate specificities, BMC Microbiology, vol.144, issue.1, p.249, 2016.
DOI : 10.1099/00221287-144-11-3097

URL : https://bmcmicrobiol.biomedcentral.com/track/pdf/10.1186/s12866-016-0866-5?site=bmcmicrobiol.biomedcentral.com

T. Clanton, Hypoxia-induced reactive oxygen species formation in skeletal muscle, Journal of Applied Physiology, vol.102, issue.6, pp.2379-2388, 1985.
DOI : 10.1152/japplphysiol.01298.2006

URL : http://jap.physiology.org/content/jap/102/6/2379.full.pdf

M. Sandstrom, S. Zhang, J. Bruton, J. Silva, M. Reid et al., Role of reactive oxygen species in contraction-mediated glucose transport in mouse skeletal muscle, The Journal of Physiology, vol.289, issue.1, pp.251-262, 2006.
DOI : 10.1152/ajpcell.00449.2004

R. Elanchezhian, P. Palsamy, C. Madson, M. Mulhern, D. Lynch et al., Low glucose under hypoxic conditions induces unfolded protein response and produces reactive oxygen species in lens epithelial cells, Cell Death and Disease, vol.66, issue.4, p.301, 2012.
DOI : 10.1016/j.mehy.2005.08.044

D. Gitenay, C. Wiel, H. Lallet-daher, D. Vindrieux, S. Aubert et al., Glucose metabolism and hexosamine pathway regulate oncogene-induced senescence, Cell Death and Disease, vol.61, issue.2, p.1089, 2014.
DOI : 10.1074/jbc.M808246200

URL : http://www.nature.com/cddis/journal/v5/n8/pdf/cddis2014360a.pdf