T. Sueyasu, T. Oike, A. Mori, S. Kudo, K. Norinaga et al., Simultaneous steam reforming of tar and steam gasification of char from the pyrolysis of potassium-loaded woody biomass, Energy Fuels, vol.26, pp.199-208, 2012.

T. Y. Mun, J. O. Kim, J. W. Kim, and J. S. Kim, Influence of operation conditions and additives on the development of producer gas and tar reduction in air gasification of construction woody wastes using a two-stage gasifier, Bioresour Technol, vol.102, pp.7196-203, 2011.

N. Striugas, K. Zakarauskas, G. Stravinskas, and V. Grigaitiene, Comparison of steam reforming and partial oxidation of biomass pyrolysis tars over activated carbon derived from waste tire, Catal Today, vol.196, pp.67-74, 2012.

D. Wang, W. Q. Yuan, and J. W. , Char and char-supported nickel catalysts for secondary syngas cleanup and conditioning, Appl Energy, vol.88, pp.1656-63, 2011.
DOI : 10.1016/j.apenergy.2010.11.041

Z. A. El-rub, E. A. Bramer, and G. Brem, Experimental comparison of biomass chars with other catalysts for tar reduction, Fuel, vol.87, pp.2243-52, 2008.

Z. H. Min, P. Yimsiri, M. Asadullah, S. Zhang, and C. Z. Li, Catalytic reforming of tar during gasification. Part II. Char as a catalyst or as a catalyst support for tar reforming, Fuel, vol.90, pp.2545-52, 2011.

W. Chaiwat, I. Hasegawa, and M. K. , Alternative reforming methods of primary tar released from gas treatment of biomass at low temperature for development of pyrolysis/gasification process, Ind Eng Chem Res, vol.49, pp.3577-84, 2010.

X. B. Xiao, J. P. Cao, X. L. Meng, D. D. Le, L. Y. Li et al., Synthesis gas production from catalytic gasification of waste biomass using nickel-loaded brown coal char, Fuel, vol.103, pp.135-175, 2013.
DOI : 10.1016/j.fuel.2011.06.077

N. B. Klinghoffer, M. J. Castaldi, and A. Nzihou, Catalyst properties and catalytic performance of char from biomass gasification, Ind Eng Chem Res, vol.51, pp.13113-13135, 2012.
DOI : 10.1021/ie3014082

URL : https://hal.archives-ouvertes.fr/hal-01632400

C. Dupont, T. Nocquet, D. Costa, J. A. Verne-tournon, and C. , Kinetic modelling of steam gasification of various woody biomass chars: Influence of inorganic elements, Bioresour Technol, vol.102, pp.9743-9751, 2011.

K. Yip, F. J. Tian, J. Hayashi, and H. W. Wu, Effect of alkali and alkaline earth metallic species on biochar reactivity and syngas compositions during steam gasification, Energy Fuels, vol.24, pp.173-81, 2010.

T. Kowalski, C. Ludwig, and A. Wokaun, Qualitative evaluation of alkali release during the pyrolysis of biomass, Energy Fuels, vol.21, pp.3017-3039, 2007.

D. M. Keown, G. Favas, J. I. Hayashi, and C. Z. Li, Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: differences between sugar cane bagasse and cane trash, Bioresour Technol, vol.96, pp.1570-1577, 2005.

F. Marquez-montesinos, T. Cordero, J. Rodriguez-mirasol, and J. J. Rodriguez, CO 2 and steam gasification of a grapefruit skin char, Fuel, vol.81, pp.423-432, 2002.
DOI : 10.1016/s0016-2361(01)00174-0

R. Habibi, J. Kopyscinski, M. S. Masnadi, J. Lam, J. R. Grace et al., Cogasification of biomass and non-biomass feedstocks: synergistic and inhibition effects of switchgrass mixed with sub-bituminous coal and fluid coke during CO 2 gasification, Energy Fuels, vol.27, pp.494-500, 2013.

M. Zhenhua, Y. Piyachat, A. Mohammad, Z. Shu, and L. Chunzhu, Catalytic reforming of tar during gasification. Part II. Char as a catalyst or as a catalyst support for tar reforming, Fuel, vol.90, issue.7, pp.2545-52, 2011.

M. Zhenhua, Z. Shu, Y. Piyachat, W. Yi, A. Mohammad et al., Catalytic reforming of tar during gasification. Part IV. Changes in the structure of char in the char-supported iron catalyst during reforming, Fuel, vol.106, pp.858-63, 2013.

C. H. Bartholomew and R. J. Farrauto, Fundamentals of industrial catalytic processes, 2006.

H. P. Boehm, Some aspects of the surface-chemistry of carbon-blacks and other carbons, Carbon, vol.32, pp.759-69, 1994.

P. Serp and J. L. Figueiredo, Carbon materials for catalysis, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02042511

W. H. Lee and P. J. Reucroft, Vapor adsorption on coal-and wood-based chemically activated carbons: (I) Surface oxidation states and adsorption of H2O, Carbon, vol.37, pp.7-14, 1999.

T. L. Eberhardt and H. Pan, Elemental analyses of chars isolated from a biomass gasifier fly ash, Fuel, vol.96, pp.600-603, 2012.

E. Ahumada, H. Lizama, F. Orellana, C. Suarez, A. Huidobro et al., Catalytic oxidation of Fe(II) by activated carbon in the presence of oxygen. Effect of the surface oxidation degree on the catalytic activity, Carbon, vol.40, pp.2827-2861, 2002.

H. S. Teng, Y. T. Tu, Y. C. Lai, and C. C. Lin, Reduction of NO with NH 3 over carbon catalysts-The effects of treating carbon with H 2 SO 4 and HNO 3, Carbon, vol.39, pp.575-82, 2001.

G. S. Szymanski, Z. Karpinski, S. Biniak, and A. Swiatkowski, The effect of the gradual thermal decomposition of surface oxygen species on the chemical and catalytic properties of oxidized activated carbon, Carbon, vol.40, pp.2627-2666, 2002.

C. H. Chen, J. Q. Xu, M. M. Jin, G. Y. Li, and C. W. Hu, Direct synthesis of phenol from benzene on an activated carbon catalyst treated with nitric acid, Chin J Chem Phys, vol.24, pp.358-64, 2011.

B. K. Pradhan and N. K. Sandle, Effect of different oxidizing agent treatments on the surface properties of activated carbons, Carbon, vol.37, pp.1323-1355, 1999.

D. M. Quyn, H. W. Wu, S. P. Bhattacharya, and C. Z. Li, Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part II. Effects of chemical form and valence, Fuel, vol.81, pp.151-159, 2002.

C. Bourgel, E. Veron, J. Poirier, F. Defoort, J. M. Seiler et al., Behavior of phosphorus and other inorganics during the gasification of sewage sludge, Energy Fuels, vol.25, pp.5707-5724, 2011.

D. Felice, L. Courson, C. Niznansky, D. Foscolo, P. U. Kiennemann et al., Biomass gasification with catalytic tar reforming: a model study into activity enhancement of calcium-and magnesium-oxide-based catalytic materials by incorporation of iron, Energy Fuels, vol.24, pp.4034-4079, 2010.

L. Devi, K. J. Ptasinski, and F. Janssen, A review of the primary measures for tar elimination in biomass gasification processes, Biomass Bioenergy, vol.24, pp.125-165, 2003.

A. El-rub, Z. Bramer, E. A. Brem, and G. , Review of catalysts for tar elimination in Biomass gasification processes, Ind Eng Chem Res, vol.43, pp.6911-6920, 2004.

A. A. Al-hassani, H. F. Abbas, W. Daud, and W. , Hydrogen production via decomposition of methane over activated carbons as catalysts: Full factorial design, Int J Hydrogen Energy, vol.39, pp.7004-7018, 2014.

D. P. Serrano, J. A. Botas, J. Fierro, R. Guil-lopez, P. Pizarro et al., Hydrogen production by methane decomposition: Origin of the catalytic activity of carbon materials, Fuel, vol.89, pp.1241-1249, 2010.

L. Y. Hsu and H. S. Teng, Catalytic NO reduction with NH 3 over carbons modified by acid oxidation and by metal impregnation and its kinetic studies, Appl Catal BEnviron, vol.35, pp.21-30, 2001.

M. J. Illan-gomez, R. , E. Garcia-garcia, A. Linares-solano, A. De-lecea et al., Catalytic NOx reduction by carbon supporting metals, Appl Catal BEnviron, vol.20, pp.267-75, 1999.

D. Cazorla-amoros, A. Linaressolano, C. S. Delecea, H. Yamashita, T. Kyotani et al., XAFS and thermogravimetry study of the sintering of calcium supported on carbon, Energy Fuels, vol.7, pp.139-184, 1993.