O. Authier, M. Ferrer, G. Mauviel, A. Khalfi, and J. Lede, Wood Fast Pyrolysis: Comparison of Lagrangian and Eulerian Modeling Approaches with Experimental Measurements, Industrial & Engineering Chemistry Research, vol.48, issue.10, pp.4796-4809000266081, 2009.
DOI : 10.1021/ie801854c

URL : https://hal.archives-ouvertes.fr/hal-00402751

J. Ballestrín, M. Rodríguez-alonso, J. Rodríguez, I. Cañ-adas, F. J. Barbero et al., Calibration of high-heat-flux sensors in a solar furnace, Metrologia, vol.43, issue.6, pp.26-1394003, 2006.
DOI : 10.1088/0026-1394/43/6/003

D. S. Codd, A. Carlson, J. Rees, and A. H. Slocum, A low cost high flux solar simulator, Solar Energy, vol.84, issue.12, 2010.
DOI : 10.1016/j.solener.2010.08.007

URL : http://dspace.mit.edu/bitstream/1721.1/65341/1/MITCSPsolarsim_article_X3.pdf

C. Fan, F. Sun, and L. Yang, Simple Numerical Method for Multidimensional Inverse Identification of Heat Flux Distribution, Journal of Thermophysics and Heat Transfer, vol.35, issue.7, p.000268300300023, 2009.
DOI : 10.2514/1.11260

Z. Fang, D. Xie, N. Diao, J. R. Grace, J. Lim et al., A new method for solving the inverse conduction problem in steady heat flux measurement, International Journal of Heat and Mass Transfer, vol.40, issue.16, 1997.
DOI : 10.1016/S0017-9310(97)00046-X

R. S. Graves, T. G. Kollie, D. L. Mcelroy, and K. E. Gilchrist, The thermal conductivity of AISI 304L stainless steel, International Journal of Thermophysics, vol.31, issue.2, pp.409-415, 1991.
DOI : 10.1007/BF00500761

C. Guesdon, I. Alxneit, H. R. Tschudi, D. Wuillemin, and M. Sturzenegger, 1 kW imaging furnace with in situ measurement of surface temperature, Rev. Sci. Instrum, vol.77, issue.3, p.035102000236739100040, 2006.

D. Hernandez, G. Olalde, J. M. Gineste, and C. Gueymard, Analysis and Experimental Results of Solar-Blind Temperature Measurements in Solar Furnaces, Journal of Solar Energy Engineering, vol.70, issue.1, p.000189287100013, 2004.
DOI : 10.1115/1.1636191

A. Imhof, Decomposition of limestone in a solar reactor, Renew. Energy, vol.10, issue.246, 1997.

N. Kaushika and S. Kaneff, FLUX DISTRIBUTION AND INTERCEPT FACTORS IN THE FOCAL REGION OF A FACETED PARABOLOIDAL DISH CONCENTRATOR, Proc. ISES Solar World Congress, pp.1607-1611, 1987.
DOI : 10.1016/B978-0-08-034315-0.50313-X

J. Llorente, J. Ballestrin, and A. J. Vazquez, A new solar concentrating system: Description, characterization and applications, 1000 1006, p.000290644000029, 2011.
DOI : 10.1016/j.solener.2011.02.018

M. Mohammadiun, A. B. Rahimi, and I. Khazaee, Estimation of the time-dependent heat flux using the temperature distribution at a point by conjugate gradient method, 2443 2450, 2011.
DOI : 10.1016/j.ijthermalsci.2011.07.003

H. M. Park and W. S. Jung, On the Solution of Multidimensional Inverse Heat Conduction Problems Using an Efficient Sequential Method, 1021 1029, 2001.
DOI : 10.1016/S0017-9310(98)00136-7

J. Petrasch, P. Coray, A. Meier, M. Brack, P. Haeberling et al., A Novel 50???kW 11,000 suns High-Flux Solar Simulator Based on an Array of Xenon Arc Lamps, Journal of Solar Energy Engineering, vol.9, issue.4, pp.405-411000250637900008, 2007.
DOI : 10.1115/1.1464881

J. Sarwar, G. Georgakis, R. Lachance, and N. Ozalp, Description and characterization of an adjustable flux solar simulator for solar thermal, thermochemical and photovoltaic applications, Solar Energy, vol.100, issue.194, pp.0-0331007700018, 2014.
DOI : 10.1016/j.solener.2013.12.008

Y. Shi, L. Zeng, W. Qian, and Y. Gui, A data processing method in the experiment of heat flux testing using inverse methods, Aerospace Science and Technology, vol.29, issue.1, 2013.
DOI : 10.1016/j.ast.2013.01.009