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Abstract 

A multi-scale analyzing tool is now available to investigate the temporal evolution of two phase 

flows such as liquid systems experiencing an atomization process. Thanks to its multi-scale and 

global nature, it allows identifying all dynamics simultaneously involved in the process with no 

restriction of the liquid system shape. In the present work this multi-scale tool is applied on 2D 

visualizations of free falling jets of a low-viscosity viscoelastic solution. The jets are produced 

from a cylindrical discharge orifice and the liquid is a very dilute polymer solution containing 

5 PPM of Poly(ethylene oxide). High spatial resolution images of the free falling jets are 

performed as a function of the velocity and at several distances from the discharge orifice. For 

every operating condition, the liquid jet remains cylindrical first, then shows the development 

of a sinusoidal perturbation and finally adopts a beads-on-a-string pattern before breakup 

occurs. The multi-scale analysis is performed on a high number of images and at several spatial 

positions in order to return statistical and temporal information, respectively. The results of this 

analysis show that during the sinusoidal perturbation stage, the large-scale region follows an 

exponential increase as predicted by the linear stability theory and during the beads-on-a-string 
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stage, the small-scale region follows an exponential decrease similar to an elasto-capillary 

regime from which the relaxation time of the polymer solution can be extracted. This work 

positions the multi-scale approach as a promising and complementary tool to the currently used 

techniques in order to probe complex liquid rheology, especially in the case of mobile 

viscoelastic solutions.  

 

Keywords: Multi-scale analysis; Extensional rheology; Jet break-up; Low-viscosity 

viscoelastic liquids; Dilute polymer solutions 
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Nomenclature 

D(d,t) µm Scale diameter 

d µm Scale 

d1 µm Specific small scale  

Dc(t) Ds(t) µm Cylinder and sphere diameter  

Dc0, Ds0 µm Initial cylinder and sphere diameter 

De - Deborah number 

Dj µm Jet diameter  

Dmax µm Jet diameter of the maximum surface point 

dmax µm Maximum scale 

Dmin µm Jet diameter of the minimum surface point 

Dor µm Discharge orifice diameter 

Dsfin µm Final sphere diameter 

E2(d,t) - Cumulative scale distribution 

e2(d,t) µm-1 Scale distribution 

Fr - Froude number  

g m.s-2 Gravity acceleration constant 

Hw pixel Analyzing window height 

k mm-1 Perturbation wavenumber  

L µm Cylinder length 

LBU mm Average breakup length  

Lor µm Discharge orifice length 

Mv g.mol-1 Molar mass 

Oh - Ohnesorge number 
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R J.mol-1.K-1Gas constant 

Re - Reynolds number 

ST mm2 Total surface area of the liquid system 

S(d) mm2 Surface area of the eroded system at scale d 

t ms Time 

tBU ms Breakup time 

tr ms Relaxation time of the polymer solution  

t ms Capillary time 

T K Temperature 

Vq m.s-1 Mean jet velocity 

We - Liquid Weber number 

z mm Distance from nozzle orifice 

Hw pixel Analyzing window shift  

 mm Perturbation wavelength 

µ Pa.s Shear viscosity 

[µ] ppm-1 Polymer intrinsic viscosity into the solvent 

 kg.m-3 Liquid density 

 N.m-1 Surface tension coefficient 

 s-1 Growth rate of the jet instability   
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1 Introduction 

A falling jet issuing from an orifice into atmospheric air is an example of a two-phase flow with 

evolving interface shapes. It also makes a wonderful case study of a capillary-driven fluid 

instability [1, 2]. Any surface deformation of wavelength greater than the jet circumference is 

capillary unstable and grows along the jet axis, causing the jet breakup. During this process, the 

falling jet deforms into swollen regions connected by filaments until final breakup. The jet 

interface is thus a complex time-dependent shape function. After breakup, jet fragments tend to 

rearrange themselves into spherical drops, which is the shape minimizing the surface area and 

also the surface energy provided that the surface tension is constant, of a given liquid volume.  

Capillary jets are widely present in Nature as well as in various industrial and medical 

applications (see [3] for a detailed review on the physics of the jet). Because of the fundamental 

and industrial interest of capillary jets, there are numerous experimental and numerical studies 

dedicated to the jet problem, exploring more or less complex configurations. Increasingly the 

complexity concerns the nature of the liquid.  

The measurements commonly performed on capillary jets are the wavelength of the 

perturbation and the temporal evolution of its amplitude. These measurements require a prior 

detection of the interface minimum/maximum displacements from its unperturbed state [4]. 

Quite often this detection is made easier by imposing the perturbation frequency that annihilates 

the temporal and spatial variabilities of the jet behavior [5]. This constraint may be skipped by 

using a multi-scale tool such as the one recently introduced to describe and analyze time-

dependent fluid domains in atomization processes [6-8]. In this technique, any fluid region 

delimited by an interface is described by a scale distribution that is measured as a function of 

time. This allows us to identify characteristic and distinct scale behaviors for characteristic 

scales and time periods in one single measurement. The purpose of the present work is to apply 

this global and easy to use technique on experimental visualizations of free falling capillary jets 
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of a viscoelastic solution in order to measure the dynamic of their large and small-scale 

structures. This approach is inspired from a recently multi-scale analysis of simulated capillary 

instability of a forced Newtonian liquid jet [9]. In that analysis, the temporal evolution of two 

characteristic scales was examined: the maximum scale dmax and the scale d1. dmax is 

representative of the drop region and is equal to the diameter of the maximum surface point 

Dmax. d1 is not equal to the minimum surface point Dmin  but its dynamics is the same. Therefore, 

the method gives access to the dynamics of Dmax and Dmin through dmax and d1, respectively. The 

time evolution of dmax was shown to be exponential as expected by linear stability theory. The 

relation between dmax and time t reads:  
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Here Dj is the unperturbed jet diameter and   83
jDt  is the capillary time. ρ and σ are 

the density and air/liquid surface tension, respectively. The growth rate ωm and the amplitude 

parameter m both depend on the perturbation wavelength. m was found in excellent agreement 

with the prediction of linear stability theory [9]. On the other hand, the scale d1 follows three 

regimes of evolution: an exponential regime, a power-law regime and a linear one in agreement 

with previous studies on capillary liquid breakup (see for instance the map of misery of Clasen 

et al. [10]). The first regime is the counterpart of the exponential increase of dmax while the last 

two ones correspond to two thinning regimes, differing only by the dominant resisting force 

acting against the capillary-driving one: inertia then viscosity. In the inertia-capillary regime 

the evolution of d1 writes: 
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where     8** 3
1dt   and the parameters d1*, *,t* depend on the perturbation 

wavelength. In the visco-capillary regime d1 follows: 
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where   2**** 1dt   is the characteristic visco-capillary time and µ the liquid dynamic 

viscosity. The parameters d1**, ** and t** depend on the perturbation wavelength. Here, we 

intend to reproduce this analysis on experimental visualizations of jets of a low-viscosity but 

elastic liquid i.e., a low-viscosity viscoelastic liquid, showing significant extensional behavior 

with the objective of tracking the small-scale dynamic.  

Dilute solutions of water-soluble polymers are examples of low-viscosity viscoelastic liquids. 

Jets of such solutions are encountered in diverse domains of applications: inkjet printing 

technology [11-12], propulsion industry [13], medicine [14] etc.. Jets and filaments of low-

viscosity dilute polymer solutions were investigated by several authors in the literature [15, 16, 

17 to cite a few examples]. The main feature of these non-Newtonian flows is the evolution of 

the jet at late times into beads-on-a-string structures where the drop-regions are connected by 

thin filaments, disappearing only asymptotically [18]. These structures tend to retard final jet 

breakup and this delay is described by an elasticity-controlled thinning regime. It is now well 

established (see for instance [19]) that the time evolution of Dmin(t) in the elasticity-controlled 

thinning regime is exponential and writes [20]:  
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with tr the relaxation time of the polymer solution and G the modulus of the dilute solution. If 

the multi-scale tool can provide a measurement of the dynamics of Dmin(t), as it was shown on 

simulated jets of a Newtonian fluid [9], it will allow us to get a measurement of tr. This would 

be of particular interest since measuring the extensional properties of mobile liquids is known 

to be challenging [5, 21]. We will discuss the corresponding literature in more detail later in the 

paper.  

In the present study, we apply the 2D multi-scale analysis to experimental visualizations of 

free-falling jets of a low viscous and very dilute polymer solution. From the analysis, we extract 

two characteristic time-scales, the inverse of the growth rate of the instability and the relaxation 

time of the polymer solution, for different operating conditions. The article is structured as 

follows. The 2D multi-scale analysis is detailed in section 2. Section 3 presents the fluids, 

experimental set-up and operating conditions, as well as the measurement protocol. In section 

4, the results and analysis are exposed and a discussion of our results with respect to previous 

work is proposed. We end the article with a conclusion.  
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2 2D multi-scale description 

The concept of 2D multi-scale description and analysis of free liquid flows is introduced in this 

section. The presentation is restricted to the elements relevant for the present work. (More 

details are available in [6-9].) The 2D multi-scale description of a liquid system consists in 

measuring the cumulative scale distribution of its 2D projection. Inspired from the Euclidean 

Distance Mapping method to measure fractal dimension [22], the cumulative scale distribution 

is built from successive erosion operations of the 2D projection for a scale d ranging from 0 to 

infinity. The erosion operation at scale d consists in removing a strip of width d/2 around the 

whole system. The cumulative scale distribution E2(d) is the measurement of the relative 

amount of system surface area removed after the erosion operation at scale d. If ST designates 

the surface area of the system 2D projection and S(d) the remaining surface area after the 

erosion at scale d, E2(d) writes: 
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For d= 0, S(d) = ST and E2(0) = 0. For a sufficiently large scale, the erosion operation removes 

all the system and the remaining surface area S(d) = 0: therefore E2(d) = 1. For intermediate 

scales, S(d) keeps decreasing or remains constant while d increases. Therefore, E2(d) is a 

cumulative and the smallest scale for which E2(d) = 1 is the maximum scale dmax of the system 

as mentioned in the Introduction section. The first derivative of E2(d) in the space scale 

introduces the scale distribution e2(d):  

 

   
d

dE
de

d

d 2
2   (6) 

 



10 
 

The dimension of e2(d) is the inverse of a length. This function is the ratio of the perimeter of 

the eroded system at scale d on twice the surface-area ST. The functions E2(d) and e2(d) depend 

on the shape of the system but they are not a measurement of this shape since systems with 

different shapes may report identical scale distributions.  

For simple objects, the distribution e2(d) can be analytically established. This is the case for a 

sphere and for a cylinder with a high aspect ratio. These objects are particularly relevant in the 

context of liquid atomization during which drops and ligaments are often encountered 

structures. The 2D projections of these objects are a circle and a rectangle, respectively, and 

their scale distribution e2(d) writes: 
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Cylinder of diameter Dc and length L with L/Dc >> 1: 
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The surface-based scale distribution of a sphere depends linearly on the scale (Eq. (7)). On the 

other hand, the surface-based scale distribution of a cylinder is independent of the scale (Eq. 

(8)). Therefore, the scale distribution easily discriminates liquid ligaments from drops.  

When the shape of the liquid system varies with time, the scale distribution becomes a function 

of the scale and of the time and writes e2(d,t). It is important to mention here that the temporal 

variation of e2(d,t) might result from the variation of the perimeter of the eroded system, the 

variation of the surface-area, or the variation of both of them. For dimension reason, it is 

convenient to consider the inverse of e2(d,t) introducing the scale-diameter D(d,t) [7]: 
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The scale-diameter has the dimension of a length. For a cylindrical ligament, we see from Eq. 

(8) that the scale diameter is scale independent and is always equal to the ligament diameter, 

i.e., D(d,t) = Dc(t). Inversely, for a non ligamentary structure, the scale diameter is scale 

dependent.  

 

As an illustration, these notions are applied to a synthetic beads-on-a-string system made of a 

sphere of diameter Ds0 and of a cylinder of diameter Dc0 and length L. Shown in Fig. 1, this 

system is assumed of constant volume during time. The cylinder is subjected to a contraction 

motion characterized by a constant length and an exponential decrease of its diameter as: 

 

   tDtD cc  exp0  (10) 

 

where α is the growth rate. The decrease of volume of the cylinder is compensated by the 

equivalent increase of volume of the sphere. The sphere diameter increases therefore as: 
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During the process, the 2D-projection system surface area (surface area of the drawing shown 

in Fig. 1) varies as:  
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The process lasts until the volume of the sphere equals the all volume, i.e., when Dc(t) 

approaches zero. Introducing this condition into Eq. (11) leads to the final sphere diameter Dsfin: 
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The scale-diameter D(d,t) is calculated from Eqs. (7-9, 10-12). For Ds < Dsfin, it comes: 
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Note that the scale-diameter is never defined for scales higher than Ds(t) since the corresponding 

e2(d,t) is equal to 0. A calculation has been performed with the following set of parameters: 

Ds0 = 500 µm, Dc0 = 100 µm, L = 5 mm, α = 0.2 (ms)-1. For this case, Eq. (13) gives 

Dsfin = 584.8 µm. The top graph of Fig. 2 displays the temporal evolution of the scale-diameter 

for d ranging from 0 to 90 µm. Since the synthetic system considered here is ‘discontinuous’, 

i.e., there is no physical connection between the cylinder and the sphere, the function D(d,t) is 

not continuous at the time for which d = Dc(t). Of course, this will not be the case for actual 

systems that are continuous. Thus, for the present synthetic example, the D(d,t) curves are 

drawn continuous in the top graph of Fig. 2. Figure 2 also shows the temporal evolution of the 

diameter Dc(t) of the cylinder.  
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We clearly see in Fig. 2 that the scale diameter D(d,t) is rather scale independent provided that 

d < Dc(t). This scale independence is related to a rather high value of the parameter L (see Eq. 

(14)). If Dc(t) decreases, the width of the interval of small scales less than Dc(t) decreases 

accordingly and for any scale becoming higher than Dc(t), D(d,t) suddenly increases as shown 

in the top graph of Fig. 2. In other words, the detection of the cylinder-diameter decrease can 

be recognized by identifying the scale d leaving the small-scale interval as time goes.  

The specific scale delimiting the small-scale interval is precisely the scale d1 mentioned in the 

Introduction section. In the synthetic situation represented in Fig. 2, d1(t) is equal to the 

cylindrical diameter Dc(t): d1(t) is the scale for which D(d,t) stops decreasing and increases 

sharply (see for instance the behavior of D(d,t) at t = 1 ms for d = 80 µm or at t = 2.4 ms for 

d = 60 µm). For an actual system, the variation of D(d,t) is not that sharp and its continuous 

time-derivative goes through zero. Therefore, the characteristic scale d1(t) is defined as the 

smallest scale for which the time-derivative of the scale diameter is equal to zero. In the case 

of the beads-on-a-string deformation process, this scale reports the same dynamic as the 

diameter of the string.  
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3 Test fluids, experimental set-up and measurements 

3.1 Test fluids 

The low-viscosity viscoelastic fluid is a polymer solution containing 5 part per million (ppm) 

of Poly(ethylene oxide) (PEO) dissolved into a solvent. The average molar mass of the PEO is 

𝑀௩ ൌ 8 10ଷ kg/mol, as stated by the manufacturer (Sigma-Aldrich), and the solvent is an 

aqueous mixture containing 5% in mass of isopropyl alcohol. The density 𝜌, the shear viscosity 

𝜇 and the surface tension 𝜎 of the solution were measured at room temperature: 𝜌 ൌ 989 kg/m3, 

𝜇 ൌ 1.34 mPa.s, 𝜎 ൌ 48.9 mN/m. These values are very similar to those obtained for the 

solvent (𝜌௦ ൌ 989 kg/m3, 𝜇௦ ൌ 1.24 mPa.s, 𝜎௦ ൌ 49.3 mN/m). To measure the elongational 

properties of viscoelastic solutions it is common to use a Capillary Breakup Extensional 

Rheometer (CaBER) [23, 24]. This technique relies on the filament thinning in a stretched liquid 

bridge. But the CABER is not appropriate to characterize the viscoelastic solution used in the 

present work due to its mobile nature (see [5] for more details). For now, its relaxation time tr 

is estimated from the Zimm model in a good solvent [25], 𝑡௥~𝜇௦ሾμሿ𝑀௩/ሺ𝜌𝑅𝑇ሻ, which is 

commonly used to describe dilute polymer solutions as the one studied and characterized here 

by a low value of c/c*. T is the temperature of the solution, 𝑅 the gas constant, ሾ𝜇ሿ the intrinsic 

viscosity of the PEO in the solvent, c the concentration of the solution and c* the overlap 

concentration for polymer coils, calculated as the inverse of ሾ𝜇ሿ. At T = 20°C, [µ] was measured 

by rotational rheometry (ሾ𝜇ሿ ൌ 2.9 ൈ 10ିଷ ppm-1) from which the values 𝑐 𝑐∗⁄ ~ 0.015 and 

𝑡௥ ~ 12 ms were deduced.  
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3.2 Experimental set-up 

The free falling jet experimental set-up is drawn in Fig. 3. It includes three major parts: the 

injector, the liquid pressure-controlled system and the visualization technique.  

The injector is a cylindrical body ended with a cylindrical discharge orifice. It is oriented in the 

vertical direction (0, z) (see Fig. 3). The liquid feeds in the cylindrical body with an imposed 

pressure and then discharges through the orifice as a free falling liquid jet, i.e., a vertical jet 

with no imposed perturbation. The length and diameter of the injector body are equal to 85 mm 

and 5 mm, respectively. The cylindrical discharge orifice has a diameter 𝐷௢௥ ൌ 200 𝜇m and a 

length 𝐿௢௥ ൌ 300 𝜇m. The liquid pressure-controlled system consists of an air pressure tank 

with flexible pipes. The pressure is manually adjusted with an expansion valve and is controlled 

with an air pressure sensor located ahead of the injector. The injector is mounted on a computer-

controlled three-axis displacement system. In particular, the vertical adjustment allows us to 

select different positions along the (0, z) axis from the orifice exit. The jet production system 

operates in a wide and open chamber equipped with windows whose role is to protect the liquid 

jet from any external perturbations.  

Snapshots of the liquid jet issuing from the injector are recorded by using a shadowgraph optical 

method. The light source, the object and the image sensor are aligned and fixed on an optical 

bench. The light source is a HSPS NANOLITE KL-L whose flash duration is of the order of 20 

ns. The receiver is a sCMOS pco.edge 5.5 USB sensor (2560 x 2160 pixels) with an integrated 

shutter. The optical recording system, i.e. light source, image sensor and acquisition, is 

synchronized by a TTL signal. The field covered by the image is 6.56 mm (height) x 5.54 mm 

(width). The corresponding spatial resolution is equal to 2.56 µm/pixel. For every operating 

condition, this optical arrangement ensures frozen liquid flow images. To follow the jet 

evolution from the nozzle exit down to the fragmentation region, the injector is vertically shifted 

using the three-axis displacement system. Considering the physical height of the visualized field 
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(6.56 mm), the vertical shift was taken equal to 6 mm. At each vertical position, 204 images 

were taken at a 10 Hz frequency. The proximity of this frequency with the one of the jet 

capillary instability which, according to linear stability theory [1] is equal to 2.4 Hz, is not 

penalizing for two reasons. First, the liquid system for free-falling jets implies a certain 

variability in space and time and avoids any unfavorable locking between the behavior and the 

observation. Second, the images are fully uncorrelated in time since during 0.1 s the jets travel 

190 mm at least which is much higher than the image height. 

The experimental runs were performed under atmospheric ambient pressure and temperature 

(between 19°C and 21°C). The injection pressure ranged from 0.05 bar to 1 bar, corresponding 

to a mean jet velocity Vq ranging from 2 to 10 m/s. This velocity was obtained by dividing the 

volume flow rate by the section area Dj
2/4, where Dj is the mean jet diameter measured close 

to the orifice exit before any perturbation becomes visible (see Table 1). The experiments were 

performed in two groups: 1 – reproducibility experiments; 2 - jet velocity dependency 

experiments. In group 1, the injection pressure was adjusted to obtain a velocity Vq around 8 

m/s. This single experiment was repeated four times in a row. They are identified Run #1 to #4 

in the following. In group 2, seven experiments with a varying velocity Vq were performed and 

are identified Run #5 to #11 in the following (see Table 1). In every case, the liquid jet was 

never turned off during the experiments. The Reynolds number 𝑅𝑒 ൌ 𝜌𝑉௤𝐷௝ ሺ2𝜇ሻ⁄ , Ohnesorge 

number 𝑂ℎ ൌ 𝜇 ඥ𝜌𝜎𝐷௝/2⁄ , Deborah number 𝐷𝑒 ൌ ට8𝜎𝑡௥
ଶ ൫𝜌𝐷௝

ଷ൯ൗ , liquid Weber number 

𝑊𝑒 ൌ 𝜌𝑉௤
ଶ𝐷௝ ሺ2𝜎ሻ⁄  and Froude number 𝐹𝑟 ൌ 𝑉௤ ඥ𝑔𝐿஻௎⁄  (where 𝐿஻௎ is the average breakup 

length and g the gravitational acceleration) corresponding to the operating conditions explored 

during this work are: 1.5 ൈ 10ଶ ൑ 𝑅𝑒 ൑ 7.0 ൈ 10ଶ, 1.9 ൈ 10ିଶ ൑ 𝑂ℎ ൑ 2.0 ൈ 10ିଶ, 75 ൑

𝐷𝑒 ൑ 95, 7.7 ൑ 𝑊𝑒 ൑ 2.0 ൈ 10ଶ and 3.7 ൑ 𝐹𝑟 ൑ 13. These numbers say that the present jets 

are laminar, weakly viscous, elastic and sometimes sensitive to the gravitational acceleration. 
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3.3 Measurements 

The images taken at several z positions can be used to reconstruct the entire jet from the nozzle 

exit down to the breakup region. An example of this is shown in Fig. 4 for the polymer solution 

at 8 m/s (we remind here that the image height is 6.56 mm and that the injection is performed 

vertically). We see in Fig. 4 that the jet maintains a rather cylindrical and unperturbed shape 

along 17 mm. At this position, a clear and sinusoidal perturbation becomes visible. This 

perturbation grows in amplitude with the downstream position keeping its sinusoidal shape 

down to 25 mm. After this position, the deformation process continues but the shape of the 

perturbation significantly varies leading to the expected beads-on-a-string pattern at 30 mm. 

This pattern remains visible until breakup occurs at 43 mm. In this work, the multi-scale tool 

introduced in Section 2 is used to describe this process.  

The multi-scale description starts with the measurement of the cumulative scale distribution 

from the analysis of the experimental images. This image analyzing stage can be summarized 

in four steps illustrated in Fig. 5. First, the raw images (Fig. 5-a) are normalized (Fig. 5-b) in 

order to produce images with identical and constant background level. Second, the normalized 

images are binarized (Fig. 5-c). A single threshold is determined from the gray-level histogram 

to segregate the liquid pixel from the background pixel. The resulting images have two gray 

levels only; black for the liquid and white for the background. Third, a correction is applied to 

remove the white dots or zones that may remain on the axis of the liquid jet (Fig. 5-d). Resulting 

from non-deviated light, these white stains reveal the laminar and smooth nature of the jet. 

Fourth, the Euclidian Distance Mapping is applied (Fig. 5-e). This step consists in attributing 

to each black (liquid) pixel a gray level equal to the distance (in pixels) of the nearest interface 

boundary. 

The cumulative scale-distribution is obtained from the count of pixels according to these gray-

levels. This measurement is local, i.e., the count is performed on a portion of the jet delimited 
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by a rectangular analyzing window of height Hw (see Fig. 5-e). This operation is repeated on 

the 204 iso-z images and an averaged cumulative distribution E2(d,t) is calculated that is 

attributed to the analyzing-window middle-line position z and then to the equivalent time t 

defined by: 

 

g

VgzV
t

qq 
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 (15) 

 

In particular, the average breakup time tBU is obtained for z = LBU. When Vq
2 >> 2gz (Fr >> 1), 

Eq. (15) simplifies as t = z/Vq. The temporal evolution of the cumulative distribution is then 

obtained by sliding the Analyzing Window from the top to the bottom of the image with a 

spatial shift of Hw. The image analyzing procedure has been conducted with the free ImageJ 

software. It requires values for the parameters Hw and Hw. 

The choice of the height of the analyzing window Hw is a compromise between the necessity of 

having a local information and a statistical information. If Hw is small the information is very 

local but a high number of images is required to ensure a good statistic. If Hw is large, less 

images are needed but the local aspect of the measurement is lost which manifests by a strong 

dependence between E2(d,t) and Hw. The adopted protocol to choose Hw is the one reported in 

[9]: E2(d,t) is measured for a decreasing Hw and the highest Hw from which E2(d,t) stops varying 

is selected. The application of this protocol leads to Hw = 1.0 mm. This parameter is of the order 

of magnitude of the beads-on-a-string pattern (see Figure 4). 

The parameter Hw is the shift of the analyzing window: it controls the temporal resolution 

(= Vq/Hw) which should be adjusted to allow a good following of the temporal variations. If 

the temporal resolution is too high, the variations of the system might be too small to be 

accurately measured. Subsequently, any temporal derivative might be pretty incorrect. If the 
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temporal resolution is too small, the variations of the system might be too high to report an 

accurate perception of the dynamic. The selection we made in the paper (Hw = 1.0 mm) offers 

a good compromise between these two extreme situations. Both parameters Hw and Hw have 

been kept constant for all positions and velocities. 

Once the cumulative distribution E2(d,t) are obtained, they are corrected from the inaccuracy of 

the Euclidian Distance Map tool in the small scales and smoothed in the scale and time spaces. 

Then, the scale distribution e2(d,t) and the scale diameter D(d,t) are calculated (Eqs. (6) and (9) 

respectively) and the characteristic scales dmax and d1 are determined with the free software 

Scilab. The characteristic scales dmax and d1 have been introduced in Section 2. They are 

determined as follows. The maximum scale dmax is taken as the smallest scale for which 

E2(d,t) ≥ 0.995 instead of E2(d,t) =1. The threshold 0.995 is the highest value for which an 

exponential increase in time is ensured for dmax for all working conditions. It excluded 

unphysical and overestimated value of dmax when they exist. It has been checked that in the 

absence of these overestimated dmax, the threshold 0.995 brings the same dynamics as the 

theoretical threshold 1. The scale d1 is determined as the smallest scale satisfying: 

 

 
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 (16) 

 

The accuracy of the determination of these two scales is limited by the image spatial resolution. 

The effect of this is the existence of a non-reliability region for every result involving these 

scales.  
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4 Results and Discussion 

The typical temporal evolution of the scale diameters D(d,t) for the jet of the polymer solution 

is shown in Fig. 6-a for several scales (Group 1, Run #1, see Table 1). As said above, this jet is 

subject to a beads-on-a-string deformation process (see the image incrusted in the figure). By 

way of a comparison, the temporal evolution of the scale diameters D(d,t) for a solvent jet (with 

no polymer) is shown in Fig. 6-b for several scales (Vq = 2 m/s, Dj = Dor = 300 µm). For this 

case also, an image showing the liquid jet deformation is incrusted in the figure. Because of the 

absence of polymer, no beads-on-a-string pattern is observed. Instead, a classical Newtonian 

liquid behavior takes place. Figure 6 shows that the scale diameter D(d,t) is very sensitive to 

the jet deformation and breakup process. For both liquids, the scale diameter is independent of 

the scale at initial times and becomes scale-dependent as time increases. The main difference 

between the two liquids is the time duration of this scale-dependency development: it starts at 

t/tBU = 0.2 and 0.75 for the polymer solution and the solvent solution, respectively. This 

difference is related to the characteristic time of the small structure life-time. As explained in 

Section 2 (see Fig. 2), the scale-dependency development seen in Fig. 6-a is representative of 

the thinning ligament dynamics.  

 

Figure 7 shows the temporal evolution of dmax for Run #1. The gray zone in the figure 

corresponds to the non-reliability region. Disregarding the first values falling in the non-

reliability region, we see that dmax monotonously increases with time. This behavior is expected 

since this scale is equal to the jet crest diameter. Two zones of increase are visible. First (for 

0.4 < t/tBU < 0.55) the temporal increase is exponential as the one expressed by Eq. (1). This 

behavior corresponds to the capillary instability as described by the linear stability theory. The 

growth rate of the instability can be obtained from the slope of the linear behavior marked in 



21 
 

Fig. 7 by a dash line. Second (for 0.55 < t/tBU < 1) the dmax increase considerably slows down. 

Considering that for Run #1 tBU = 5.4 ms, we can evaluate that the transition between the two 

zones occurs at around z = 25 mm. Figure 4 shows that this position is the one where the jet 

rearranges as a beads-on-a-string configuration. The temporal evolution of dmax obtained for the 

four Runs of Group 1 (see Table 1) are compared to each other in the insert figure. As far as the 

dynamic of dmax is concerned, we see that the experimental protocol reports an excellent 

reproducibility. 

The scale d1 is the one for which the temporal derivative of the scale diameter is equal to zero 

(see section 2). Figure 8 shows the temporal evolution of this scale for the experimental Run 

#1 under a dimensionless form. The non-reliability region is indicated in gray. For 

0.5 < t/tBU < 0.9, we see that d1 exponentially decreases in time. The corresponding growth rate 

is expected to be related to the relaxation time tr as expressed by Eq. (4). For higher times, the 

points deviate from the exponential behavior. Due to finite extensibility of the polymer 

molecules, a physical argument often used in the literature to model viscoelastic behaviors (see 

for instance the work of Entov & Hinch [26]), the elastic response is limited. The viscous 

response continues to grow, the only one balancing the capillary thinning of the filament. This 

last stage is thus the expected visco-capillary regime. However, there are too few points to allow 

for its quantitative characterization. The plot incrusted in Fig. 8 compares the results for the 

four runs. The behaviors in the exponential stage are clearly parallel demonstrating the 

reproducibility of the experimental protocol to extract the relaxation time from the decrease of 

the scale d1 (the value found for the four experimental runs of Fig. 8 is 0.48 ms). 

In the present jet regimes (Rayleigh regime) the growth rate of the linear instability is supposed 

to be independent of the mean jet velocity. Furthermore, the relaxation time is an intrinsic 

property of the solution and should not depend on the mean jet velocity as well. Group 2 
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experimental runs would show us whether the characteristic times extracted from dmax and d1 

fulfill this non-dependency.  

The experimental protocol and analysis detailed above was scrupulously reproduced for the 

seven experimental runs of Group 2 (see Table 1). For each case, the wavenumber k of the 

initial perturbation was determined from the estimation of the wavelength  (k= 2/) 

identified on the images as shown in Fig. 4. Furthermore the linear growth rate  of the 

perturbation was also determined from the exponential increase of the scale dmax as shown in 

Fig. 7. For all operating conditions, Fig. 9 shows the initial perturbation wavenumber and 

growth rate as a function of the root square of the Weber number. Experimental data points are 

found in good agreement with the predictions of linear stability theory for the fastest growing 

mode and the maximum growth rate (indicated by the horizontal lines in Fig. 4.6). The 

theoretical values are obtained from the model of Brenn et al. [27] for a non-Newtonian fluid 

using the Ohnesorge of the PEO solution, the Deborah number calculated with the Zimm 

relaxation time and the time ratio taken as the viscosity ratio of the solvent viscosity to the 

polymer solution one.  These values are very similar to the ones predicted by Rayleigh 

kDj/2 = 0.69 and t = 0.34 since the polymer solution studied here is a low-viscosity solution. 

We note also that the measured growth rates are never above the Rayleigh’s theoretical limit. 

The good agreement between experiment and theory on Fig. 9 demonstrates that the observed 

perturbation is the optimum one, confirming the free nature of the liquid jets.  

For all operating conditions, the elasto-capillary regime of the d1 scale was identified and the 

relaxation time tr was evaluated from the slope in this regime according to Eq. (4). The results 

are plotted in Fig. 10 as a function of the root square of the Weber number. This figure clearly 

evidences a dependency between the relaxation time and the Weber number. However, two 

points must be mentioned. First, the relaxation times found for the four runs of Group 1 are 

very close to each other. This validates the reproducibility of the experimental procedure. 
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Second, whereas the relaxation time depends on the Weber number, an asymptotic value is 

reached as the Weber number increases. This asymptote is recognized by the mathematical fit 

reproduced in the figure and the corresponding asymptotic relaxation time is tr = 0.44 ms. 

 

The idea of using a viscoelastic jet behavior to determine the relaxation time of a polymer 

solution is not new. It defines a method for elongational rheometry whose proof-of-concept was 

originally demonstrated by Schümmer & Tebel [28-30] and that was recently developed by 

Keshavarz et al. [5].  

Schümmer & Tebel [28-30] reported the dependency of the relaxation time to jet operating 

conditions. Forced jet experiments with the same polymer solution but different operating 

conditions – amplitude and frequency of nozzle disturbance and jet velocity – were conducted. 

For the range of parameters explored, it was shown that an increase in disturbance amplitude 

or frequency but a decrease in mean jet velocity causes a decrease of the relaxation time (see 

for instance Fig. 14 in [30] for more details on the domain of jet operation). According to these 

authors, it should be possible to identify suitable operating conditions for which a unique 

relaxation time can be obtained. So far, the existence of this suitable operating domain has not 

been fully demonstrated, limiting the use of the jet behavior to probe elongational properties of 

fluids. 

Recently, there has been a resurgence of interest for the jet elongational rheometer. One reason 

is that this technique allows to address the well-known challenge of elongational rheology for 

very dilute polymer solutions, as proved and discussed in great details in the recent work of 

Keshavarz et al. [5]. In this quantitative investigation on atomization of viscoelastic liquid jets, 

the authors introduced the use of the Rayleigh Ohnesorge Jetting Extensional Rheometry 

(ROJER) to obtain precise measurements of elongational properties for very dilute polymer 

solutions. The technique relies on the filament thinning in a vibrating jet, based on the original 
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ideas from Schümmer & Tebel [28-30], and can be seen as a “flying CABER”. In that work, it 

was found that for fixed disturbance amplitude and frequency the value of the relaxation time 

did not depend on the jet velocity.  

For the present experiments, only the injection pressure is imposed. Note that a change in the 

injection pressure causes a change both in the mean jet velocity and the mean jet diameter, 

which are used to calculate the Weber number. As can be seen in Table 1, the jet at the exit of 

the orifice experiences an expansion or a contraction depending on the injection pressure, a 

phenomenon that is already known for Newtonian fluids [see for example [31]] and that is 

expected to be modified here by the die-swell effect of the polymer solution [32]. On the other 

hand, the disturbance amplitude and frequency are freely selected by the physical system. Based 

on the results of Fig. 9, we can reasonably assume that the experiments are performed at a 

constant disturbance frequency, the most unstable one. Although the disturbance amplitude has 

not been measured, its dependency with the Weber number is evidenced by the luminous line 

on the axis of the liquid jet near the injector. Figure 11 reports a series of images taken at the 

orifice exit for four different experiments of Group 2. We observe that the sinuosity of the 

luminous central line increases with the Weber number. A close examination of image series 

reveals that this sinuosity is constant with time and therefore highlights a steady-state 

deformation of the jet, which generates a larger initial perturbation amplitude. This means that, 

in our free jet conditions, an increase in Weber number causes an increase in initial disturbance 

amplitude. On the other hand, Fig. 10 shows that a Weber number increase causes a decrease 

of the relaxation time. Considering Schümmer & Tebel’s findings [28-30], these elements tend 

to demonstrate that the effect of disturbance amplitude is dominant over the one of jet velocity 

in the present work: the decrease of relaxation time with the Weber number due to a decrease 

of mean jet velocity is due to an increase of the initial disturbance amplitude.  
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It is important to emphasize that the high values of the relaxation times are obtained for the low 

Weber numbers experiments (Runs # 5-7, We = 8, 25, 43 see Table 1). One may wonder whether 

the system is not close to the dripping-jetting transition for which a gobbling effect may modify 

the characteristic time of the filament thinning while preserving its exponential behavior [33] 

or not. The critical Weber number (see equation 3.1 and 3.2 in [33]) was estimated close to 2, 

confirming that our jet experiments are strictly above the fully-developed gobbling regime. 

Assuming the presence of residual gobbling gives us a relaxation time 3/2 greater than the one 

measured here, which makes the difference between the values at low and high Weber numbers 

even larger. Thus, the gobbling effect can not explain the high values of the relaxation time 

obtained in the low Weber number experiments.    

The present experiments show also that for sufficient large Weber numbers, the relaxation time 

becomes quasi-independent of the Weber number, in agreement with the conclusion of 

Schümmer & Tebel [28-30] speaking for the existence of a suitable operating domain. The 

results of Keshavarzk et al. [5] that reported no velocity effect, seems to prove the existence of 

this domain. Yet, these results require to be confirmed by a series of additional experiments, in 

order to better understand the effect of the perturbation amplitude on the relaxation time in both 

free and forced jet experiments. A more detailed study is thus needed to precise the domain of 

operation where a unique relaxation time can be achieved with a jet elongational rheometer.  
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5 Conclusion 

The 2D multi-scale analyzing tool developed to diagnose liquid atomization processes has been 

applied on images of free-falling jets of a low viscous and very dilute polymer solution showing 

beads-on-a-string structures. Performing a global description of the liquid jet, the multi-scale 

approach allows identifying and isolating the dynamics at different scales involved in the jet 

deformation process. Because of the viscoelastic nature of the liquid, the present jet deforms in 

two steps; first a sinusoidal perturbation manifests and grows in amplitude, and second this 

sinusoidal perturbation transforms as a beads-on-a-string structure whose evolution involves 

the thinning of the string until breakup occurs. The free-falling characteristic of the jet has been 

proven by the fact that, for every tested liquid jet velocity, the initial perturbation wavelength 

exhibits the value of the optimum wave predicted by the linear stability theory. The multi-scale 

analysis concentrates on two scales: the maximum scale dmax and the scale d1 whose dynamic 

follows the one of the small structure. In the first jet deformation step, dmax exponentially 

increases with time with a growth rate always equal to the linear theory prediction. This again 

demonstrates the free-falling nature of the jet. In the second jet deformation step, the dynamic 

of the scale d1 corresponds to the one of the filament between the beads. This dynamic is found 

to follow an elasto-capillary regime from which the characteristic relaxation time can be 

determined. The reproducibility of this technique to determine this time was demonstrated to 

be excellent. When the jet velocity increases, it is found that the relaxation time decreases and 

seems to converge towards an asymptotic value. Based on previous works of the literature, this 

behavior has been identified in the present experiments to result from the increase of the initial 

amplitude of the perturbation with the jet velocity. This suggests performing further 

experiments in order to identify operating conditions ensuring the determination of a constant 

relaxation time independent of the operating conditions. Since high initial amplitude 
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perturbation has to be privileged, using complex geometry nozzles might constitute an 

interesting suggestion.  

This work shows that the multi-scale approach constitutes an interesting and complementary 

alternative to the currently used techniques to probe the extensional properties of a visco-elastic 

solution. This technique has advantages. Since it is based on a global description, it is not 

subject to a spatial accuracy required by any local technique. Furthermore, no specific condition 

regarding the injection conditions is required. The multi-scale description can be applied in any 

situation, whatever the shape of the system. In particular, it would be able to identify and 

quantify elasto-capillary mechanisms in any situations including complex atomization scenario. 

Finally, it is also important to mention that, with one measurement, this approach provides all 

the dynamics involved in the evolution of an atomizing liquid system. The completeness of 

such information has not been fully exploited so far.  
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Figure Captions 

Fig. 1: Geometry of the synthetic beads-on-a-string system 

Fig. 2: Scale diameter D(d,t) of the synthetic system versus time 𝑡 for several scales 𝑑 and the 

corresponding diameter Dc(t) of the synthetic system cylinder versus time 𝑡. The dashed arrows 

show the correspondence between the cylinder diameter Dc(t) and the scale for which we 

observe a jump of function D(d,t) at time 𝑡.  

Fig. 3: Experimental Set-up 

Fig. 4: Reconstructed jet. Fluid: polymer solution, We1/2 = 12. The double arrow indicates the 

initial perturbation wavelength identification.  

Fig. 5: From the raw image to the Euclidian Distance Map. a) Raw image b) Normalized image 

c) Binarized image d) Corrected image from the low intensity pixels inside the jet e) Euclidian 

Distance Map. Fluid: polymer solution. We1/2 = 4.3.  

Fig. 6: Dimensionless scale-diameter D(d,t)/Dj versus dimensionless time 𝑡 𝑡஻௎⁄  for several 

scales 𝑑: a) Fluid: polymer solution, We1/2 = 12, b) Fluid: solvent, We1/2= 5.0 with Dj = Dor =300 

µm. Incrusted images show corresponding jet morphology. (𝑡஻௎ is the breakup time) 

Fig. 7: Dimensionless maximum scale 𝑑௠௔௫ 𝐷௝⁄ െ 1 versus dimensionless time 𝑡 𝑡஻௎⁄  for 

experimental run #1. Fluid: polymer solution. We1/2 =12. The dashed line represents the linear 

stability model. The insert figure shows the results for the four experimental runs of Group 1.  

Fig. 8: Dimensionless scale 𝑑ଵ 𝐷௝⁄  versus dimensionless time 𝑡 𝑡஻௎⁄  for experimental run #1. 

Fluid: polymer solution. We1/2 = 12. The dashed line represents the Elasto-capillary model. The 

insert figure shows the results for the four experimental runs of Group 1.  

Fig. 9: Dimensionless wavenumber 𝑘𝐷௝ 2⁄  and dimensionless growth rate 𝜔𝑡ఙ versus the 

square root of the Weber number We1/2. Fluid: polymer solution. The horizontal lines indicate 

the Brenn theoretical predictions for the most unstable wavenumber and maximum growth rate. 

Note that the growth rate value of the lower Weber number is not present due to the lack of data 

points require to determinate it. 

Fig. 10: Deborah number 𝐷𝑒 ൌ 𝑡௥ 𝑡ఙ⁄  versus the square root of the Weber number We1/2. Fluid: 

polymer solution. The dashed curve represents the best fit of the data, searched under the 

mathematical form: 𝑎𝑒௕ௐ௘½
൅ 𝑐, with a,b and c being the parameters of the fit.  

Fig. 11: Visualization of the amplitude perturbation at the exit of the injector for different 

Weber number experiments. Injection pressure a) We1/2=5.0 b) We1/2=8.0 c) We1/2=9.8 d) 

We1/2=12. 
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Tab.1: Identification and operating conditions of the experimental runs. The Weber number 

We is defined in the text (see section 3.2). the text (see section 3.2).  
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Table 1 
 
 

Group Run Dj (µm) Vq (m/s) We (We½) (-) 

1 

1 190 8.58 142 (11.9) 

2 191 8.59 143 (11.9) 

3 192 8.48 140 (11.8) 

4 192 8.42 138 (11.7) 

2 

5 215 1.89 7.75 (2.78) 

6 206 3.46 25.0 (5.00) 

7 209 4.51 43.1 (6.56) 

8 197 5.66 63.9 (7.99) 

9 193 6.99 95.5 (9.77) 

10 189 8.98 154 (12.4) 

11 184 10.3 199 (14.1) 

 
 

 
 


