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Abstract

The consideration of an integral representation as an exact boundary condition for the finite element resolution of
wave propagation problems in exterior domain induces algorithmic difficulties. In this paper, we are interested in
the resolution of an exterior Maxwell problem in 3D. As a first step, we focus on the justification of an algorithm
described in literature, using an interpretation as a Schwarz method. The study of the convergence indicates that
it depends significantly on the thickness of the domain of computation. This analysis suggests the use of the
finite element term of Schwarz method as a preconditioner for use of Krylov iterative solvers. An analytical study
of the case of a spherical perfect conductor indicates the efficiency of such approach. The consideration of the
preconditioner suggested by the Schwarz method leads to a superlinear convergence of the GMRES predicted by
the analytical study and verified numerically.

Keywords: finite element method; integral representation; Krylov solver; Schwarz preconditioner; exterior Maxwell
problem.

Introduction

We are interested in the resolution of the 3D exterior time-harmonic Maxwell equations. The problem
consists in determining the field diffracted by an obstacle. To solve the equations posed in an unbounded
domain, we introduce a fictitious boundary with an artificial boundary condition which models the infinity.
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In the literature, methods based on a local transparent boundary condition are often considered. They
consist in an approximation of the Sommerfeld condition. In this context, we can consider a radiation
condition at a finite distance ([7]) or the Bayliss-Gunzburger-Turkel-like conditions ([4,1,16,28]). To obtain
satisfying results, the artificial boundary should be chosen far from the boundary of the obstacle. Hence,
the computational domain becomes large which increases computation and memory cost. An alternative
to local transparent boundary conditions is the Perfectly Matched Layer (PML) method. It consists in
replacing the artificial boundary by an absorbing layer of finite elements which vanishes the reflection.
The method was introduced by Berenger and derived for the absorption of electromagnetic waves in [8].

In our paper, we rather consider an exact condition defined by an integral representation. The cho-
sen strategy is named “coupling of finite elements and integral representation” and is designated by the
acronym CEFRI for the French designation “Couplage Eléments Finis et Représentation Intégrale”. CE-
FRI was initiated in [20] for hydrodynamic problems, and was presented and mathematically studied
in the context of electromagnetism equations initially in [19]. In [30,3], a careful study of the numerical
behavior of the formulation is presented for 2D Helmholtz equation and 3D Maxwell’s equations, based
on numerous numerical tests. [30] also includes a study of the convergence of the iterative resolution
for the 2D Helmholtz equation. Such an exact condition defined by an integral representation has been
successfully applied to the context of Ultra-Weak-Variational Formulation, which is an alternative to the
finite elements, where the strategy was coupled to a Fast Multipole Method [15].

Like the consideration of a local transparent boundary condition, CEFRI leads to an equivalent problem
posed on a reduced bounded domain delimited by the boundary of the scatterer and the artificial boundary,
where the artificial boundary condition is expressed thanks to an integral representation of the unknown
on this boundary. Even if integral operators are involved, no singularity occurs because the unknown
on the artificial boundary is expressed using the unknown on the boundary of the scatterer. With such
an approach, no a priori condition is required on the distance between the scatterer and the artificial
boundary. The main difficulty consists in the elaboration of a numerical scheme for the resolution because
of the integral operators which disturb the usual properties of the discrete equations. In [21], Jin and Liu
solved the discrete system by a Jacobi method in order to avoid the inversion of the integral operators. The
scheme can be interpreted as a Schwarz method with total overlap. This identification has been initially
considered for the Poisson and Helmholtz exterior problems in [5,6]. In our paper, the interpretation is
extended to the analytical exploration of the rate of convergence of the resolution strategy for Maxwell’s
equations. The theoretical analysis of the case of a spherical scatterer indicates that the method converges
conditionally on the distance between the scatterer and the artificial boundary. Consequently, using the
Jacobi scheme by Jin and Liu, the convergence may fail. However, this study of Schwarz method justifies
the use of Krylov solvers and the choice of the preconditioner. We then analytically explore, in this paper,
the convergence of a preconditioned GMRES for the resolution of the discrete system and prove the
superlinear convergence of the method in the case of a spherical configuration. In [22], Jin and Liu also
explored the use of a Krylov solver preconditioned by another formulation of the exterior problem to be
solved. Their results are quite similar to ours but the preconditioner is different and consists of more
components. In order to verify numerically our theoretical statements, we implemented the resolution
strategies using the Finite Element library Mélina++ ([23]) which does not provide Nédélec elements.
For the numerical results, we then considered the regularized Maxwell equations but the mathematical
study of convergence of Jin and Liu algorithm is done for both the classical and the regularized Maxwell
equations.

In next section, we introduce the physical problem and explain the application of CEFRI. Section 2
is devoted to the Schwarz interpretation of the resolution strategy suggested in [21]. This consideration
enables us to estimate, in Section 3, the speed of convergence of the resolution algorithm in the case of a
spherical scatterer using Jin and Liu algorithm. Some test-cases illustrate the theoretical estimation. In
Section 4, we investigate the convergence of a Krylov method, the GMRES, combined to the preconditioner
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suggested by the previous analysis. Last section provides some numerical simulations which illustrate the
convergence properties of this preconditioned application of the GMRES to CEFRI.

1. Scattering by a perfect conductor

Let us consider Ωi a bounded scatterer in R3 with Lipschitz-continuous boundary Γ and Ωe its un-
bounded complementary. We are concerned with the scattering of a time-harmonic electromagnetic wave
by the perfect conductor Ωi. Our purpose is to determine the total field E = Es + Einc where Einc is
the incident wave and Es is the scattered field. We then consider the following scattering problem with
essential boundary condition on Γ and radiation condition at infinity:

curl curlE − k2
sE = 0 in Ωe,

E × ne = 0 on Γ,

lim
R→∞

∫
||x||=R

||curlEs × ne − iksEs||2dγ = 0,

(1)

where ks is the wavenumber and ne is the exterior unit normal. In order to use standard Lagrange finite
elements for the numerical resolution, we consider an equivalent elliptic problem by adding a regularizing
grad-div term in the time-harmonic Maxwell equations, as described and justified in [19]. Problem (1) is
then equivalent to the following one:

curl curlE − t−1∇(divE)− k2
sE = 0 in Ωe,

E × ne = 0, t−1divE = 0 on Γ,

lim
R→∞

∫
||x||=R

||curlEs × ne − iksne × (Es × ne)||2dγ=0,

lim
R→∞

∫
||x||=R

|
√
t−1divEs − iksEs · ne|2dγ = 0,

(2)

where the regularization term t−1∇(divE) allows the use of a Galerkin finite element method (see [19])
and the regularization parameter t−1 depends on the permittivity and the permeability of the air. The
parameter t is chosen positive. The choice t =∞ corresponds to the initial scattering problem (1). Many
different methods have been developed to solve the time-harmonic Maxwell equations in exterior domains.
In this paper, we consider the coupling between finite elements and integral representation introduced
by Hazard and Lenoir in [19]. The idea consists in defining an exact boundary condition on an artificial
boundary Σ surrounding the scatterer. We reduce the initial problem to an equivalent one, defined on a
bounded domain Ω delimited by Γ and Σ. The reduced problem can be stated as follows

curl curlE − t−1∇(divE)− k2
sE = 0 in Ω,

E × nγ = 0, t−1divE = 0 on Γ,

Tν1E = Tν1(Einc − ItΓ(E)) on Σ,

Nν2E = Nν2(Einc − ItΓ(E)) on Σ.

(3)

where nγ is the exterior unit normal of the domain Ωi on Γ. The parameters ν1 and ν2 are complex
numbers with negative imaginary part. The two operators Tν1 and Nν2 are defined by Tν1E = curlE ×
nσ + ν1 nσ × (E × nσ) and Nν2E = divE + ν2E · nσ with nσ the exterior unit normal of the domain Ω
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on Σ. The condition that involves Nν2 occurs only if t 6= ∞. The boundary conditions on Σ are derived
from an integral representation satisfied by the scattered field and identified by the following expression
[19]: for x ∈ Ωe,

(ItΓE)(x) =

∫
Γ

Gt(x, .)(curlE × nγ + t−1nγ divE)dγ

−
∫

Γ

curlyGt(x, .)(E × nγ)dγ − t−1

∫
Γ

divyGt(x, .)T (E · nγ)dγ.

(4)

where Gt = GksI +
1

k2
s

Hess(Gks − Gkp) is the outgoing Green tensor associated with the differential

operator curl curl − t−1∇(div) − k2
sI of the regularized Maxwell equations; I is the identity matrix in

R3; Hess stands for the Hessian operator; kp =
√
tks; and Gk is the fundamental solution of Helmholtz

equation. Due to the essential condition on Γ, E × nγ = 0, the second term of the representation (4)
vanishes such that:

(ItΓE)(x) =

∫
Γ

Gt(x, .)(curlE × nγ + t−1nγ divE)dγ − t−1

∫
Γ

divyGt(x, .)T (E · nγ)dγ. (5)

The equivalence between the problem stated on the reduced domain Ω (3) and the exterior regularized
problem (2) is given by the following proposition (see [19]):

Proposition 1.1 Choose ν1, ν2 ∈ C with negative imaginary part, then the problems (2) and (3) are
equivalent: Problem (2) admits at least (respectively, at most) one solution if and only if it is the same
for the reduced problem (3). The following links hold:

? If E is a solution to (2) then the restriction of E on Ω is a solution to (3).
? If EΩ is a solution to (3) then the field E defined byE = EΩ in Ω,

E = Einc − ItΓEΩ in Ωe\Ω.

is a solution to (2).

To ensure existence and uniqueness of the solution, we introduce the following spaces: let H(curl,Ω)
be the space of fields V satisfying V ∈ L2(Ω)3 and curlV ∈ L2(Ω)3, and H(div,Ω) the space of fields
V satisfying V ∈ L2(Ω)3 and div V ∈ L2(Ω). We then introduce Ht the Hilbert space required by our
problem and defined by

Ht =
{
E ∈ H(curl,Ω) /divE ∈ L2(Ω), E × nγ = 0, E × nσ ∈ L2(Σ)3, t−1E · nσ ∈ L2(Σ)

}
, (6)

if t 6=∞, and

H∞ =
{
E ∈ H(curl,Ω),divE = 0 in Ω, E × nγ = 0, E × nσ ∈ L2(Σ)3

}
. (7)

The notation (., .)t denotes the natural scalar product on Ht:

(E,E′)t =

∫
Ω

(E · E′ + curlE · curlE′ + |t|−1divE divE′)dΩ

+

∫
Σ

((E × nσ) · (E′ × nσ) + |t|−1(E · nσ)(E′ · nσ))dσ.
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If E is in the space Ht, then curlE × nγ + t−1nγ divE is not defined. We therefore need to extend the

definition of ItΓE to Ht by the consideration of the operator It,RΓ E defined by (see [19] for details): for
all x ∈ Ωe

(It,RΓ E)(x) = −k2
s

∫
Ω

RGt(x, .)E dΩ +

∫
Ω

curlRGt(x, .)curlE dΩ

+ t−1

∫
Ω

divRGt(x, .)TdivE dΩ− t−1

∫
Γ

div Gt(x, .)T(E · nγ)dγ ,

(8)

where R is a linear operator that maps every smooth function ϕ defined on Γ into a smooth function Rϕ
defined on Ω that satisfies Rϕ = ϕ on Γ and Rϕ = 0 on Σ.

The variational formulation of Problem (3) amounts to the equation (see [19]): Find E ∈ Ht such that

(At + Ct)E = Ft, (9)

where the operators At and Ct : Ht → Ht are defined by

(AtE,E′)t =

∫
Ω

(curlE · curlE′ + t−1divE divE′ − k2
sE · E′) dΩ

+

∫
Σ

(ν1(nσ × E) · (nσ × E′) + t−1ν2(nσ · E)(nσ · E′))dσ,
(10)

(CtE,E′)t =

∫
Σ

(Tν1I
t,R
Γ E) · E′dσ + t−1

∫
Σ

(Nν2I
t,R
Γ E)(nσ · E′)dσ, (11)

and Ft is given by

(Ft, E
′)t =

∫
Σ

((Tν1E
inc) · E′ + t−1(Nν2E

inc)(nσ · E′))dσ. (12)

As explained in [19], Problem (9) is well posed. Moreover, the invertibility of the operatorAt is equivalently
obtained by giving a proof of the uniqueness of the solution of the following problem:

curl curlE − t−1∇(divE)− k2
sE = 0 in Ω,

curlE × n+ ν1 n× (E × n) = 0 on ∂Ω,

divE + ν2E · n = 0 on ∂Ω,

(13)

where n is the outward unit normal vector on the boundary ∂Ω, outgoing from Ω. This means that
n = nσ on Σ and n = ne = −nγ on Γ. By a variational formulation, Green’s formula, and the boundary
conditions on ∂Ω, one can check that∫

Ω

(curlE ·curlE′+t−1divE divE′+k2
sE ·E′)dΩ+ν1

∫
∂Ω

(n×E)·(n×E′)dσ+t−1ν2

∫
∂Ω

(n·E)(n·E′)dσ = 0.

Then, choosing E′ = E, we get n× E = 0 and n · E = 0 on ∂Ω. Considering again the boundary condi-
tions: curlE × n = 0, divE = 0 on ∂Ω combined to the integral representation of the field solving the
first equation of Problem (13) inside a bounded domain ([19]), leads to E = 0 in Ω and proves the property:

Property 1.2 The operator At defined by the expression (10) is invertible.

Remark 1.3 If t 6=∞, generally Ht 6⊂ H1(Ω)3 [17]. If Ω is a Lipschitz domain with no re-entrant cor-
ners, then Ht ∩H1(Ω)3 is dense on Ht [10]. Thus, we can discretize (9) using Lagrange finite elements.
But if the domain has re-entrant corners or edges, Ht ∩H1(Ω)3 is a closed proper subspace of Ht ([14]).
Therefore, Ht has no dense subspace included in H1(Ω)3. In this case, the discretization by Lagrange finite
elements of the regularized Maxwell equations leads to a solution that does not converge to the physical
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solution ([11]). In fact in this latter configuration, we can use a weighted regularization method ([13,12]).
For the numerical resolution of Problem (2), we restrict ourselves to the case of obstacles without geo-
metrical singularities and such that Ω has no re-entrant corners.

Remark 1.4 The solution E ∈ Ht of Problem (9) satisfies curl curlE − t−1∇(divE) ∈ L2(Ω)3. Hence,
the quantity curlE × nγ + t−1nγ divE is defined in H1/2(Γ)3 by means of Green’s formula. For such a
solution E, the integral representation (5) is then as valid as the integral representation (8).

In the case of the classical Maxwell equations, the weak form of the problem obtained by the application
of CEFRI can be derived in a similar way. We just give below the equivalent resulting problem and its
variational formulation. By the application of CEFRI, Problem (1) is equivalent to the following problem
defined on the bounded domain Ω:

curl curlE − k2
sE = 0 in Ω,

E × nγ = 0 on Γ,

Tν1E = Tν1(Einc − I∞Γ E) on Σ,

(14)

where I∞Γ is defined in (5) with t = ∞. The variational formulation of Problem (14) can be written as:
Find E ∈ H∞

(A∞ + C∞)E = F∞, (15)

The Hilbert space H∞ is given by (6) for t =∞. The operators A∞, C∞ and F∞ are respectively defined
in (10), (11) and (12) taking t =∞.

2. Schwarz method interpretation

In this section, we first present a resolution strategy for the regularized Maxwell equations. Then, the
case of the classical Maxwell equations is briefly considered.

To solve System (9), Jin and Liu [21] suggested to consider Ct, the term containing the integral repre-
sentation, in the right hand side. An application of the fixed point algorithm leads to finding En+1 such
that 

curl curlEn+1 − t−1∇(divEn+1)− k2
sEn+1 = 0 in Ω,

En+1 × nγ = 0, t−1divEn+1 = 0 on Γ,

Tν1En+1 = Tν1(Einc − ItΓEn) on Σ,

Nν2En+1 = Nν2(Einc − ItΓEn) on Σ.

(16)

In this paper, we focus on an original mathematical justification of convergence of the algorithm expressed
by Jin and Liu. We interpret the algorithm based on (16) as a Schwarz method. This interpretation has
been initially considered for Poisson and Helmholtz problems in [5,6]. The strategy is designated as Total
Overlapping Schwarz Method. Indeed the overlapping area is the total domain Ω. We hereby extend this
work to the case of Maxwell’s equations: it consists in replacing equivalently the problem (16) by the two
following subproblems. The first one is a transmission problem in R3:
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

curl curlE2n+1 − t−1∇(divE2n+1)− k2
sE2n+1 = 0 in Ωi ∪ Ωe,

nγ × [E2n+1] = 0, nγ × [curlE2n+1] = −nγ × curlE2n on Γ,

[t−1divE2n+1] = 0, nγ · [t−1E2n+1] = −nγ · t−1E2n on Γ,

lim
R→∞

∫
||x||=R

||curlEs2n+1 × ne − iksne × (Es2n+1 × ne)||2dγ = 0,

lim
R→∞

∫
||x||=R

|
√
t−1divEs2n+1 − iksEs2n+1 · ne|2dγ = 0.

(17)

The second one consists in finding E2n+2 such that

curl curlE2n+2 − t−1∇(divE2n+2)− k2
sE2n+2 = 0 in Ω,

E2n+2 × nγ = 0, t−1divE2n+2 = 0 on Γ,

Tν1E2n+2 = Tν1E2n+1 on Σ,

Nν2E2n+2 = Nν2E2n+1 on Σ.

(18)

The solution E2n+1 of (17) has an explicit expression given by an integral representation. By inserting this
representation in the right-hand side of the second and third boundary conditions of (18) we effectively
obtain the solution of (16). At the iteration n, Schwarz algorithm (Jin and Liu’s scheme) is defined by

AtEn+1 = −CtEn + Ft. (19)

Numerically, we use the scheme suggested by Jin and Liu and do not use Subproblems (17) and (18).
The intermediate problems (17) and (18) are used for theoretical justifications. This allows us to derive
convergence estimations that cannot be derived directly from System (16).

Since the operator At is invertible, Equation (19) is equivalent to

En+1 = −A−1
t CtEn +A−1

t Ft. (20)

Both iterative schemes (19) and (20) converge if and only if the spectral radius of At−1Ct is strictly lower
than one. This statement shows At as a natural preconditioning of Schwarz method. In the sequel, we
designate At as Schwarz preconditioner.

In the case of the classical Maxwell equations, an equivalent strategy can be applied and consists in
the consideration of the two following subproblems: The first one consists in finding E2n+1 such that

curl curlE2n+1 − k2
sE2n+1 = 0 in Ωi ∪ Ωe,

nγ × [E2n+1] = 0 on Γ,

nγ × [curlE2n+1] = −nγ × curlE2n on Γ,

lim
R→∞

∫
||x||=R

||curlEs2n+1 × ne − iksEs2n+1||2dγ = 0.

(21)

The other one consists in the following problem: Find E2n+2 such that
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
curl curlE2n+2 − k2

sE2n+2 = 0 in Ω,

E2n+2 × nγ = 0 on Γ,

Tν1E2n+2 = Tν1E2n+1 on Σ.

(22)

Then, at the iteration n, Schwarz algorithm for the classical Maxwell equations is defined by

A∞En+1 = −C∞En + F∞. (23)

Since the operator A∞ is invertible, then

En+1 = −A−1
∞ C∞En +A−1

∞ F∞. (24)

The same statement as for the regularized equations occurs by replacing At and Ct with A∞ and C∞.

3. Analytical estimation of the convergence for a spherical scatterer

In this section, we investigate an analytical characterization of the convergence of Schwarz method in
a spherical configuration where the scatterer Ωi is a perfectly conducting ball. The analysis is first pre-
sented for the regularized Maxwell equations. Then, using the same approach, we give the corresponding
results for the classical Maxwell’s equations. The calculation was initially done for the classical Maxwell
equations in a way which was not applicable to the regularized equations. At the end of the section, we
also reproduce the proof of the rate of convergence in the case of the classical equations in the initial way,
which leads to the same convergence estimates.

As a first step, we introduce specific functions based on the Bessel and Hankel functions Jl(r) =
jl(r) + rj′l(r) and Hl(r) = hl(r) + rh′l(r) where jl (resp. hl) is the spherical Bessel function (resp. spheri-
cal Hankel function of the first kind) of degree l. The following derivation also uses the spherical harmonics
Y ml , m = −l, ..., l, of order l > 0.

The special functions of the spherical configuration offer specific properties ([9,24]), with x̂ = x/|x|:

Proposition 3.1 Let us consider the regularized Maxwell equation

curl curl E− t−1∇(div E)− k2
s E = 0. (25)

Let Y ml , m = −l, ..., l, be the spherical harmonics of order l > 0. The functions

Mlm(x) = curl {x jl(ks|x|)Y ml (x̂)} , M̃lm =
1

iks
curlMlm, M̂lm(x) =

1

kp
∇(jl(ks|x|)Y ml (x̂))

are solutions of (25) in R3and the functions

Nlm(x) = curl {xhl(ks|x|)Y ml (x̂)} , Ñlm =
1

iks
curlNlm, N̂lm(x) =

1

kp
∇(hl(ks|x|)Y ml (x̂))

are radiating solutions of (25) in R3 \ {0} .

Remark 3.2 For the classical Maxwell equations, a similar result occurs, involving only Mlm, Nlm, M̃lm

and Ñlm ([27]). For the regularized Maxwell equations, the result is based on some work by Morse and

Feshbach ([26]) and M̂lm and N̂lm contribute to the irrotational part of the field.
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Proposition 3.3 If Y ml denote the spherical harmonics of order l > 0 and m = −l, ..., l, then the
tangential fields on the unit sphere S

Ulm =
1√

l(l + 1)
∇SY ml and Vlm = n× Ulm

are called vector spherical harmonics of order l. The notation ∇S denotes the surface gradient on the unit
sphere S and n is the outward unit normal to S. The fields Ulm and Vlm, l=1,2,3,..., form a complete
orthonormal system in the Hilbert space

T 2(S) =
{
a : S → C3 such that a ∈ L2(S)3, a.n = 0

}
of square integrable tangential fields on S equipped with the usual L2 inner product.

In this analytical investigation, we consider the scatterer to be a ball of radius R∗, we suppose that the
artificial boundary Σ is a sphere concentric to Γ with radius R > R∗ and we perform the proof in the
case where ν1 = ν2 = −iks.

3.1. Characterization of the convergence for the regularized equations

The exact solution of the regularized exterior Maxwell problem can be written thanks to the functions
introduced in Propositions 3.1-3.3 (see for example [9]):

E =

∞∑
l=1

l∑
m=−l

(
αlmNlm + βlmÑlm + γlmN̂lm

)
+ Einc.

The error occuring on the field E using Schwarz method is denoted by (wn)n and defined by the following
expression:

w2n+1 =

E2n+1 − E in Ωe,

E2n+1 in Ωi,
and w2n+2 = E2n+2 − E in Ω,

where E2n+1 and E2n+2 are respectively solutions to (17) and (18). Then, the error on the field E can be

written in terms of Mlm, Nlm, M̃lm, Ñlm, M̂lm and N̂lm :

w2n+1 =



∞∑
l=1

l∑
m=−l

(
a2n+1
lm Mlm + ã2n+1

lm M̃lm + â2n+1
lm M̂lm

)
, |x| ≤ R∗,

∞∑
l=1

l∑
m=−l

(
b2n+1
lm Nlm + b̃2n+1

lm Ñlm + b̂2n+1
lm N̂lm

)
, |x| > R∗,

w2n+2 =

∞∑
l=1

l∑
m=−l

(
c2n+2
lm Mlm + d2n+2

lm Nlm + c̃2n+2
lm M̃lm + d̃2n+2

lm Ñlm + ĉ2n+2
lm M̂lm + d̂2n+2

lm N̂lm

)
.

As a first step, we interpret the boundary conditions on Γ and on Σ. Some conditions give relations
between coefficients such that the number of significant coefficients is reduced:

? the coefficients
(
c2n+2
lm , c̃2n+2

lm , ĉ2n+2
lm

)
are uniquely expressed thanks to

(
d2n+2
lm , d̃2n+2

lm , d̂2n+2
lm

)
(let us

remark that the same link is valid at the level iteration 2n);

? an equivalent statement occurs between
(
a2n+1
lm , ã2n+1

lm , â2n+1
lm

)
and

(
b2n+1
lm , b̃2n+1

lm , b̂2n+1
lm

)
.

The other conditions give the ingredients for the characterization of the convergence:
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? a relation expresses
(
b2n+1
lm , b̃2n+1

lm , b̂2n+1
lm

)
from

(
d2n
lm, d̃

2n
lm, d̂

2n
lm

)
;

? a relation gives
(
d2n+2
lm , d̃2n+2

lm , d̂2n+2
lm

)
from

(
b2n+1
lm , b̃2n+1

lm , b̂2n+1
lm

)
.

A strategy to characterize the convergence consists in introducing the quantity

Λn =

 Tν1(w2n)

Nν2(w2n)


and study the relation between Λn and Λn+1 which corresponds equivalently to the relation between the

vectors of coefficients
(
d2n+2
lm , d̃2n+2

lm , d̂2n+2
lm

)
and

(
d2n
lm, d̃

2n
lm, d̂

2n
lm

)
. Let us denote K̃r the operator which

maps
(
d2n
lm, d̃

2n
lm, d̂

2n
lm

)
onto

(
d2n+2
lm , d̃2n+2

lm , d̂2n+2
lm

)
. The previous statements lead to the following result:

using the notations

Hl(ks|x|) = hl(ks|x|) + ks|x|h′l(ks|x|), Jl(ks|x|) = jl(ks|x|) + ks|x|j′l(ks|x|),

αl(ksR) = Jl(ksR)− iksRjl(ksR), βl(ksR) = Hl(ksR)− iksRhl(ksR),

H
√
t

l = hl(ksR)− i
√
th′l(ksR), J

√
t

l = jl(ksR) + i
√
tj′l(ksR),

γ∗l =
Hl(ksR∗)

Jl(ksR∗)
, δ∗l =

hl(ksR∗)

jl(ksR∗)
,

we have the relation

Ar



d2n+2
lm

d̃2n+2
lm

d̂2n+2
lm


= Br



d2n
lm

d̃2n
lm

d̂2n
lm


(26)

where

Ar =


0 βl(ksR)− γ∗l αl(ksR) − i√

t
(γ∗l jl(ksR)− hl(ksR))

βl(ksR)− γ∗l αl(ksR) 0 0

0
−
√
tl(l + 1)

R
(hl(ksR)− γ∗l jl(ksR))

kp
t

(
−H

√
t

l + γ∗l J
√
t

l

)


and

Br =


0 βl(ksR)

i√
t
hl(ksR)

βl(ksR) 0 0

0
−
√
tl(l + 1)

R
hl(ksR) −kp

t

(
hl(ksR) + i

√
th′l(ksR)

)

 .

As a consequence, the rate of convergence of the Total Overlapping Schwarz method is given by the
spectral radius of A−1

r Br. The method converges when this spectral radius is strictly lower than 1. In
the case of the classical Maxwell equations, we give the asymptotic behavior of the spectral radius with
respect to the degree l (see Sections 3.2 and 3.3). In the current context of the regularized equations, we

just illustrate the behavior of ρ(K̃r) the spectral radius of K̃r = A−1
r Br with respect to the geometrical,
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physical and regularization parameters: the thickness R − R∗, wavenumber ks, wavelength λs = 2π/ks
and regularization parameter t.
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r
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R = 1 + 5λs
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Figure 1. The spectral radius of K̃r vs the thickness of the domain, for ks = 2.5 (left), ks = 5 (center) and ks = 10 (right),

with t = 1.

Figure 1 indicates for the first values of l how ρ(K̃r) is behaving with respect to the thickness of the
computational domain Ω when t is given equal to 1 and when ks takes three different values (2.5, 5, 10).
For all these values of ks, one can observe that larger is R − R∗, smaller is the spectral radius. Figure 2

10 20 30

l (mode)

0

0.2

0.4

0.6

0.8

ρ
(K̃

r
)

ρ(K̃r) versus ks with R = 1 + λs/5, t = 1

ks = 1.25
ks = 2.5
ks = 5
ks = 10

10 20 30

l (mode)

0

0.1

0.2

0.3

0.4

ρ
(K̃

r
)

ρ(K̃r) versus ks with R = 1 + λs, t = 1

ks = 1.25
ks = 2.5
ks = 5
ks = 10

10 20 30

l (mode)

0

0.05

0.1

0.15

ρ
(K̃

r
)

ρ(K̃r) versus ks with R = 1 + 5λs, t = 1

ks = 1.25
ks = 2.5
ks = 5
ks = 10

Figure 2. The spectral radius of K̃r vs the wavenumber ks, for R = R∗ +λs/5 (left), R = R∗ +λs (center) and R = R∗ +5λs
(right), with t = 1.

indicates for the first values of l how ρ(K̃r) is behaving with respect to the wavenumber ks when t is given
equal to 1 and when R−R∗ takes different values with respect to the wavelength (λs/5, λs, 5λs). For all

these values of R−R∗, we can see that the quantity ρ(K̃r) is rather deteriorated when the wavenumber

increases. Figures 3-4 give for the first values of l the behavior of ρ(K̃r) with respect to the regularization
parameter t when the wavenumber ks takes the value 5, and R − R∗ takes the values (λs/5, λs, 5λs).
These observations advise a choice of t of order of the unity. The same behavior was observed for ks = 2.5
and ks = 10.

3.2. Rate of convergence for the classical equations

We now adapt the results of Section 3.1 to the classical Maxwell equations. In this context, thanks to
Remark 3.2, the calculation does not involve M̂lm and N̂lm anymore. By the same strategy as the one in
Section 3.1, the rate of convergence is given by the spectral radius of matrix A−1

c Bc where the matrix Ac
(respectively Bc) is one diagonal 2×2 block of the matrix Ar (respectively Br) and
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Figure 3. The spectral radius of K̃r vs the regularization parameter t, for R = R∗ + λs/5 (left), R = R∗ + λs (center) and
R = R∗ + 5λs (right), with ks = 5.
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Figure 4. The spectral radius of K̃r vs the regularization parameter t, for R = R∗ + λs/5 (left), R = R∗ + λs (center) and

R = R∗ + 5λs (right), with ks = 5.

A−1
c Bc=


(

1− hl(ksR∗)

jl(ksR∗)

Jl(ksR)− iksRjl(ksR)

Hl(ksR)− iksRhl(ksR)

)−1

0

0

(
1− Hl(ksR∗)

Jl(ksR∗)

Jl(ksR)− iksRjl(ksR)

Hl(ksR)− iksRhl(ksR)

)−1

. (27)

For the classical equations, the Total Overlapping Schwarz method converges if the spectral radius
ρ(A−1

c Bc) of A−1
c Bc is strictly lower than 1. For R∗ = 1, the asymptotic behavior of the spherical

Bessel functions leads to the asymptotic estimation: for large l,

ρ(A−1
c Bc) ∼

1

R2l − 1
, i = 1, 2. (28)

As a consequence, there might be a finite number of modes (corresponding to some values of l) outside of
the unit disk for any value of R depending on the wavenumber. Illustrations are given in Section 3.3 where
the same result is obtained using a different strategy. The figures show the behavior of the eigenvalues of
the iteration matrix with respect to the wavelength ks and radius R.

3.3. Rate of convergence for the classical equations – the initial derivation

Here, we propose a second strategy to calculate the rate of convergence of Schwarz method for the
classical equations. This strategy was indeed the initial one but not extendible to the regularized equations.

For all n, we define Λ̃n = Tν1(w2n). In order to estimate the convergence of the error (w2n)n, we study

the convergence of (Λ̃n)n considering that Λ̃n+1 = K̃cΛ̃n with K̃c a map to be determined from T 2(Σ) to
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T 2(Σ), where T 2(Σ) is defined in Proposition 3.3. The quantity Λ̃n can be expressed on the basis of the
vector spherical harmonics as follows (again due to Proposition 3.3), using the coefficients introduced in
Section 3.1:

Λ̃n = Tν1(w2n) =

∞∑
l=1

l∑
m=−l

(
c2nlmTν1(Mlm) + d2n

lmTν1(Nlm) + c̃2nlmTν1(M̃lm) + d̃2n
lmTν1(Ñlm)

)
=
∑
l,m

λ1,n
lm Ulm + λ2,n

lm Vlm .

The relations between Λ̃n and Λ̃n+1 given by conditions on Σ and Γ induce the following statement on
the components λ1,n

lm and λ2,n
lm 

λ1,n+1
lm = τ1,lm λ

1,n
lm ,

λ2,n+1
lm = τ2,lm λ

2,n
lm ,

where 
τ1,lm =

(
d̃2n
lm

b̃2n+1
lm

+
c̃2nlm

b̃2n+1
lm

iksJl(ksR) + k2
sRjl(ksR)

iksHl(ksR) + k2
sRhl(ksR)

)−1

,

τ2,lm =

(
d2n
lm

b2n+1
lm

+
c2nlm
b2n+1
lm

Jl(ksR)− iksRjl(ksR)

Hl(ksR)− iksRhl(ksR)

)−1

.

These expressions clearly indicate that K̃c is linear and has a diagonal representation in the basis
{Ulm, Vlm, l ∈ N,m = −l, ..., l} of T 2(Σ). The relation between (b2n+1

lm , b̃2n+1
lm ) and (d2n+1

lm , d̃2n+1
lm ) leads to

τ1,lm =

(
1− Hl(ksR∗)

Jl(ksR∗)

Jl(ksR)− iksRjl(ksR)

Hl(ksR)− iksRhl(ksR)

)−1

,

τ2,lm =

(
1− hl(ksR∗)

jl(ksR∗)

Jl(ksR)− iksRjl(ksR)

Hl(ksR)− iksRhl(ksR)

)−1

.

(29)

The spectrum of K̃c consists of the eigenvalues τ1,lm and τ2,lm. Their explicit derivation indicates that
these quantities are independent of m. Let us denote them τ1,l and τ2,l in the sequel. These eigenvalues
define the rate of convergence of the Schwarz method. Then, the convergence of the Total Overlapping
Schwarz method is ensured if |τi,l| < 1, for all i = 1, 2, for all l ∈ N. Relations (27) and (29) are similar
which indicates that the result is given by the estimation (28).

Let us now illustrate the eigenvalues τ1,l and τ2,l for different values of R. Figures 5, 6 indicate how
τ1,: and τ2,: behave with respect to the thickness of the computational domain Ω when ks takes three
different values (2.5, 5, 10). Figures 7, 8 indicate how τ1,: and τ2,: behave with respect to the wavenumber
ks when R−R∗ takes different values with respect to the wavelength (λs/5, λs, 5λs).

3.4. Motivation of Schwarz preconditioner

Due to the observed limitations (the requirements on the thickness of the computational domain, the
behavior with respect to the wavenumber), a Krylov method appears as a relevant alternative to the
algorithm defined by (16): due to the properties of Krylov solvers demonstrated in [18], the convergence
of a Krylov method is ensured for the resolution of Problem (9) using At as a preconditioner. Such a
strategy consists in solving the system

(I +A−1
t Ct)E = A−1

t Ft (30)
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Figure 5. The value of τ1,: vs the thickness of the domain, for ks = 2.5 (left), ks = 5 (center) and ks = 10 (right).

0 10 20 30

l (mode)

0

0.05

0.1

0.15

0.2

0.25

τ
2

τ2 versus R with ks = 2.5

R = 1 + λs/10
R = 1 + λs/5
R = 1 + λs

R = 1 + 5λs

0 10 20 30

l (mode)

0

0.1

0.2

0.3

0.4

τ
2

τ2 versus R with ks = 5

R = 1 + λs/10
R = 1 + λs/5
R = 1 + λs

R = 1 + 5λs

0 20 40 60

l (mode)

0

0.2

0.4

0.6

0.8

τ
2

τ2 versus R with ks = 10

R = 1 + λs/10
R = 1 + λs/5
R = 1 + λs

R = 1 + 5λs

Figure 6. The value of τ2,: vs the thickness of the domain, for ks = 2.5 (left), ks = 5 (center) and ks = 10 (right).

0 10 20 30

l (mode)

0

0.1

0.2

0.3

τ
1

τ1 versus ks with R = 1 + λs/5

ks = 1.25
ks = 2.5
ks = 5
ks = 10

0 10 20 30

l (mode)

0

0.02

0.04

0.06

0.08

0.1

τ
1

τ1 versus ks with R = 1 + λs

ks = 1.25
ks = 2.5
ks = 5
ks = 10

0 10 20 30

l (mode)

0

0.005

0.01

0.015

0.02

τ
1

τ1 versus ks with R = 1 + 5λs

ks = 1.25
ks = 2.5
ks = 5
ks = 10

Figure 7. The value of τ1,: vs the wavenumber ks, for R = R∗ +λs/5 (left), R = R∗ +λs (center) and R = R∗ + 5λs (right).

by a Krylov method. As a first statement, the convergence of an iterative method applied to Problem (30)
is ensured if the spectral radius of (A−1

t Ct) is lower than 1. This condition is exactly the condition of
convergence of Jin and Liu scheme considered in the previous sections. This specifies how the analysis of
Schwarz algorithm suggests such a preconditioning strategy for a Krylov solver approach. However, the
properties established in [18] indicates that the convergence of GMRES for the resolution of Problem (30)
is ensured even if some eigenvalues of A−1

t Ct have a modulus larger than one. Hence, the Krylov method
can achieve convergence even in the case of thin domain of computation Ω. In the next sections, we
study theoretically and numerically the convergence of GMRES applied to Problem (9) using At as a
preconditioner.
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Figure 8. The value of τ2,: vs the wavenumber ks, for R = R∗ +λs/5 (left), R = R∗ +λs (center) and R = R∗ + 5λs (right).

4. Convergence analysis for GMRES

In this section, we consider the convergence of GMRES for the resolution of Problem (30) in a spherical
configuration. The idea of the proof was initially introduced by F. Ben Belgacem et al [6] for Helmholtz
problem: The authors proved the superlinear convergence of GMRES using results of spectral theory. The
equation (30) is posed on the domain Ω. We hereby answer the question by considering an intermediate
equivalent problem which involves an equation posed on Σ. The rate of convergence of GMRES is similar
for both the intermediate equation posed on Σ and the initial problem (30). The difference lies only in
the storage size of the Arnoldi basis of GMRES, which is justified later.

To derive the equivalent intermediate problem, we introduce Ψ defined on Σ as a new unknown:

Ψ(x) = Λ(x) + t−1 nσλ(x) ∀ x ∈ Σ (31)

where
Λ = Tν1(Einc − It,RΓ E)

and
λ = Nν2(Einc − It,RΓ E).

Problem (3) can be written as follows

curl curlE − t−1∇(divE)− k2
sE = 0 in Ω,

E × nγ = 0, t−1divE = 0 on Γ,

curlE × nσ + ν1nσ × (E × nσ) = Λ on Σ,

divE + ν2E · nσ = λ on Σ.

(32)

The variational formulation of Problem (32) is

AtE −DtΨ = 0 (33)

where Dt is defined by

(DtΨ, E′)t =

∫
Σ

Ψ · E′dσ.

We introduce the operator BΓ which links the two unknowns Ψ and E

BΓ(Ψ) = Tν1I
t,R
Γ E + t−1(Nν2I

t,R
Γ E)nσ

such that the unknown Ψ can be obtained as the solution of a problem defined on Σ

Ψ(x) + BΓ(Ψ)(x) = Tν1E
inc + t−1(Nν2E

inc)nσ ∀ x ∈ Σ.
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or equivalently
(I + BΓ)Ψ = F̃t on L2(Σ)3, (34)

where F̃t is given by the Riesz representation theorem.
Therefore, the initial problem (30) is equivalent to the combination of the equations (33-34). The rate of

convergence of GMRES for Problem (30) is given by the rate of convergence of GMRES for the resolution
of Equation (34) which we investigate below.

Lemma 4.1 The rate of convergence of GMRES for Problem (30) posed in Ω is given by the rate of
convergence of GMRES for the resolution of Equation (34) defined on Σ.

Proof: Let Wn+1 (resp. W̃n+1) be the error on the solution E (resp. on the field Ψ) of Problem (30)
(resp. (34)) at iteration n+1 of the GMRES method. Then, the error Wn+1 satisfies the following system
on W 

curl curlW − t−1∇(divW )− k2
sW = 0 in Ω,

W × nγ = 0, t−1divW = 0 on Γ,

Tν1W = Λ̃ on Σ,

Nν2W = λ̃ on Σ.

(35)

when
Λ̃ = −Tν1I

t,R
Γ Wn and λ̃ = −Nν2I

t,R
Γ Wn.

If BΩ denotes A−1
t Ct the iteration matrix of GMRES solver for Problem (30), then at each iteration

Wn+1 = BΩWn . (36)

The same relation holds for W̃n+1

W̃n+1 = BΓW̃n . (37)

Now, let us consider the two linear maps

Φ : T 2(Σ)× L2(Σ) → Ht
(Λ̃, λ̃) 7→ W

where W is the solution of System (35), and

Φ̃ : T 2(Σ)× L2(Σ) → L2(Σ)3

(Λ̃, λ̃) 7→ W̃ = Λ̃ + t−1 nσλ̃

related to Definition (31). The linear map Φ is invertible due to the well posedness of the associated
problem (35) and Φ̃ is invertible due to orthogonality arguments. These definitions lead to

Wn+1 = ΦΦ̃−1W̃n+1 (38)

By the equations (36) and (38), we then have

W̃n+1 = Φ̃Φ−1BΩΦΦ̃−1W̃n. (39)

and this holds for any first iterate W̃0. Combining (37) and (39), we can conclude that

BΓ = Φ̃Φ−1BΩΦΦ̃−1.

We deduce that the eigenvalues of BΓ are eigenvalues of BΩ. �
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Thanks to the previous statement, we now focus on the convergence of GMRES for Problem (34).
From [19], one can check that BΓ is a continuous operator from L2(Σ)3 to Ht. Moreover, the injection
Ht ↪→ L2(Ω)3 is compact ([19]). Thus, the injection Ht ↪→ L2(Σ)3 is also compact. This implies that BΓ

is a compact operator on L2(Σ)3. Due to the work by I. Moret [25], the convergence of GMRES for the
resolution of Problem (34) is ensured. In the following, we precise the rate of convergence by verifying
the exponential decay of each singular value γp, p ≥ 0 of BΓ.

Proposition 4.2 In the case of a spherical scatterer, with a spherical artificial boundary, there exist two
positive constants c and τ such that the singular values of BΓ, γp, p ≥ 0, satisfy the relation

0 ≤ γp ≤ c e−τ
√
p, ∀ p ≥ 0.

Proof: The proof of the proposition is performed for the case where the scatterer is a perfectly conducting
ball with radius R∗ = 1 and the artificial boundary Σ is the sphere concentric to Γ with radius R > R∗.

The first step of the convergence evaluation consists in constructing an operator (BΓ)p with rank ≤ p
which approximates BΓ. The proof is based on the Courant-Weyl min-max principle [29] together with
an expansion in term of Bessel and Hankel functions and harmonic spherical functions. We perform the
proof in the case ν1 = ν2 = −iks.. We recall that the Green’s function associated with the 3D Helmholtz
equation can be written as follows ([9]) :

Gks(x, y) = iks

∞∑
l=0

l∑
m=−l

hl(ks|x|)Y ml (x̂)jl(ks|y|)Y ml (ŷ), (40)

with x̂ = x/|x| and ŷ = y/|y|. The series (40) and its term by term first derivatives with respect to x and
y are absolutely and uniformly convergent on compact subsets of {(x, y) ∈ R3 × R3 ; |x| > |y|} (in our
use of the relation, x is on Σ and y is on Γ). Moreover, if V is a given vector, the following expansion
holds ([9])

Gks(x, y)V =
i

ks

∞∑
l=1

1

l(l + 1)

l∑
m=−l

curlNlm(x) curlMlm(y) · V

+iks

∞∑
l=1

iks
l(l + 1)

l∑
m=−l

Nlm(x)Mlm(y) · V

+
i

ks

∞∑
l=1

l∑
m=−l

∇(hl(ks|x|)Y ml (x̂))∇(jl(ks|y|)Y ml (ŷ)) · V .

(41)

The series (41) and its term by term derivatives in x and y are uniformly and absolutely convergent on
compact subsets of {(x, y) ∈ R3×R3 ; |x| > |y|} ([9], [24]). The integral representation (5) can be written
as follows:

(ItΓE)(x) = curlxcurlx

∫
Γ

Gks(x, y)(curlE(y)× nγ(y))dγ(y)−
∫

Γ

∇yGkp(x, y)(E(y) · nγ(y))dγ(y).

Then, taking the formulas (40) and (41) into account, we have, for all x ∈ Ωe

(ItΓE)(x) = curlxcurlx

∫
Γ

i

ks

∞∑
l=1

1

l(l + 1)

l∑
m=−l

curlNlm(x) curlMlm(y) · (curlE(y)× nγ(y))dγ(y)

+curlxcurlx

∫
Γ

iks

∞∑
l=1

1

l(l + 1)

l∑
m=−l

Nlm(x)Mlm(y) · (curlE(y)× nγ(y))dγ(y)

+ikp

∫
Γ

∞∑
l=0

l∑
m=−l

jl(kp|y|)Y ml (ŷ)(kp x̂ h
′
l(kp|x|)Y ml (x̂)+hl(kp|x|)

1

|x|
∇SY ml (x̂))(E(y)·nγ(y))dγ(y).
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Thus, the operator BΓ can be written as follows: for all x ∈ Σ

BΓΨ(x) =

∫
Γ

∞∑
l=1

ik3
s

l(l + 1)

l∑
m=−l

(Nlm(x)× nσ(x)) curlMlm(y) · (curlE(y)× nγ(y))dγ(y)

+

∫
Γ

∞∑
l=1

ik3
s

l(l + 1)

l∑
m=−l

(curlNlm(x)× nσ(x))Mlm(y) · (curlE(y)× nγ(y))dγ(y)

+

∫
Γ

∞∑
l=1

k2
s

l(l + 1)

l∑
m=−l

(nσ(x)× (curlNlm(x)× nσ(x))) curlMlm(y) · (curlE(y)× nγ(y))dγ(y)

+

∫
Γ

∞∑
l=1

k4
s

l(l + 1)

l∑
m=−l

(nσ(x)× (Nlm(x)× nσ(x)))Mlm(y) · (curlE(y)× nγ(y))dγ(y)

+

∫
Γ

k2
p

t
nσ(x)

∞∑
l=0

l∑
m=−l

jl(kp|y|)Y ml (ŷ)(i kp hl(kp|x|) + ks h
′
l(kp|x|))Y ml (x̂)(E(y) · nγ(y))dγ(y).

Let p be a given integer and p∗ the integer part of
√
p. We denote (BΓ)p the truncation of the operator

BΓ of order p. (BΓ)p satisfies

|| (BΓ − (BΓ)p)Ψ ||L2(Σ)3

≤ α1

∞∑
l=p∗+1

k3
s

l(l + 1)

l∑
m=−l

|| nσ ×Nlm ||L2(Σ)3 || nγ × curlMlm ||L2(Γ)3

+ α2

∞∑
l=p∗+1

k3
s

l(l + 1)

l∑
m=−l

|| nσ × curlNlm ||L2(Σ)3 || nγ ×Mlm ||L2(Γ)3

+ α3

∞∑
l=p∗+1

k2
s

l(l + 1)

l∑
m=−l

|| nσ × (curlNlm × nσ)||L2(Σ)3 || nγ × curlMlm||L2(Γ)3

+ α4

∞∑
l=p∗+1

k4
s

l(l + 1)

l∑
m=−l

|| nσ × (Nlm × nσ) ||L2(Σ)3 || nγ ×Mlm ||L2(Γ)3

+ α5

∞∑
l=p∗+1

k2
p

t

l∑
m=−l

|| (i kp hl(kp|.|) + ks h
′
l(kp|.|))Y ml (̂.) ||L2(Σ)3 || jl(kp|.|)Y ml (̂.) ||L2(Γ)3 ,

(42)

where the constants αi for i = 1, ..., 4 depend on ||curlE ||H1/2(Γ)3 and α5 depends on ||E · n||H−1/2(Γ).
Thanks to the expression of the quantities involving Nlm and Mlm, with respect to the Bessel and

Hankel functions, the approximation (42) becomes
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|| (BΓ − (BΓ)p)Ψ ||L2(Σ)3

≤ α1

∞∑
l=p∗+1

k3
s

l(l + 1)

l∑
m=−l

√
l(l + 1) | hl(ksR) | R l(l + 1) | jl(ks) + kj′l(ks) |

+ α2

∞∑
l=p∗+1

k3
s

l(l + 1)

l∑
m=−l

√
l(l + 1) | hl(ksR) + ksRh

′
l(ksR) | l(l + 1) | jl(ks) |

+ α3

∞∑
l=p∗+1

k2
s

l(l + 1)

l∑
m=−l

√
l(l + 1) | hl(ksR) + ksRh

′
l(ksR) | l(l + 1) | jl(ks) + ksj

′
l(ks) |

+ α4

∞∑
l=p∗+1

k4
s

l(l + 1)

l∑
m=−l

√
l(l + 1) | hl(ksR) | R l(l + 1) | jl(ks) |

+ α5

∞∑
l=p∗+1

k2
p

t

l∑
m=−l

| ikphl(kpR) + ksh
′
l(kpR) | R | jl(kp) | .

(43)

By the asymptotic behavior of the spherical Bessel and Hankel functions for large l, we have the
following approximation

|| (BΓ − (BΓ)p)Ψ ||L2(Σ)3≤ c1

∞∑
l=p∗+1

l
√
l(l + 1)

k2
s

Rl
+ c2

∞∑
l=p∗+1

√
l(l + 1)

3
2
k2
s

Rl+1

+ c3

∞∑
l=p∗+1

(l(l + 1))
3
2
ks
Rl+1

+ c4

∞∑
l=p∗+1

√
l(l + 1)

k3
s

Rl

+ c5

∞∑
l=p∗+1

(l + 1)
ks
Rl+1

,

where ci depend on αi for i = 1, ..., 5 and on the constant induced by the asymptotic behavior of
special functions. Thus, using the convergence properties of derivatives of geometric series, we obtain the
estimation

|| (BΓ − (BΓ)p)Ψ ||L2(Σ)3≤ α e−τ(p∗+1) ≤ α̃ e−τ
√
p

where α, α̃ and τ are positive constants and α ≈ α̃.
�

Remark 4.3 If the surface of the scatterer is not spherical, we can consider an intermediate spherical
surface Γ̃ between Γ and the artificial boundary Σ. The artificial boundary condition on Σ can be defined
by an integral representation expressed with an integral over Γ̃. To this aim, we remark that the previous
proof can be extended to the case of a transmission boundary condition on Γ̃.

Proposition 4.4 The application of GMRES to Problem (34) has superlinear convergence.

Proof: Considering γp, p ≥ 0, the singular values of BΓ, denoting by rm the residual at iteration m and
by µp, p ≥ 0, the singular values of (K)−1 where

K = I + BΓ ,

since K is a bijective continuous operator with continuous inverse K−1, the singular values µp of K−1 are
bounded and Theorem 1 of [25] implies
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|| rm ||L2(Σ)3≤ (

m∏
p=1

γpµp) || F̃t ||L2(Σ)3 .

Then, by Proposition 4.2

γp ≤
α̃

pτ
∀p ≥ 1, α̃ ≥ 0.

Thus,

|| rm ||L2(Σ)3≤ β
α̃m

m!τ
,

where β is a positive constant which depends on || F̃t ||L2(Σ)3 . The approximation of m! by Stirling’s
formula gives the following expression

|| rm ||
1
m

L2(Σ)3≤
c

mτ
∀m ≥ 0.

Therefore,

lim
m→∞

|| rm ||
1
m

L2(Σ)3= 0 .

This justifies that we have a superlinear convergence of the GMRES method.
�

5. Numerical results

This section is dedicated to the numerical resolution of Problem (9). To this aim, we use the GMRES
preconditioned by the Schwarz preconditioner introduced in previous sections. Considering a finite element
discretization Th of the domain Ω delimited by Γ and Σ, the Hilbert space Ht is approximated by Vh,
h > 0, defined by

Vh =
{
vh ∈ C0

(
Ω̄
)3

; vh|K ∈ Pm (K)
3
,∀K ∈ Th

}
,

where Pm is the set of polynomials of degree ≤ m. If N designates the total number of degrees of
freedom, Vh is generated by the vectorial functions wjek, j = 1, ..., N and k = 1, 2, 3, where (ei)i=1,...,3 is
the canonical basis of R3 and (wi)i=1,...,N is the unidimensional Lagrange finite element basis of order m.

The numerical implementation was done using and developing new integrands in the finite element
library Mélina++ ([23]). The discretization of Problem (9) is motivated by this consideration. The
discrete unknown Eh is decomposed as follows:

Eh =

N∑
j=1

Ejwj with Ej = E1
j e1 + E2

j e2 + E3
j e3 .

Choosing the test functions E′h = wiek, k = 1, ..., 3, i = 1, ..., N , the discrete system becomes

∀k ∈ {1, ..., 3}, ∀i ∈ {1, ..., N},
N∑
j=1

3∑
l=1

((Atwjel, wiek)t + (Ctwjel, wiek)t)E
l
j = (Ft, wiek)t ,

which is equivalent to
(A+ C)E = F ,

where A and C are defined blockwise by

A = (Aij)i,j=1,...,N and C = (Cij)i,j=1,...,N ,

with, for all i, j ∈ {1, ..., 3}, (Aij)kl = (Atwjel, wiek)t and (Cij)kl = (Ctwjel, wiek)t. The matrix C
involves the integral operators and the matrix A is related to the differential operators. In order to take
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in consideration the essential condition in this use of the library Mélina++, we consider a penalization
strategy ([2]):

εp (nγ × curlE) + E × nγ = 0 with εp > 0,

such that the matrix A is added to a term Aεp resulting from this penalization strategy.

We then consider Ã = A+Aεp as the Schwarz preconditioner, and the system to be solved is

(I + Ã−1C)E = Ã−1F. (44)

As a first step of the numerical investigation, we validate the convergence of the preconditioned CEFRI
strategy by the consideration of an intermediate problem the solution of which is known:

curl curlE −∇(divE)− k2
sE = 0 in Ωe,

E × nγ = G1
1(., x0)× nγ ,divE = div G1

1(., x0) on Γ,

lim
ρ→∞

∫
||x||=ρ

||curlEs × ne − iksne × (Es × ne)||2dγ=0,

lim
ρ→∞

∫
||x||=ρ

|divEs − iksEs · ne|2dγ = 0,

(45)

where G1
1(., x0), the first component of the vector G1, is the solution of Problem (45) and x0 is an artificial

source point which belongs to the scatterer and is chosen equal to (0, 0, 0.01) in this test case. The scatterer
is the unit ball and the artificial boundary Σ is the sphere concentric to Γ with radius R = 1.5. In this
section, the stopping criterion of GMRES corresponds to a residual lower than 10−6.

Table 1

Error on solution and behavior of the residuals =
||(I + Ã−1C)Ec − Ã−1F ||2

|| Ã−1F ||2
, case ks = 3, h = 0.3.

εp
||Ec − Ee ||2
|| Ee ||2

||(Ã+ C)(Ec − Ee)||2
|| (Ã+ C)Ee||2

Residuals Iterations

10−2 1.35 0.05 4× 10−7 48

10−3 1.19 0.01 5× 10−7 44

10−4 5.8 0.01 2× 10−7 55

10−5 23 0.01 3× 10−7 43

10−6 75 0.01 9× 10−8 43

Table 1 shows the relative error on the solution of Problem (45) for different choices of the penalization
parameter εp for a given wavenumber ks = 3 and a given mesh. Ee is the exact solution of (45) and
Ec denotes the numerical solution obtained by the resolution of the discrete system obtained by the

preconditioned CEFRI approach. When the residual criterion is fixed, ||(I+Ã
−1C)Ec−Ã−1F ||2
||Ã−1F ||2

≤ 10−6,

the last column shows that the number of iterations is not significantly sensitive to the penalization

parameter. The weighted relative error ||(Ã+C)(Ec−Ee)||2
||(Ã+C)Ee||2

is encouraging but the relative error on the

solution, ||Ec−Ee||2
||Ee||2 , seems to be extremely deteriorated by the term Aεp of the preconditioner Ã. In

order to explain this impact of the penalization strategy, we exhibit spectral numerical properties of the
preconditioner Ã = A+Aεp . Tables 2, 3 and 4 show the largest-magnitude eigenvalue λmax, the smallest-

magnitude eigenvalue λmin and the condition number cond2 of respectively A, Aεp and Ã. The tables
clearly show the impact of the penalization strategy on the condition number of the preconditioner when
εp tends to 0. This explains the disturbance observed on the accuracy of the resolution.
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Table 2
Extreme eigenvalues of matrix A, case h = 0.3, ks = 2.1, R = 1.5.

λmax λmin cond2

14.4865 - (7.32195× 10−6) i 0.0859181 - 0.087054 i 118.43854

Table 3

Extreme eigenvalues of matrix Aεp , case h = 0.3, ks = 2.1, R = 1.5.

εp λmax λmin cond2

10−2 8.84872 6.51797× 10−7 1.357× 107

10−3 88.4582 7.66253× 10−7 1.154× 108

10−4 884.565 −2.04043× 10−7 4.335× 109

10−5 8845.66 7.35942× 10−7 1.202× 1010

10−6 88456.7 9.1692× 10−7 9.647× 1010

Table 4

Extreme eigenvalues of matrix Ã = A+Aεp , case h = 0.3, ks = 2.1, R = 1.5.

εp λmax λmin cond2

10−2 16.2733 - (4.46251× 10−6) i 0.111321 + 0.111321 i 103.36

10−3 89.2469 - (1.60268× 10−8) i 0.141682 - 0.123085 i 475.52

10−4 885.346 - (1.3209× 10−10) i 0.153267 - 0.135483 i 4327.96

10−5 8846.45 - (1.1022× 10−12) i 0.154249 - 0.135636 i 43069.01

10−6 88457.5 - (1.57468× 10−12) i 0.154346 - 0.135646 i 430489.5

The value of the regularization parameter also impacts the application of the preconditioner Ã which
is performed by a LU resolution. In table 5, we show the accuracy of the resolution by the LU solver.
The error indicated in the second line corresponds to the difference between the initial right hand side
and the right hand side recalculated from the obtained solution: LU error =|| ÃX − b || / || b || where X

is the solution of the system ÃX = b obtained by LU solver, and b is a given right hand side.

Table 5

Error on LU resolution with respect to εp; case h = 0.3, ks = 2.1, R = 1.5.

εp 10−2 10−3 10−4 10−5 10−6 10−7

LU error 3× 10−15 8× 10−14 5× 10−12 4× 10−10 8× 10−7 4× 10−3

Finally, still for Problem (45), in Fig. 9, we plot the weighted relative error with respect to the average
edgelength of the mesh, for different values of εp. This result, combined with the prior ones, suggests the
choice of εp = 10−4 as a good compromise.

As a second step, we apply the preconditioned CEFRI strategy to the initial problem (2). Indeed, we
solve Equation (30), the discretization of which is given by Equation (44). We consider the case of an
incident plane wave with the direction (0, 0, 1) and the polarization (1, 0, 0). We choose ν1 = ν2 = −iks,
the regularization parameter t = 1 and the penalty parameter εp = 10−4. Moreover, we consider meshes
such that the average edgelength and the distance between the boundaries remains constant with respect
to the wavelength. In Figure 10, we show the residuals of GMRES at every restart. The study is done
for the wavenumbers ks = 1.25, ks = 2.5 and ks = 5. Through these test cases, we conclude that the
asymptotic behavior of GMRES validates the theoretical study done in previous sections.
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Figure 9. Relative l2-error on solution with respect to discretization, case ks = 3
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Figure 10. Behavior of the residuals of GMRES preconditioned by A, case hks fixed, εp = 10−4.

6. Conclusion

This work firstly contributed to a theoretical analysis and justification of an algorithm for the resolution
of the 3D exterior Maxwell problem using a combination of finite elements and integral representation.
This algorithm introduced by Jin and Liu ([21]) was interpreted as a Schwarz method with total overlap.
In such a way, we analytically characterized the convergence of the algorithm depending on the distance
between the surface of the obstacle and the artificial surface. The theoretical result reveals the finite
element term of the Schwarz method as a preconditioner for Krylov solvers. A significant result derived
in this paper is the superlinear convergence of the GMRES algorithm when it is preconditioned with
the so called Schwarz preconditioner in the case of the scattering of a time-harmonic electromagnetic
wave by a perfect conductor: the superlinear convergence were first analytically justified in the spherical
configuration; then, numerical tests confirmed this behavior using and contributing to the development
of the finite element library Mélina++ ([23]).

Such results justify further investigations in the consideration of the combination of finite elements
and integral representation. Next important aspects for the numerical resolution will be the use of edge
elements to avoid the regularization technique and the use of fast methods such as the fast multipole
method. A significant perspective would be the extension of the study to other boundary conditions like
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transmission condition or other geometrical configurations such as geometries with singularities ([12]).
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[5] F. Ben Belgacem, M. Fournié, N. Gmati, F. Jelassi, On the Schwarz algorithms for the elliptic exterior boundary value
problems, M2AN Math. Model. Numer. Anal., vol. 39, No. 4, pp 693-714, 2005.

[6] F. Ben Belgacem, N. Gmati, F. Jelassi, Convergence bounds of GMRES with Schwarz’ preconditioner for the scattering
problem. Int. J. Numer. Meth. Engng., 80:191-209, 2009.

[7] A. Bendali, L. Halpern, Approximation par troncature de domaine de la solution du problème aux limites extérieur
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