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a b s t r a c t

Each year, more than 400 natural disasters hit the world. To be more responsive, humanitarians organize
stocks of relief items. It is an issue to know the quantity of items to be stored and where they should be
positioned. Many authors have tried to address this issue both in industrial and humanitarian
environments. However, humanitarian supply chains today do not perform correctly, particularly as
regards resilience and efficiency. This is mainly due to the fact that when a disaster occurs, some hazards
can strongly impact the network by destroying some resources or collapsing infrastructure. The expected
performance of the relief response is consequently strongly decreased. The problem statement of our
research work consists in proposing a decision-making support model in artificial intelligence dedicated
to the humanitarian world and capable of designing a coherent network that is still able to adequately
manage the response to a disaster despite failures or inadequacies of infrastructure and potential
resources. This contribution is defined through a Stochastic Multi-Scenarios Program as a core and a set
of extensions. A real-life application case based on the design of a humanitarian supply chain in Peru is
developed in order to highlight the benefits and limits of the proposition.

1. Introduction

Today, humanitarian professionals face new challenges in the
context of their activities. Donors in particular impose more and
more drastic guarantees on the proper use of funds made available in
case of crisis. Although very common in the business world, this
requirement is very new in this sector, almost in contradiction with
the doctrines and fundamentals of the humanitarian world. Another
challenge clearly lies in the ability of humanitarian organizations to
integrate several performance dimensions in their reasoning. The
approach of simply responding quickly to an emergency situation is
no longer satisfactory. The performance of the humanitarian
response to crisis should be measured not only according to its
speed of execution, but also according to its ability to minimize costs,
to allow high flexibility, to limit its environmental footprint or to
maximize its (media) visibility.

These contextual elements raise the issue of developing artifi-
cial intelligence (AI) tools, especially decision-support systems
that the key actors can use for evaluating and defining operational
solutions to be implemented. In the face of this observation, many
researchers, in the past 15 years, have widely carried out studies

and proposed tools and methods in this field. Authors such as
Natarajarathinam et al. (2009), and Peres et al. (2012) have studied
this phenomenon and observed that a big majority of the pub-
lished works (more than 50% of articles) are based on analytical
models, and in particular on mathematical programming models.
However, in practice today, very few humanitarian organizations
(not to say none) use tools stemming from AI as decision-making
support tools. This point demonstrates the big gap that yet today
separates academics and practitioners in the field of humanitarian
activities, more especially humanitarian logistics. In attempt to
bridge this gap, authors such as Kovács and Spens (2007) and
Peres et al. (2012) identified very concrete research themes and
particularly made the following suggestions:

– Given that humanitarian workers evolve in very uncertain
environments, scientists should consider these uncertainties
in a much more systematic way, within the framework of their
research works.

– Researchers should try to come up with answers to the new
efficiency requirements facing humanitarian organizations, and
should not just confine themselves to the improvement of
responsiveness.

Nevertheless, it would be difficult to take these two suggestions
into account in only one research work given that the scope and
spectrum of issues in a supply chain are very vast. Therefore, we
have decided in this paper to focus only on the configuration and
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dimensioning of a humanitarian supply chain (HSC). Though
location and sizing problems can be considered to have attained
maturity from a scientific standpoint, their implementation in the
humanitarian context encounters two major difficulties:

– the difficulty of having access to the data necessary for the
elaboration and the validation of their models;

– the difficulty of assessing the severity of the disrupted situation
once the disaster has been established to be true.

This paper aims to address these difficulties by studying the
design of a HSC associated with recurring disasters, for example,
cyclones in the Caribbean, earthquakes along the ring of fire, and
floods in South-East Asia. These small-and-medium-scale crises
constitute a very big percentage of emergency interventions by
humanitarian organizations. For these particular crises, it is possible
to build realistic scenarios based on past events as demonstrated by
Charles (2010) or Comes et al. (2015). Other researchers such as
Kovács and Spens (2007) and Peres et al. (2012) simply consider that
for small- and medium-size disasters, future occurrences will gen-
erally be similar to those that had occurred in the past. In practice,
the analysis of data from past disasters provides valuable information
that enables to understand disaster trends (localization, intensity,
typology and seasonality, etc.).

In these cases, the goal is to know where to pre-locate
materials and how much in order to maximize responsiveness
and effectiveness on the one hand, and minimize costs on the
other hand. Moreover, this problematic has to take into account
the main difficulties inherent to the humanitarian world, particu-
larly demand uncertainty and non-availability of infrastructure. In
other words, this paper addresses the following research question:

How should HSCs be designed such as to guarantee good
performance levels in terms of efficiency (minimum costs) and
resilience (the capability to deliver come what may)?

To address this question, we developed a research project that
comprises two complementary parts. The first part is a robust HSC
design model for a single scenario. Stemming from a classical
location/allocation problem, the originality of this model lies not
only in its ability to take into account the potential degradation of
resources and infrastructure following the occurrence of a disaster
(the resilience dimension), but also in its attempt to optimize the
ratio between the committed costs and the obtained result (the
efficiency dimension). Presented in the form of an Integer Linear
Program, this part proposes an operation that guarantees greater
robustness by allowing the smoothing of possible shortages. The
second part, which is an extension of the first part, allows to
consider a set of probability scenarios. This multi-scenarios
approach is essential in view of the very uncertain character of
humanitarian disasters. In practice, this takes the form of a
Stochastic Multi Scenarios Program (SMSP).

These two parts would be too long to be presented in one
single paper. In this paper, we have therefore chosen to present
only the second part, which we consider to be a major contribu-
tion. The model that we developed was tested by applying it to a
real life case of recurrent disaster in Peru. The paper starts with a
literature review related to the design of supply chains, as well as
existing approaches to solving location problems in both tradi-
tional and humanitarian supply chains. Then, it continues by
defining an AI model that supports decision-making for designing
robust HSCs. Finally, it develops a numerical application based on a
sizing problem of the HSC in Peru. This numerical application
enables to highlight the benefits and limits of our proposal.

2. Literature review and scientific problem

2.1. Determinist, stochastic or robust models

In our study, we try to develop a model to support decision-
making for facility location, based on artificial intelligence (AI).
One characteristic that is common to all mathematical modeling
used in AI is representing a part of the reality and using variables
and parameters to achieve the end results. This representation
enables to make decisions, to implement them or to understand
the implications of the decisions on the studied reality. The
mathematical programming models used in this case represent
the reality through the combination of variables and parameters in
form of constraints and/or objective functions. Generally, the
constraints must be respected and the objective function allows
making the difference between a given solution and another
solution that is potentially better.

A model is said to be determinist when all the data are
supposedly known without uncertainty, while in a stochastic
model certain first-order variables are represented by probability
distributions. Consequently, in the results of the latter, the model
is capable of taking randomness or uncertainty into account.
Anjorin (2010) asserts that stochastic optimization problems are
typically dynamic. The algorithms used in solving these problems
are classified as NP-hard (Dyer and Stougie, 2006).

For Bertsimas and Thieley (2006), stochastic programming
stood out as a powerful tool for modeling when a random
probability description is available. However, in numerous real-
life applications, the decision-maker does not possess this infor-
mation. Therefore, robust models need to be developed. The idea
is to design the model such that the effective scenario would have
the least possible influence on the proposed solutions. Robustness
is defined by Klibi et al. (2010) as a measure of useful flexibility
maintained by a decision that leaves some allowance for future
choices. She came up with this based on an optimization of the
solution starting from pre-established scenarios but favored none
of them such that the performance of the solution would be good
whatever the scenario (Baud-Lavigne, 2012).

In a nutshell, we note that stochastic programming assumes
that the probability function of random parameters is known,
while in the case of robust models the random parameters and the
probability functions are not necessarily known. For robust
approaches, the uncertain parameters can be given by a set of
discrete scenarios or a continuum. The purpose of this type of
method is to obtain an optimal solution, which is insensitive to
almost all the values of the uncertain parameters. Though we
conducted our research on both deterministic and stochastic/
robust models, we will in this paper present only the results of
the latter since they constitute our major contribution to this
stream of research.

2.2. Location problems

The determination of geographical locations of diverse units is
referred to as a location problem. In all location problems, the
main goal is to locate a limited number of units in order to provide
the best services to the geographical area in question. The first
location problem applicable to the industrial sector was formu-
lated by Weber (1929). The industrial application consists in
locating a warehouse such as to minimize the costs of products
circulating between the warehouse and a set of customers (the
cost of transportation being proportional to distance, as well as to
the transported volume or weight). In the extant literature, there
are diverse categories of problems that are extensions of the
simple location problem. In the past 15 years, a certain number



of surveys have been published on the different categories, some
of which are:

– general location problems (ReVelle and Eiselt, 2005; ReVelle
et al., 2008);

– covering facility location problems (Farahani et al., 2010),
where a site can deliver only customers situated in a
given zone;

– location routing problems (Prodhon and Prins, 2014), which
incorporate the management of the fleet of trucks used to
transport products from the warehouses to the customers;

– supplier selection problems (Jain et al., 2009), where supplier
selection is taken into account in addition to the location of site
during the design of the distribution network.

All these location problems can be encountered in a determi-
nist, stochastic, robust and even fuzzy situation. Beyond these
surveys that propose an appraisal of the domain, we observe that
research in this field has remained particularly active. We
can mention some research streams on location selection qu-
ery for utility maximization (Qi et al., 2014; Chen et al., 2014)
and capacitated location-allocation models (Wen et al., 2014;
Hosseininezhad et al., 2014).

In this paper, we intend to identify sites where warehouses will
be located, set the capacity of these warehouses and determine
how materials will be delivered to the beneficiaries. The problem
treated here is essentially that of location/allocation. A great
majority of publications on location/allocation problems are
determinist and only a few propose stochastic or fuzzy approaches
(Peres et al., 2012). Traditional methods used in the case of
uncertain demand are based on stochastic or robust optimization
(Klibi et al., 2010; Bagher and Yousefli, 2011; Klibi and Martel,
2012). Robust optimization uses different scenarios ranging from
the most optimistic to the worst case, while stochastic optimiza-
tion uses the probability of occurrence and generally search for the
optimal result. According to Shapiro et al. (2009), this is justified
when the law of large numbers can be evoked and when we are
interested in long-term performance, independently of the fluc-
tuations from one realization to another. In the case that we
studied, the impact of these fluctuations will potentially impact
human lives. Snyder (2004) proposed an exhaustive literature
review of existing stochastic models related to location/allocation
problems. The objective of most of the models is to minimize costs
or to maximize profitability of the entire supply chain network.
Some of the models are developed using probabilistic approaches,
while others use dynamic approaches. Snyder (2006) argued that
robust location problems are more difficult to solve. The specificity
of our approach lies mainly in the fact that our model is based on a
set of probable scenarios, and that from one scenario to another,
the demands and logistic infrastructure are different. For a given
scenario, the context is determinist, and for all the scenarios, it is
not any more.

2.3. Designing humanitarian supply chains

Although research on facility location problems is extensive,
much attention has not been given to the field of humanitarian
relief, both in terms of theory and applications (Balcik and
Beamon, 2008; Campbell and Jones, 2011). Nevertheless, in recent
years, some authors have carried out a literature review on
research related to the humanitarian world (Altay and Green,
2006; Kovács and Spens, 2007; Simpson and Hancock, 2009;
Lettieri et al., 2009; Galindo and Batta, 2013). These literature
reviews are diverse in scope: some looked at articles related to the
management of disasters from the perspective of operations
management and operations research, while others laid more

emphasis on articles concerning humanitarian supply chains
(HSCs). It resulted from all these articles that the academic
literature on humanitarian logistics tends to focus on the pre-
paredness phase of bringing relief (help) to the beneficiaries. It
also appears that most organizations have chosen a decentralized
supply network, underlining the improved delivery service
obtained by moving nearer to the field (Gatignon et al., 2010).

As regards more specifically location problems or preposition-
ing in the humanitarian context, the literature is divided between
the preparedness phase and the response phase. Hale and Moberg
(2005), Salmeron and Apte (2010), Rawls and Turnquist (2010),
Mete and Zabinsky (2010) looked at the prepositioning of dedi-
cated local structures. Other location models dedicated to the
charitable sector focus on the response phase (Barbarosoglu et al.,
2002; Ozdamar et al., 2004; Yi and Ozdamar, 2007; Campbell et al.,
2008; Campbell and Jones, 2011; Rath and Gutjahr, 2014).

Of all these facility location papers dedicated to disaster relief,
only a very small proportion take a preparedness point of view and
work on the global supply network (Akkihal, 2006; Lodree and
Taskin, 2007; Balcik and Beamon, 2008; Ukkusuri and Yushimito,
2008; Campbell et al., 2008; Campbell and Jones, 2011; Duran
et al., 2011). These papers focus on facility location and inventory
decisions (amount of stock to pre-position at each facility). They
are often based on effectiveness maximization, whereas (Charles,
2010) has demonstrated that efficiency is probably a better
objective in current humanitarian environment. They propose
interesting solutions to the problems encountered by humanitar-
ian practitioners.

However, they are all limited in their ability to design HSCs that
are capable of guaranteeing good performance levels in spite of
the consequences associated with the occurrence of a disaster. In
fact, during the preparedness phase, humanitarian workers plan
their response (distribution of relief items) by studying existing
infrastructure and available resources (Duran et al., 2011). One of
the main difficulties encountered in the design of a performant
logistic network in the face of crisis is related to the reliability of
infrastructure (Rawls and Turnquist, 2010; Charles, 2010). Indeed,
in many cases, roads, railways, bridges, and airports can be
destroyed or damaged by the disaster. Consequently, the theore-
tical performance of the HSC can be considerably deteriorated. For
example, during the Haiti earthquake in 2010, the post-earthquake
condition found by the humanitarian actors included many obsta-
cles related to the deterioration of infrastructure, and reduced
considerably the effectiveness and efficiency of their response.

If such sudden changes in demand or supply occur during a
humanitarian operation, a complex problem of re-planning in the
urgency appears. It involves decisions regarding the reallocation of
stocks and transport of relief items in an uncertain environment
(Rawls and Turnquist, 2010; Charles, 2010; Rottkemper et al.,
2011). It is this limitation of the existing design models of HSCs
that we intend to address in this research work.

2.4. Research statement

In the end, the considered scientific problem consists in
defining a decision-making support model in artificial intelligence
(AI), known as facility location, dedicated to the humanitarian
world and capable of designing a coherent network which is still
able to adequately manage the response to a disaster despite
failures or inadequacies of infrastructure and potential resources.
Basically, our research work consists in proposing an innovative
location model to improve the resilience and efficiency of the
humanitarian response to foreseeable disruptions of infrastructure
logistics. Although the environment changes rapidly and unpre-
dictably after a disaster, Kovács and Spens (2007) argue that hum-
anitarians could benefit from the use of decision-support-systems



concerning the optimization of their logistics networks. In addi-
tion, there is a consensus among experts on the field that there are
many lessons to learn from the industrial world. Some practices in
the business sector could be adapted and used in the humanitarian
world. We can say that, although humanitarian logistics has
distinct characteristics, the basic principles of industrial logistics
can be applied thereto (Kovács and Spens, 2007).

If the vast majority of published research is deterministic,
researchers (particularly those working on humanitarian issues)
now propose stochastic models in order to better take uncertainty
into account (Martel et al., 2013). But whether the approach is
stochastic or not, a major issue is that natural disasters are in many
cases difficult to predict. Also, the demand induced by theses
disasters is even more difficult to predict (Cassidy, 2003). It should
be added to this that once the crisis starts the environment
changes so rapidly that the information on the actual situation is
not available on time. Moreover, a thorough analysis of a logistics
network should take into account transport costs, the size of
warehouses, environmental constraints, inventory turnover ratios,
storage costs, service levels and many other data and parameters.
As mentioned earlier, these data and parameters are difficult to
collect in the humanitarian world.

3. Proposal: location of warehouses for relief items

As presented in Fig. 3.1, our goal is to propose the design of a
supply chain as part of humanitarian interventions to support the
implementation of relief in case of crisis (by determining the
location, the number and the size of warehouses).

The configuration of the network and its design should ideally
allow to deliver all the necessary items at the right time and in the
most efficient manner, even if the infrastructure has been partially
or fully damaged during the disaster. Basically, our approach
consists in developing and running a stochastic facility location
model that is based on

– data and parameters that are able to describe the current
logistics situation on the considered territory;

– scenarios of demand that are able to formalize future disasters
and their consequences on the considered territory.

Given that this paper focuses on contributing to solving facility-
location problems, it does not address the issue of the definitions
of humanitarian scenarios. We refer readers interested in this issue
to Vargas Florez et al. (2014), where a concrete methodology is
proposed. Based on the results of Kovács and Spens (2007), Balcik
and Beamon (2008), Charles (2010), Peres et al. (2012) and Comes
et al. (2015), we simply assume that realistic scenarios can be
defined for recurrent disasters, including the following elements:

" Defining the probability of occurrence of a hazardous event in a
given region with a given intensity. As indicated by Vargas
Florez et al. (2014), the key parameters, such as magnitude,

peak intensity, epicenter, time duration, and occurrence period,
can be correlated by means of simple functions. In this paper,
we use past disaster occurrences to evaluate not only the
probability of occurrence of a new disaster in the future, but
also its magnitude.

" Assessing the consequences of this event on the people who
live in the concerned region. As described by Vargas Florez
et al. (2014), we use vulnerability and resiliency factors to
define correlation between the intensity of a disaster and its
consequences in terms of beneficiaries.

" Determining the expected impact of future disasters on infra-
structures (particularly roads and communication ways poten-
tially used to deliver the relief items) and on logistics resources
such as prepositioned warehouses (partial or total destruction).
This is also based on the work done by Vargas Florez et al.
(2014), where they explain how to assess the potential reduc-
tion of logistics capacities following total or partial destruction
of vehicles, infrastructures and facilities. The authors argue that
this is a function of both the intensity of the disaster and the
sensitivity of the region.

To facilitate the reading of data and variables, we will adopt
hereafter the following conventions:

– a datum has a name written in small letters: cg¼overall
capacity set by the planner;

– a decision variable has a name in capital letters: C¼capacity to
be determined;

– indices are written in brackets: C(j), X(i,j).

3.1. Stochastic Multi-Scenarios Program (SMSP) for the design of a
robust HSC

The mono-scenario approach is not sufficient since we natu-
rally do not know where exactly disasters will occur and we have
to presume a set of scenarios. We thus suggest using a stochastic
approach. We assume K scenarios with distinct probabilities h(s).
As in any stochastic problem, we will now have two types of
variables:

– Variables independent of any scenario. Here we want to locate
and determine the size of warehouses to better respond to
various scenarios. We will always have the binary variables Y(j)
that are equal to 1 if a warehouse is located in region j and
0 otherwise, and variables C(j) to determine the capacity of
warehouse j.

– Variables related to a given scenario: R(i,s) corresponds to
unmet demand in scenario s, while X(i,j,s) correspond to the
relief delivered to region i by the warehouse located in region j
in scenario s.

Therefore, the objective function to be minimized comprises
three parts: (i) the costs of unmet demand (shortage); (ii) the costs
of setting up and managing the warehouses that are independent
of the selected scenarios and (iii) the costs of transport depending
on scenarios. The indices, parameters and variables used in the
model are presented in Table 3.1.

The Stochastic Multi-Scenarios Program (SMSP) is defined as
follows:

min¼ cud
X

i
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hðsÞURði; sÞþ

X

j

ðf ðjÞUYðjÞþvðjÞUCðjÞÞ

þ
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X
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X

s
hðsÞU tði; jÞUXði; j; sÞ

Fig. 3.1. Research framework.



The first constraint ensures that warehouse j is open if it
delivers items in scenario s.

8 j; 8s;
X

i

Xði; j; sÞrYðjÞU
X

i

dði; sÞ ð1Þ

The second constraint guarantees that the demand is satisfied
by the warehouses, otherwise it is unmet. Demand can be satisfied
by deliveries from whatever warehouse.

8 i; 8s
X

j

Xði; j; sÞþRði; sÞ ¼ dði; sÞ ð2Þ

The third constraint indicates that a given warehouse cannot
deliver more than its own residual capacity.

8 j; 8s
X

i

Xði; j; sÞrpðj; sÞUCðjÞ ð3Þ

The fourth constraint entails that if a warehouse is open, then
its capacity is between a(j) and b(j). If the warehouse is not open,
then its capacity is null.

8 j; aðjÞUYðjÞrCðjÞrbðjÞUYðjÞ ð4Þ

The fifth constraint expresses the fact that the flows between i
and j are limited. This is particularly useful to express the potential
reduction of transport capacities after a disaster.

8 i8 j8s; Xði; j; sÞrmði; j; sÞ ð5Þ

The sixth constraint indicates that the number of opened
warehouses is limited. Basically, the relief strategy should consider
fixed cost constraints and consequently, the number of running
warehouses has to be limited.
X

j

YðjÞrnw ð6Þ

The seventh constraint requires that the overall capacity of all
the warehouses is at maximum cg.
X

j

CðjÞrcg ð7Þ

The last constraint proposes a binary variable that indicates
whether a warehouse is open or not.

8 j YjA 0;1f g ð8Þ

3.2. Numerical application and discussions

3.2.1. Case presentation
The real-life case that we will use to illustrate our proposed

model is a short version of a complete study of the design of a
humanitarian supply chain (HSC) dedicated to the recurrent
humanitarian disasters in Peru (Vargas Florez, 2014). We have
chosen to present a version that is short but sufficient enough to
highlight the advantages and limitations of our proposal. All data
and assumptions in this version are coherent with the whole
application case and can be considered to be realistic. Specifically,
the study is on a geographical area subjected to the El Niño
phenomenon and consequently to the risk of recurrent natural
disasters caused by earthquakes, floods and cold waves. Indeed,
this area is crossed from west to east by a mountain barrier that
cuts it in two. The mountain barrier creates different weather
conditions in the northern and southern flanks and restricts north/
south transport capacity. Moreover, this area is on the border of
two tectonic plates and prone to earthquake. To provide relief
items to the population, we decided to locate warehouses in which
kits of relief items would be stored. For more details on the whole
Peruvian application case, we invite the reader to see Lauras et al.
(2014) or Vargas Florez (2014).

The geographical layout (zoning) chosen for the example is
purely geometrical and divides the area into 12 (3&4) regions (see
Fig. 3.2). It is possible to locate a warehouse in each of the regions.

Table 3.1
Model indices, parameters and variables.

Indices Variables

i demand index C(j) capacity of the warehouse in j
j index of potential warehouses R(i,s) demand in i unmet in scenario s
s scenario X(i,j,s) relief provided by j to i in scenario s

Y(j) 1 if the warehouse is setup in j, 0 otherwise

Parameters

a(j) maximum capacity of the warehouse in j
b(j) minimum capacity of the warehouse in j
cg overall storage capacity
d(i,s) demand to be met in i in scenario s
f(j) cost of setting up the warehouse in j
h(s) probability of scenario s
m(i,j,s) maximum flow between i and j in scenario s
nw maximum number of warehouses
p(j,s) percentage of usable capacity of the warehouse in j in scenario s
cud cost of unitary unmet demand
t(i,j) cost of transport between i and j
v(j) variable cost of managing the warehouse in j

1 2 3 4

5 6 7 8

9 10 11 12

Fig. 3.2. Map of the studied zone with mountains and tectonic plates.



Here, we consider three levels of crises (high, medium or low).
Generally, a crisis strikes several regions with varying intensity
depending on the region. For example, an earthquake of high-
intensity with its epicenter in region 2 (high-level crisis) will
result in medium-level crisis in regions 3 and 6. The cold waves
would simultaneously affect regions 5, 6, 7 and 8 to varying
degrees. Based on the historical data of past crises, 12 disaster
scenarios were identified and their probability of occurrence
estimated, as shown in Table 3.2. Scenario 1 for example is the
occurrence of a high-intensity earthquake on the fault separating
regions 3 and 7. The level of the crisis will be high on both regions
and will propagate, following the fault, in form of medium-level
crisis on regions 6 and 8 and low-level on regions 2 and 4.

In case of medium- or high-amplitude crisis, relief items must
be provided to a part of the population. Relief consists of a
standard kit (food items, blankets, medicine) delivered to each
person. Table 3.3 shows the number of persons to be served by
region depending on whether the intensity of the crisis is medium
or high.

Based on the numbers in Table 3.3, we determined the demand
corresponding to each of the scenarios. We assessed the impact of
a disaster on infrastructure. Disasters can modify the logistics
environment in two ways by

– restricting existing transport capacity between regions;
– reducing the responsiveness of a warehouse where emergency

kits were stored.

Under normal circumstances it is possible to circulate from one
region to another. But the mountainous area East/West limits the
transport capacity between two regions and increases the cost of
transport. Table 3.4 shows the number of kits f(i,j) that can be
transported between two regions i and j when transport networks
are not deteriorated or cut.

The majority of transport is by vulnerable roads, especially
mountain roads. A high-intensity earthquake or heavy snowfalls
can cut them, leaving only the airlift, air drops by helicopter or the
passage of small convoys. To take this into account, we consider
that after a disaster, there is only one part m(i,j) left of the initial
flow f(i,j) between the two regions i and j. We determine m(i,j) in
two steps. In step 1, the percentage of the usable road network
after a medium-level disaster is 90% for regions 1–4 and 9–12, and
80% for regions 5–8; and for a high-level disaster, the percentage is
75% for regions 1–4, 60% for regions 5–8, and 80% for regions 9–12.

To determine the percentage of residual flows between regions
i and j, we consider that these percentages are multiplicative:

– If region 1 undergoes a medium-level crisis and region 5 a low-
level crisis, the percentage will be 90%&100%¼90%. The
maximum flow between regions 1 and 5 will be 3600 kits
(90%&4000).

– If regions 1 and 5 simultaneously undergo a medium-level
crisis, the percentage between these two regions will be 90%&
80%¼72%. The maximum flow between regions 1 and 5 will be
2880 kits (72%&4000).

– If region 1 undergoes a high-level crisis and region 5 a
medium-level crisis, the percentage will be 75%&80%¼60%.
The flow will be 2400 kits.

The second risk is the loss (after the disaster) of all or part of
the warehouse inventory. In Haiti in 2010, the adopted solution
was to keep a single inventory in Port au Prince. This made sense
given the distribution of the population and the communication
channels. During the earthquake, the warehouses were destroyed
and could not be used. To account for this risk, we introduce a
parameter giving the usable percentage p(j) of the warehouse
capacity C(j) according to the importance of the crisis in region j. In
our example, p(j) for a medium-level disaster is 80% for regions
1–4, 70% for regions 5–8, and 90% for regions 9–12; and for a high-
level disaster, p(j) is 60% for regions 1–4, 50% for regions 5–8, and
65% for regions 9–12.

The last step of the approach is to determine where to locate
the warehouses in which kits of relief items should be stored. To
complete the example, we include some additional assumptions:

– It is possible to locate not more than one warehouse by region.
– For financial reasons and to ensure a better control of the

stored items, the number of selected warehouses must be low
(maximum of 3).

– All the warehouses must allow delivering relief items to not
more than 14,000 persons since the authorities do not have the
financial means to store more. Moreover, beyond 14,000
persons, it seems possible to easily mobilize international
generosity, which is unlikely in the case of recurrent disasters.
We can already observe that in scenario 1 where demand is
15,500 (see Table 3.4), it will not be possible to fully meet the
needs. We note that we have voluntarily limited the capacity
coverage at 90% of the overall capacity in order to test the
robustness of our model, as well as to be closer to realistic
humanitarian situations.

– To ensure a better dissemination of stocks, we set a minimum
capacity a(j) and a maximum capacity b(j) of the inventory
located in region j. In our example, a(j)¼2000 and b(j)¼6000
for all the regions.

– The construction of a warehouse in a region entails a fixed
setup cost f(j), as well as monitoring costs and replenishment
costs of perishable items, which are proportional to the
capacity C(j) stored in the warehouse. If v(j) is the variable cost
per kit, the variable cost is equal to v(j)&C(j). These variable
costs also vary from one region to another. In our example, f(j)

Table 3.2
Case example – scenarios (L¼ low, M¼Medium, H¼High).

Scenario Probability (%) 1 2 3 4 5 6 7 8 9 10 11 12

1 9 – L H L – M H M – – – –

2 13 – M – – – M – – – – – –

3 5 M H M – – H L – – – – –

4 10 – M M – – – M – – – – –

5 3 – M H M – M L – – – – –

6 12 – – – – M M – – – – – –

7 6 – H L – – H M – – – – –

8 8 H M – – – – – – – – – –

9 12 – – – M – – M H – – L M
10 10 – – – – – – – – M M – –

11 7 – – – – – – – – – L H M
12 5 – – – – – – – M L – M H

Table 3.3
Case example – number of persons to be served.

Region Medium-level crisis High-level crisis

1 2000 3000
2 3500 6000
3 4500 8000
4 1500 2800
5 500 1000
6 1000 1500
7 3000 5000
8 1500 3500
9 2000 3500
10 3000 5000
11 4000 7000
12 2000 4500



is 1050 for regions 1 and 4; 1000 for regions 2, 3 and 12; 1100
for regions 6, 7, 10 and 11; 1200 for regions 5 and 9; 1300 for
region 8. The variable cost per kit is 1.0 for regions 1–4; 1.1 for
regions 5, 7, 8, 10, 11 and 12; 1.2 for region 6; and 1.3 for
region 9.

Transport costs between regions are variable depending on the
distance and the usable means of transportation. Table 3.5 shows
the transport cost of a kit between two regions (i,j).

3.2.2. Experimentation
To support our numerical analysis, we first calculated the

optimal results for each scenario separately (that is, probability
of 100% for the studied scenario and 0% for the others). Table 3.6
presents the obtained results. We can see that only two scenarios
present some difficulties regarding the unfulfilled deprived per-
sons. In scenario 1, there are actually 1500 kits that cannot be
delivered (9.7%). This is perfectly normal since the overall capacity
of the network is 14,000. Scenario 5 also presents some failures
regarding the deliveries. In this case, 960 kits (6.9%) cannot be
delivered whereas there are enough products in the network
(14,000 kits). This is due to the fact that some infrastructures are
destroyed.

We will now discuss a numerical application of our SMSP. This
proposes a global solution and not a set of local optima. In the
example, the following results are obtained: the warehouses of
regions 1, 5 and 11 should be opened with capacities of 3700, 4620
and 5680 respectively. Table 3.7 shows the impact of this solution
on costs and deprived persons for the different scenarios. Several
comments have to be made regarding this result. Firstly, we can
observe that scenarios 2, 4, 6, 8, 9, 10, 11 and 12 obtain very

satisfactory results regarding the unfulfilled deprived persons (all
the beneficiaries are served). Of course, the costs of the response
associated to each scenario are a bit higher than those associated
to local optimizations (see Table 3.6). But these extra costs would
be really counterbalanced by the functional costs that will be
lower since only 3 warehouses are used in this configuration
against 12 in the local optimizations' solution. Secondly, four
scenarios (1, 3, 5 and 7) present some problems regarding the
unfulfilled kits. For scenario 1 the result corresponds to the
optimal as we cannot deliver more than 14,000 kits. For scenarios
3 and 7, there is a little increase of unfulfilled deprived. This is a
side effect of a global approach compared to a local approach.
Nevertheless, the number of unfulfilled kits represents less than
2% of the demand in each scenario. Scenario 5, which was already
problematic with the local optimization, presents here again more
difficulties. The number of unfulfilled items increases by 4.4%.
Nevertheless, this can be moderated because the probability of
occurrence of this scenario is only 3%. That is why our model
implies that it is better to distinguish this scenario instead of
another one with a higher probability of occurrence. At the end, in
terms of expected value, the percentage of the deprived persons
will be 2.4% (that is, 202/8375).

3.2.3. Extension of the model
Let us look at the percentage distribution of the deprived across

regions, as shown in Table 3.8
This solution does not give a fair distribution of non-

satisfaction between regions. This is particularly true for region
7 in scenario 1 and region 3 in scenario 5. Basically, the solution
cannot be considered yet as a robust solution. It is possible to
improve the distribution without increasing the number of the
deprived in each of the scenarios. For this, we need to know the
maximum percentage PM(s) of the unsatisfied in a region for
scenario s. In the objective function to be minimized, we will add a
“cost” proportional to PM(s).

Let dn(s) be the number of the deprived previously obtained for
scenario s.

In the program (SMSP), we add:

– the variables PM(s);
– the data dn(s);
– the following additional constraints for scenarios s:

Eq. 9, associated with the objective function, gives the max-
imum percentage of the deprived in a region for scenario s.

8s8 i PMðsÞZRði; sÞ=dði; sÞ ð9Þ

Table 3.4
Case example – Nominal inter-regional flow (in number of kits).

Regions Initial flow between regions f(i,j)

1 2 3 4 5 6 7 8 9 10 11 12

1 – 3500 3500 3000 4000 4000 4000 3000 2400 3200 3200 2800
2 3500 – 4000 3000 3000 3500 3500 3000 2400 3200 3200 2800
3 3500 4000 – 3000 4000 4000 4000 3000 2400 3200 3200 2800
4 3000 3000 3000 – 3000 3000 3000 3000 2000 2800 2800 2400
5 4000 3000 4000 3000 – 2000 1600 1200 2400 2400 2400 2400
6 4000 3500 4000 3000 2000 – 4000 2500 2400 2000 2000 2000
7 4000 3500 4000 3000 1600 4000 – 2400 800 1200 1600 1200
8 3000 3000 3000 3000 1200 2500 2400 – 1200 1200 1200 1200
9 2400 2400 2400 2000 2400 2400 800 1200 – 2400 2400 2400

10 3200 3200 3200 2800 2400 2000 1200 1200 2400 – 2400 2400
11 3200 3200 3200 2800 2400 2000 1600 1200 2400 2400 – 3200
12 2800 2800 2800 2400 2400 2000 1200 1200 2400 2400 3200 –

Table 3.5
Case example – transport cost t(i,j) between two regions (i,j).

Regions 1 2 3 4 5 6 7 8 9 10 11 12

1 0 1 2 3 1 2 3 4 3 4 5 6
2 1 0 1 2 2 1 2 3 4 3 4 5
3 2 1 0 1 3 2 1 2 5 4 3 4
4 3 2 1 0 4 3 2 1 6 5 4 3
5 1 2 3 4 0 1 2 3 2 3 4 5
6 2 1 2 3 1 0 1 2 3 2 3 4
7 3 2 1 2 2 1 0 1 4 3 2 3
8 4 3 2 1 3 2 1 0 5 4 3 2
9 3 4 5 6 2 3 4 5 0 1 2 3

10 4 3 4 5 3 2 3 4 1 0 1 2
11 5 4 3 4 4 3 2 3 2 1 0 1
12 6 5 4 3 5 4 3 2 3 2 1 0



Eq. (10) implies that the number of the deprived for scenario s
remains the same.

8s
X

i

Rði; sÞ ¼ dnðsÞ ð10Þ

In the objective function to be minimized, we add a cost
proportional to PM(s). The resulting solution retains the same
warehouses with identical storage capacities; only the flows are
changed. Transport costs therefore increase by 0.6%. The results
are shown in Table 3.9.

It improves the situation of scenarios 1 and 3, but the problem
still remains the same for scenario 5, as shown in Table 3.10.

The basic assumption retained so far is to find a solution that
minimizes the number of the deprived, and this, at the lowest cost.
In the event that the emergency must meet immediate vital needs,
this criterion is indisputable. We observe in the two previous cases
that this objective conflicts with the criterion of fair distribution of
the shortage in the regions. In a situation where relief is organized
by public authorities and if the rest of the relief can be delivered in

Table 3.6
Results of the numerical application of the local optimization.

Scenario Demand Deprived persons Deprived % Stock Lost Kits Costs

Transport Warehouse

1 15,500 1500 9.7% 14,000 0 20,250 17,100
2 4500 0 0 5000 500 1000 6000
3 14,000 0 0 14,000 0 20,000 18,255
4 11,000 0 0 13,183 2183 0 16,683
5 14,000 960 6.9% 14,000 0 20,600 18,380
6 1500 0 0 2000 500 500 3500
7 10,500 0 0 13,333 2833 3500 16,967
8 6500 0 0 7639 1139 0 9689
9 10,000 0 0 12,076 2076 3500 16,026
10 5000 0 0 5380 380 0 8663
11 9000 0 0 10,667 1667 2200 13,833
12 10,000 0 0 12,587 2587 0 17,246

Table 3.7
Results of the SMSP numerical application

Scenario Probability (%) Costs Deprived persons Demand % deprived persons

Transport Warehouse

1 9 37,000 18,380 1500 15,500 9.7
2 13 4850 18,380 0 4500 0.0
3 5 30,530 18,380 185 14,000 1.3
4 10 23,040 18,380 0 11,000 0.0
5 3 30,920 18,380 1580 14,500 11.3
6 12 1000 18,380 0 1500 0.0
7 6 21,620 18,380 180 10,500 1.7
8 8 7040 18,380 0 6500 0.0
9 12 24,700 18,380 0 10,000 0.0
10 10 8680 18,380 0 5000 0.0
11 7 20,360 18,380 0 9000 0.0
12 5 23,248 18,380 0 10,000 0.0
Expected value 17,119 18,380 202 8375 2.4

Table 3.8
SMSP numerical application – Percentage of non-satisfaction

Percentage of non-satisfied Average %

Reg. 1 Reg. 2 Reg. 3 Reg. 4 Reg. 6 Reg. 7 Reg. 8

Scenario 1 – – 0.0% – 0.0% 30.0% 0.0% 9.7
Scenario 3 0.0% 0.0% 4.1% – 0.0% – – 1.3
Scenario 5 – 0.0% 19.8% 0.0% 0.0% – – 10.9
Scenario 7 – 3.0% – – 0.0% 0.0% – 1.7

Table 3.9
Extended SMSP Numerical Application – Summary of results

Scenario Probability
(%)

Costs Deprived
persons

% deprive
persons

Transport Warehouse

1 9 37,923 18,380 1500 9.7
2 13 4850 18,380 0 0.0
3 5 30,702 18,380 185 1.3
4 10 23,040 18,380 0 0.0
5 3 30,920 18,380 1580 11.3
6 12 1000 18,380 – –

7 6 21,620 18,380 180 1.7
8 8 7040 18,380 0 0.0
9 12 24,700 18,380 0 0.0
10 10 8680 18,380 0 0.0
11 7 20,360 18,380 0 0.0
12 5 23,248 18,380 0 0.0
Expected value 17,210 18,380 202

Table 3.10
Extended SMSP numerical application – non-satisfaction

Percentage of non-satisfied Average %

Reg. 1 Reg. 2 Reg. 3 Reg. 4 Reg. 6 Reg. 7 Reg. 8

Scenario 1 – – 11.5% – 0.0% 11.5% 0.0% 9.7
Scenario 3 1.3% 1.3% 1.3% – 1.3% – – 1.3
Scenario 5 – 0.0% 19.8% 0.0% 0.0% – – 10.9
Scenario 7 – 3.0% – – 0.0% 0.0% – 1.7



a short time, the criterion of fair distribution can become domi-
nant. In our example, it may be attractive to decision makers to
have a robust solution that would ensure that in all scenarios
where it is possible, every region receives at least 95% of its needs.
For scenarios 1 and 5 for which we know beforehand that we will
have a minimum of 9.7% and 10.9% shortage, the thresholds to be
respected will be higher than or equal to these values. We sug-
gest adding a table to be completed by the decision makers who
state the maximum percentage px(s) of acceptable shortage in
scenario s.

To take this new constraint into account, we must add a
constraint in the program (SMSP).

Eq. (11) limits the value of the maximum percentage.

8s PMðsÞrpxðsÞ ð11Þ

The risk is to end up with programs without a solution if the
values px(s) are too low. To obtain an answer in all cases, we
suggest deleting the constraints (11) and adding a penalty w(s) if
the variables PM(s) exceed the values px(s). The cost of smoothing
will then be proportional to this excess. In essence, the equation to
be added is

Smoothing Cost ¼
X

s

X

i

ðPMðsÞ'pxðsÞÞnwðsÞ ð12Þ

Let us look at this example again. Here we aim to have a
maximum percentage of the deprived of 10% for scenario 1, 8% for
scenario 5 and 5% for others. To avoid increasing the percentage on
the already critical scenarios 1 and 5, we have taken higher
weights for these two scenarios. Thus, the penalty (if PM(s) exceed
the values px(s)) is 10,000 for scenario 1, 5000 for scenario 5, and
1000 for the other scenarios.

The resulting solution opens warehouses 1, 5 and 11 with
respective capacities of 3900, 5700 and 4400. Table 3.11 shows the
impact of this solution on costs and deprived persons for the
different scenarios. In this small example, the numerical results
are very close to those obtained previously but the solution can
now be considered as the most robust in this situation. The results
do not change for scenarios 5 and 7. Scenario 1 is almost balanced
at the expense of Scenario 3, which increases slightly from 1.3% to
1.4%. For the other scenarios, the percentages remain the same. On
the other hand, the costs of transport increase significantly from
17,119 to 20,665, that is, by 20%.

4. Conclusion and perspectives

As part of this research, we focused on the design/configuration
of a humanitarian supply chain (HSC) capable of supporting the
response to recurrent crises. The main purpose of our research was
to propose an artificial intelligence-based decision-making tool
that takes into account the reality on the ground and is capable of
guaranteeing resilience on the one hand and efficiency on the
other hand. To achieve this goal, our research work includes a
robust HSC design model that allows considering a set of prob-
ability scenarios. This multi-scenarios approach is essential in view

of the very uncertain character of humanitarian disasters. In
practice, this contribution takes the form of a Stochastic Multi-
Scenarios Program (SMSP). Stemming from a classical location/
allocation problem, the originality of this model lies in its ability to
take into account the potential degradation of resources and
infrastructures following the occurrence of a disaster (the resi-
lience dimension) and to try to optimize the ratio between the
committed costs and the obtained result (the efficiency dimen-
sion). Presented in the form of an Integer Linear Program, this
contribution proposes an operation that guarantees greater
robustness by allowing the smoothing of possible shortages. The
developed model was tested by applying it to a real life case of a
recurrent disaster in Peru. Beyond the aspects that we have just
mentioned, the major perspectives in this research are undoubt-
edly related to the development of new scientific contributions.

Firstly, as in any research project, the sensitivity of the results is
an important topic. Due to limited-availability of data, we were
unable to carry out this sensitivity analysis. The application of our
proposals to several real life cases would enable to fill this gap.

Secondly, the research work that we conducted helped to find
solutions to capture some criteria of humanitarian uncertainty
(demand and infrastructure/resources). Nonetheless, uncertainty
also concerns other criteria such as safety, the level of media
coverage (and thus funding), or competition between the different
actors on the ground. This reflection gives rise to many potential
themes of research to ensure that these new types of hazards are
properly taken into consideration in decision making.

Thirdly, though recurrent disasters (which constitute the only
focus of this research) are the most numerous, they are not
necessarily the most critical in terms of management. The very
big disasters also have many problems related to decision-making-
support, coordination and professionalization. Further work needs
to be conducted such as to extend our approaches to these
particular crises in order to also improve their resilience and
efficiency.

Fourthly, the present research work deals with strategic deci-
sions in the preparedness phase (designing and dimensioning of
logistics networks in particular). An interesting perspective would
be to address the question of decision-making at the operational
level in response to a crisis phase. In an environment where
information is more and more massive (including in the situa-
tion of crises), it will be an issue to define and develop a
decision-support-system for supporting, at the operational level,
the responsiveness and coordination of humanitarian response in
spite of a particularly disrupted environment on the one hand, and
highly heterogeneous and distributed actors on the other hand.

Finally, the work done enabled to develop concrete solutions
for locating and dimensioning a HSC. Additional work would
naturally focus on the optimization of transport modes. Thus, a
strong perspective is to develop decision-support tools dedicated
to routing problems that are consistent and compatible with the
proposals presented in this paper (development of efficiency and
resilience capabilities, and taking uncertainty into account).
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