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Multi-Contact Interaction Force Sensing
from Whole-Body Motion Capture

Tu-Hoa Pham, Stéphane Caron, and Abderrahmane Kheddar, Senior Member, IEEE

Abstract—We present a novel technique that unobtrusively
estimates forces exerted by human participants in multi-contact
interaction with rigid environments. Our method uses motion
capture only, thus circumventing the need to setup cumbersome
force transducers at all potential contacts between the human
body and the environment. This problem is particularly chal-
lenging, as the knowledge of a given motion only characterizes
the resultant force, which can generally be caused by an infinity
of force distributions over individual contacts. We collect and
release a large-scale dataset on how humans instinctively regulate
interaction forces on diverse multi-contact tasks and motions.
The force estimation framework we propose leverages physics-
based optimization and neural networks to reconstruct force
distributions that are physically realistic and compatible with
real interaction force patterns. We show the effectiveness of our
approach on various locomotion and multi-contact scenarios.

Index Terms—Force sensing from motion capture, neural
networks, physics-based optimization, whole-body, multi-contact.

I. INTRODUCTION

HUMAN motions result from skilled control of the phys-
ical interactions with the environment through contacts.

Thus, haptic perception is a fundamental theme towards action
understanding and control. The monitoring of contact forces
is already widely used in various fields such as robot learning
from demonstration and control [1], [2], physics-based ani-
mation [3], [4], and visual tracking [5], [6]. Measurement
of contact forces is usually achieved by mounting force
transducers at pre-fixed contact locations, making it a costly,
cumbersome and intrusive process that is difficult to use in
daily settings. Mounting force transducers on the persons
obstructs their natural motion and is not sustainable for daily
use. In contrast, the accurate monitoring of interaction forces
from motion capture alone, which can readily be achieved
using consumer-grade cameras [7], [8], would enable a wide
range of applications in personal robotics, human-computer
interaction, and rehabilitation [9] as a new unobtrusive bio-
sensor for the healthcare Internet of Things [10].

However, this problem is very difficult due to the indetermi-
nacy of force distributions in multi-contact. Indeed, while the
knowledge of external and internal forces uniquely determines
the resulting kinematics for a given articulated system, even a
perfectly known motion does not suffice to fully characterize
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the underlying forces in multi-contact. Instead, the resultant
force can be distributed in infinitely many different ways on a
given set of contacts. Illustrating this indeterminacy, consider
a human participant standing still with both feet on the ground.
Even in the elementary case of a static biped stance, the
participant can exert tangential forces that compensate each
other out, e.g., by pushing their feet apart. While substantial
work was dedicated to the problem of force indeterminacy
during gait, general contact configurations (e.g., involving
hands) have been comparatively less studied in the literature
(Section II).

We address the force distribution problem in multi-contact
by combining the benefits of machine learning techniques and
physics-based optimization to capture the variability in the way
humans naturally regulate interaction forces while ensuring
their physical compatibility with the observed motion.

• We formulate an optimization problem allowing the esti-
mation of physically valid forces either from motion ob-
servations alone or from a reference signal (Section III).

• We construct a novel dataset on human whole-body
kinodynamics containing 2.4 h of synchronized force and
motion measurements under diverse configurations of
tasks, participants and contacts (Section IV).

• We propose two neural network architectures allowing
the prediction of contact force distributions from motion
observations as well as their interactive correction by
physics-based optimization (Section V)

• We validate our approach with ground-truth force mea-
surements on various multi-contact scenarios and assess
the respective contributions of physics-based optimization
and neural networks (Section VI)

Finally, we discuss the limitations, applications and future ex-
tensions of our work (Section VII). Besides a significantly ex-
tended dataset, our current work enhances the earlier approach
of [11] with: an improved formulation of the optimization
problem accounting for motion measurement uncertainties, the
consideration of individual contact normals in the learning
features enabling more fine-grained predictions by neural net-
work models, as well as algorithmic descriptions and extensive
validation experiments that have not been presented before. To
foster the research on this new topic and encourage alterna-
tive implementations, we make the whole-body kinodynamics
dataset and algorithms publicly available1.

1https://github.com/jrl-umi3218/WholeBodyKinodynamics.

https://github.com/jrl-umi3218/WholeBodyKinodynamics
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II. RELATED WORK

Research on human-computer interaction has resulted in
multiple techniques for whole-body motion capture from
markerless visual observations [7], [8], magnetic trackers [12]
or wearable inertial sensors [13], [14]. Force sensors were
notably used in conjunction with inertial sensors and vision
to improve the motion reconstruction in [3], [4]. Instead
of physical force sensors, numerical models were used to
compute physically plausible distributions supporting visual
observations in hand-object tracking [5], [6]. The problem
of estimating the real forces applied on the environment was
tackled in the case of deformable objects [15] and conversely
by considering the human body elastic [16]. In the inspiring
work of [17], ground reaction forces were computed with a
spring-based contact model to estimate internal joint torques
during locomotion. General contact configurations are com-
monly addressed in simulation and robotics using constrained
optimization [18], which alone may not result in the forces
humans instinctively apply, as illustrated in Section III-C.

Inverse optimization approaches in kinesiology research
address the force distribution indeterminacy by modeling the
objective function(s) supposedly optimized by the central
nervous system [19]. However, such approches are difficult due
to the redundancy of the human body and the difficulty to ob-
serve physiological parameters without invasive surgery [20].
The variability of inverse dynamics solutions with different
body segment inertial parameter (BSIP) models was notably
discussed in [21], [22]. Towards this issue, [23] introduced an
optimization framework for the online estimation of robot and
human BSIPs from motion and force-torque measurements.
An alternative approach for BSIP reconstruction was proposed
in [24], along with a data-driven approach to estimate contact
forces from motion tracking between the feet and the ground.

Recent successes for the control of robot arms [25], [26] or
general articulated characters [27] using neural networks illus-
trated their ability to account for complex model uncertainties.
Neural networks were also used to resolve force indeterminacy
cases during gait [28] and manipulation [29]. To account for
temporal continuity, recurrent neural networks (RNN) [30]
with long short-term memory (LSTM) [31] neurons were
used in [32], [33], still for manipulation. Whole-body inter-
actions were first addressed using an RNN in combination
with a second-order program (SOCP) [34] for physics-based
optimization in [11]. Our current study generalizes this idea
to more complex multi-contact scenarios, supported by an
extended dataset that is significantly more diverse in terms
of contact configurations, tasks and participants.

III. WHOLE-BODY CONTACT FORCE OPTIMIZATION

A. Equations of Motion and Friction Constraints

We consider an articulated system of rigid bodies subject to

Nτ internal joint torques τ =
(
τ
(i)
1 , . . . , τ

(i)
Nτ

)T
and NF ex-

ternal wrenches Fk = (τ k, fk)
T , with τ k and fk the respective

external torque and force at contact k, expressed in the global
frame. With the position and orientation of a chosen base
link, the number of degrees of freedom is NDoF = Nτ + 6.

We denote by q, q̇, q̈ the respective generalized coordinates,
velocity and acceleration of the articulated system. The whole-
body equations of motion can be expressed as:

H(q)q̈+C(q, q̇) =

[
06

τ

]
+

NF∑
k=1

JTkFk, (1)

with:
• H(q) the NDoF ×NDoF mass matrix,
• C(q, q̇) the NDoF × 1 bias vector of the Coriolis,

centrifugal forces and gravity terms,
• Jk the NDoF × 6 the kth contact Jacobian matrix,
• 06 the 6×1 internal wrench directly applied at the root of

the kinematic tree in case of linkage with the environment
(zero for the case of the floating base).

We assume the parameters of the dynamic model to be
known [23], [24]. For each contact k, we denote by zk the
(uniquely defined) normal vector oriented from the environ-
ment to the body, and by xk and yk two orthogonal vectors
in the tangential plane. We thus obtain a local decomposition
for each external wrench Fk in the contact frame Ck =
(xk,yk, zk):

CkFk = (τxk , τ
y
k , τ

z
k , f

x
k , f

y
k , f

z
k )
T
,

with

{
τ k = τxk xk + τyk yk + τzkzk

fk = fxk xk + fyk yk + fzkzk
.

(2)

Having chosen zk oriented towards the body, each normal
force component is such that:

fzk ≥ 0. (3)

With µk the friction coefficient at contact k, the tangential
force is constrained by the normal component as follows:

‖fxk xk + fyk yk‖2 ≤ µkf
z
k . (4)

Contact torque constraints are usually obtained by discretizing
the contact surface into individual contact points subject to
3D forces only. Closed-form formulae were derived for rect-
angular support areas in [35]. We observed in our experiments
that such constraints could be violated due to motion tracking
uncertainties and omitted them in this study.

B. Physics-Based Optimization

In this section, we discuss the extraction of physically
plausible force distributions compatible with a given motion,
characterized by generalized coordinates q, velocities q̇ and
accelerations q̈. Such force distributions can be obtained as
solutions of a second-order cone program (SOCP) of the form:

min C(x) = 1

2
xTPx+ rTx

s.t.


‖Ajx+ bj‖2 ≤ cTj x+ dj , j = 1, . . . ,m

Ex ≤ f

Gx = h,

(5)

with x a vector of Nx = 6 +Nτ + 6NF force variables:

x =
(
FMEW, τ ,

(CkFk)k=1,NF

)T
. (6)
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Here, FMEW represents a measurement error wrench (MEW)
applied to the floating base of the kinematic tree. This
wrench is 06 in the ideal case of perfect measurements
and dynamic model. However, trying to enforce the strict
constraint FMEW = 06 on noisy measurements and with
an approximative dynamic model results in unfeasible SOCP
problems. To allow for uncertainties, we relax this constraint
and rather make the solver enforce it at best (i.e., minimizing∥∥FMEW

∥∥), as detailed thereafter.
Inequality constraints. In Eq. (5), linear inequality matrices
E, f and cone inequality matrices A,bj , cj ,dj can directly
be computed from Eqs. (3) and (4), respectively.
Equality constraints. We consider the whole-body equations
of motion. Given an instance of (q, q̇, q̈), the term h in Eq. (5)
corresponds directly to the left-hand side of Eq (1):

h = H(q)q̈+C(q, q̇). (7)

h is a vector of NDoF elements. The matrix G in Eq (5)
is here of size NDoF × Nx and can be decomposed using
selection matrices Gτ and (GFk

)k=1,NF
such that:

Gτx =

[
FMEW

τ

]
and GFk

x = Fk (8)

Note that each GFk
must incorporate the rotation matrix

between the contact frame Ck and the world frame. We obtain:

G = Gτ +

NF∑
k=1

JTkGFk
. (9)

Cost function. Having incorporated the previous constraints
in the SOCP, physically plausible force distributions can be
computed by minimizing a chosen cost function depending
only on the optimization variables, e.g., a weighted sum of
the squared L2 norms of the optimization variables:

Cα,β,γ(x) = α
∥∥FMEW

∥∥2 + β ‖τ‖2 + γ

NF∑
k=1

‖Fk‖2. (10)

In practice, it is preferrable to set α greater than β and γ so
that FMEW is only used when the observed motion is otherwise
unfeasible. The two other parameters β and γ can be tuned
to minimize either internal joint torques or applied contact
wrenches. Alternatively, when target values F̃k for the contact
wrenches are available (e.g., from force-torque sensors), it
is possible to extract force distributions in their vicinity that
are also guaranteed to be physically plausible, by minimizing
the discrepancy to the optimized wrenches in the SOCP cost
function [36]:

CF̃k

α,β,γ(x)=α
∥∥FMEW

∥∥2+β ‖τ‖2+γ NF∑
k=1

∥∥∥Fk − F̃k

∥∥∥2. (11)

Contact forces and internal joint torques occurring during gait
are typically in the order of 100N and 1N m respectively [21].
In our experiments, we chose α = 102, β = 10−2 and
γ = 1 so that FMEW only compensates unfeasible raw motion
measurements and internal joint torques can vary as needed to
prioritize matching optimized and target contact wrenches.
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Fig. 1. Force sensor noise and uncertainties in the resultant force (top plot)
can be corrected using physics-based optimization. In multi-contact, directly
minimizing the norm of the individual forces (green) results in forces that are
physically plausible but significantly differ from real measurements (red). By
minimizing the discrepancy to the latter (blue), we reconstruct forces that are
both physically plausible and in agreement with natural force distributions.

C. Motivating Example: Triple Contact Indeterminacy

We illustrate the crucial role played by the SOCP cost
function. We consider a participant standing still next to a table
and taking support on it using the right hand, then the left. We
represent the vertical component of the measured forces in
Fig. 1. In addition, we compute force distributions of minimal
L2 norm using Eq. (10) and minimizing the discrepancy to
the sensor measurements using Eq. (11).

With the participant standing still, the equations of motion
dictate that the net contact forces (top plot) should mostly
oppose the participant’s weight. However, individual force
sensor uncertainties result in rather noisy force estimates. In
contrast, all SOCP variants accurately reconstruct the net force
directly from the measured kinematics. Using the cost function
of Eq. (10) results in forces that are physically plausible
but may greatly differ from actual measurements. Using the
cost function of Eq. (11) enables the reconstruction of force
distributions that are both physically plausible and in the
vicinity of target forces when available. The aim of our work
is to circumvent the need for force sensors. Thus, in the
following, we train recurrent neural networks to predict such
target force distributions directly from motion observations.

IV. WHOLE-BODY KINODYNAMICS DATASET

A. Experimental Setup

We depict our complete acquisition system in Fig. 2.
Whole-body motion. We track the whole-body motion using
the Xsens MVN Awinda inertial motion capture system [13],
comprised of 17 inertial measurement units (IMU) worn and
strapped at specified body landmarks on the participant’s
body. The motion capture system is battery-powered and wire-
less, transmitting accelerometer, gyroscope and magnetometer
measurements to the computer at 100Hz. The motion of
the human body, modeled as a 23-segment skeleton, is then
readily provided in the form of the 6-DoF pose, velocity
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(a) Inertial motion capture system. (b) Captured motion and forces.

(c) Shoes and gloves instrumented with force-torque sensors.

Fig. 2. Acquisition system for whole-body kinematics and contact forces.

and acceleration of each segment. We enable the dynamics
analysis of Section III by converting these quantities into
generalized coordinates, velocities and accelerations (q, q̇, q̈),
with a kinematic tree composed of 23 segments linked by
22 spherical joints and rooted at the participant’s pelvis.
Measuring the participant’s body measurements and weight,
we compute the BSIPs using the anthropomorphic tables
of [37]. Inertial motion capture systems by themselves do not
provide absolute positioning and are prone to drift compared to
marker-based tracking methods (e.g., Vicon). We are working
towards attenuating this problem. Still, the choice of this
motion capture system was motivated by strong occlusions that
are inherent to whole-body interactions with the environment
and hinder vision-based motion capture systems (e.g., Vicon).
In contrast, the inertial motion capture system allows us
to explore various interaction scenarios in uncontrolled and
cluttered environments, e.g., when crouching under a table. In
the future, the system could even be employed outdoors, or
used in combination with a limited number of visual sensors
to solve the issue of drift and absolute positioning.
Contact forces. We measure the contact forces exerted by
the participant onto the environment both at the feet and at
the hands. Contact forces at the feet are monitored using
instrumented shoes (Xsens ForceShoe). Each shoe is equipped
with two force-torque sensors and two IMUs, providing con-
tact forces measured individually at the heel and toes, and
transmitted to the computer via Bluetooth at 50Hz. We mon-
itor contact forces exerted at the hands using two additional
force-torque sensors (ATI Mini-45) attached to gloves worn
by the participant during interaction experiments. The force-
torque sensors are wired to dedicated acquisition cards on the
computer and measurements are also recorded at 50Hz. Both
ForceShoe and ATI sensor signals are linearly interpolated

to 100Hz, matching the motion capture sampling rate. In
comparison to static force plates commonly used in gait
analysis, wearable force sensors can be less accurate. Still,
a major advantage of our lightweight setup is that it enables
the efficient and continuous acquisition of contact forces on
arbitrary contact configurations, highly dynamic motions, and
relatively unrestricted movement areas. In contrast, using static
force plates considerably reduce the range of possible tasks,
contacts and motions.

B. Newton-Euler Equations and Signal Synchronization

Each type of sensor used in this work (i.e., motion capture
suit, force-sensing shoes, ATI Mini-45 sensors) is individually
monitored using a dedicated acquisition program. Therefore,
raw measurements need to be temporally synchronized with
each other before further analysis. This step is performed using
the Newton-Euler equations taken at the center of mass G of
the whole-body articulated system. For each body segment s
of the 23-element set S, we denote by ms its mass and Gs its
center of mass. In the global frame, we denote by vs the linear
velocity of Gs and Rs its orientation matrix. In the segment
frame, we denote by ωs and Is its local angular velocity
and inertia tensor, respectively. With m the total mass of the
articulated system and G its centroid, the linear momentum
PPP and angular momentum LLLG at G are defined by:

PPP =
∑
s∈S

msvs,

LLLG =
∑
s∈S

ms
−−−→
GGs × vs +RsIsωs.

(12)

With L̇LLG and ṖPP the time derivatives of the angular and linear
momenta, respectively, g the gravity vector and GFk the
contact wrench at contact k transformed to G, the Newton-
Euler equations for centroidal dynamics state that:[

L̇LLG

ṖPP

]
=

[
0
mg

]
+

NF∑
k=1

GFk. (13)

We gather gravity, linear and angular momenta as a centroidal
wrench wG due to contact forces, taken at G [38]:

wG =

[
L̇LLG

ṖPP −mg

]
(14)

With Pk the location of contact k, Eq. (13) becomes:

wG =

NF∑
k=1

[
τ k +

−−−→
GPk × fk

fk

]
. (15)

wG is a purely kinematic term that can be directly computed
from the whole-body pose and its derivatives using Eq. (14),
but also from the contact forces using Eq. (15). Thus, syn-
chronizing motion capture and force measurements amounts
to synchronizing wG estimates from kinematics and forces.
For this purpose, we start each experiment by having the
participant walk a few seconds, then take support on a table
with the left and right hand, alternatively. To synchronize
kinematic and ForceShoe signals, we plot the components
of their respective estimates for wG

kin and wG
shoe during the
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walking phase and select by hand a constant time shift to
match the two signals at best. We then compute the residual
wrench wG

res = wG
kin−wG

shoe. When the participants leans on a
table with one hand, wG

res should be equal to the wrench wG
hand

measured by the corresponding force-torque sensor. Again, we
find a constant time shift to match wG

hand and wG
res at best, thus

synchronizing hand sensors with kinematic-ForceShoe signals.
Following the temporal synchronization, we perform the

following signal processing. All measurements are subject to
noise, e.g., from the sensors themselves or due to interferences
in the transmission (both wired and wireless). We attenuate
it by smoothing all signals with a Gaussian filter of kernel
σ = 0.05 s. In addition, a slow-varying bias can appear in the
force-torque measurements with repeated stress and battery
drain. We estimate this bias through time by averaging the
signals that persist when the sensors are not in contact with
the environment, which should only be caused by the inertia
of the moving parts attached to the sensing surface (e.g., force
shoe external sole). Since the inertial motion capture system
does not provide absolute positioning, we could not reliably
identify the occurrence of contacts with the environment based
solely on the whole-body motion observations. Therefore, we
identified them by direct thresholding on the force sensor
measurements. Still, this material limitation does not affect the
generality of our approach and can be fully circumvented with
additional visual observations (see also [39] for the retrieval
of contact points without environment knowledge). Finally, we
correct the remaining force sensor uncertainties by combining
their measurements with the motion capture data using the
SOCP approach illustrated in Section III-C. In the following,
we call ground truth the SOCP-corrected sensor measurements
(relative to the dynamic model).

C. Experiments

The importance of collecting ground-truth measurements
on how humans naturally distribute contact forces not only
during locomotion, but across a variety of multi-contact con-
figurations was established in [11]. Thus, in this work, we
purposefully explore a wide range of motion dynamics as
well as diverse contact configurations that exhibit strong force
distribution indeterminacy. The following tasks were chosen
from daily activities to cover a spectrum of three features:
number of contacts involved, orientation of hand contacts
(when applicable) and effort required to perform the motion:

• Walking, i.e. with always at least one foot on the ground
(1 contact, low effort). Straight and curved paths were
considered separately;

• Running, i.e. with at most one foot on the ground (1
contact, medium effort);

• Hopping on one foot, e.g., forward or in place (1 contact,
high effort);

• Balancing the upper body while keeping both feet static,
e.g., leg stretching or performing arm motions (2 contacts,
low effort);

• Jumping using both feet, e.g., forward or to the side (2
contacts, high effort);

• Taking support on a table with one hand, e.g., to reach
for an object further on the table (3 contacts, horizontal
hand contact, low effort);

• Crouch and stand by taking support with one hand on
a table, e.g., to reach for an object under the table (3
contacts, horizontal hand contact, high effort);

• Leaning against a wall with one hand (3 contacts, vertical
hand contact, low effort);

• Leaning on a wall with one hand and reach forward, e.g.,
to look around a corner or grab an object (3 contacts,
vertical hand contact, high effort);

• Taking support on a table with both hands (4 contacts,
horizontal hand contacts, low to high effort);

• Leaning on a wall with both hands, e.g., to stretch or
push a heavy object (4 contacts, vertical hand contacts,
low to high effort).

Contact is a complementarity condition involving the dual
geometric and force spaces. The first two features we used
to categorize our tasks (namely number and orientations of
contacts) ensure coverage of the geometric part of the condi-
tion, while the last one (perceived effort) aims for coverage
of the force space. Considering the two variants (straight and
curved) of walking experiments separately, we thus construct
a repertoire of twelve motion types, six of them involving
contacts between the feet and the ground only and the six
others involving both feet and hands. We illustrate this dataset
in Table I.

Six volunteers, three males and three females, took part in
our study. Their weights (between 45.0 kg and 86.0 kg, plus
the 5.0 kg acquisition system), heights (between 1.57m and
1.92m), and individual body segment lengths were measured
to initialize the motion capture skeletal tracking model and
BSIPs following the procedure described in Section IV-A.
Before each experiment, all sensors (i.e., inertial motion
capture system, force-sensing shoes and glove-mounted force
sensors) were calibrated and reset following the manufactur-
ers’ recommended acquisition procedure to reduce the effects
of measurement drift and hysteresis. We divided the 12 motion
types of Table I into two sequences of 6 motions. Each
sequence consisted in 3 tasks involving the hands and 3 tasks
involving only the feet, executed in alternation for one minute
each. Participants were given time between consecutive tasks
to put on, or take off instrumented gloves, so locomotion tasks
were not constrained by unnecessary force sensor wires. In
total, each task was executed twice by each participant. For one
particpant, we observed force measurement errors of abnormal
magnitude on the right-hand sensor and discarded the corre-
sponding recordings from the dataset. For another participant,
the motion capture system was disconnected during a hopping
task. Overall, our new dataset on human whole-body kinody-
namics in multi-contact totals 2.4 h of synchronized motion
and force measurements, classified into 12 task primitives.

V. CAPTURING HUMAN FORCE DISTRIBUTION PATTERNS

A. Learning Features

Let K denote a set of (input) whole-body kinematic fea-
tures, and D a set of (output) contact force features. The



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. X, MM 20YY 6

TABLE I
INTERACTION CONFIGURATIONS FROM THE WHOLE-BODY KINODYNAMICS DATASET.

Feet only Feet and hands
Motion Hop Run Jump Walk (×2) Balancing Take support Crouch Lean Lean and reach Take support Lean
Contacts 0/1F 0/1F 0/2F 1/2F 2F 1/2F-1H 1/2F-1H 1/2F-1H 1/2F-1H 1/2F-2H 1/2F-2H

Human
action

Motion-
force
data

desired contact force estimation mapping F is of the form:

D = F(K). (16)

We model this mapping F using a neural network trained on
our whole-body kinodynamics dataset. The dynamic features
D simply correspond to the set of contact wrenches Fk we
seek to estimate. A straightforward approach to construct the
set of kinematic features K could be to take all the remaining
parameters appearing in the whole-body equations of motion
of Eq. (1), e.g., the mass H and bias C matrices, joint
accelerations q̈, and Jacobian matrices Jk representing the
contact configuration. However, doing so would result in a
particularly large number of parameters that can make the
neural network training process difficult. We instead propose to
construct a selection of high-level kinematic features based on
the Newton-Euler equations of Eq. (13), which extract the gist
of locomotory dynamics. In particular, from the formulation
of Eq. (15), we take as first input features the centroidal
wrench wG, which can be computed from kinematics only
with Eq. (14), and the contact positions relative to the center of
mass,

−−−→
GPk. Since these quantities are expressed in the world

frame, we account for translational and rotational invariances
by transforming them to a reference frame G of origin G
and fixed with respect to a chosen body segment (e.g., the
pelvis). Walking straight to the North is thus locally equivalent
to walking straight to the East. To facilitate the modeling of
the mapping of Eq. (16) with a neural network, we construct
K as a fixed-size input vector. We continuously monitor Nc
potential contacting body segments over time and encode their
activity with parameters δk,i such that:

δk,i =

{
1 if contact k is active at time step i,
0 otherwise.

(17)

In our experiments, we considered the forces applied at the
heels and toes separately in both the SOCP and the neural
network model, so that Nc = 6 including the hand palms.
Finally, in addition to the contact locations, we consider their
orientation through the contact normals zk. Denoting by GwG,

Body kinematics, contact config. (i)

WBNDKi D(raw)
i

(i− 1) (i+ 1)

Ki+1 WBND

(a) Forces are direcly computed from the kinematics and contact configuration.

Body kinematics, contact config. (i)

WBNF
Ki

Di−1SOCP

(i− 1) (i+ 1)

SOCPD(raw)
i Di

Ki+1

WBNF

(b) Force predictions are corrected between consecutive time steps.

Fig. 3. Direct and feedback whole-body network architectures.

GPk, Gzk the respective coordinates of wG, Pk, zk in the
frame G, the complete input features at time step i are:

Ki =
(
GwG

i ,
(GPk,i, δk,i, zk,i, )k=1,Nc

)T
. (18)

Similarly, the output features are the target wrenches in G:

Di =
((GFk,i)k=1,Nc

)T
. (19)

B. Neural Network Architecture

We model the evolution of motion and force distributions
as time series using RNNs with LSTM neurons in order to
account for temporal continuity between consecutive samples.
In this section, we propose two neural network architectures
to be used in conjunction with physics-based optimization.
The first architecture, WBND (whole-body network, direct),
directly maps the observed motion to the underlying forces:

Di = WBND (Ki) . (20)

Once trained, this network is used as follows. At each step, a
new vector of kinematic features Ki is fed to WBND, yielding
raw output features D(raw)

i . Since the RNN model does not
enforce the equations of motion, the corresponding forces
F(raw)
k,i may not be readily compatible with the observed motion.

We compute physically plausible forces Fk,i in their vicinity
using the SOCP of Eq. (5) with the cost function of Eq. (11).
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TABLE II
FORCE ESTIMATION ERRORS ON FULL TESTING SET (23min)

Raw SOCP correction
Force sensors 1.6% ground truth
SOCP min.L2 N/A 7.0%

WBND 8.3% 6.4%

WBNF 6.6% 5.8%
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Fig. 4. SOCP correction on single contact motion (hop on the right foot).

Alternatively, we enable the interactive correction of RNN
predictions by constructing a network WBNF (whole-body
network, feedback) that takes as inputs both the current
kinematics and the distribution at the previous time step:

Di = WBNF (Ki,Di−1) . (21)

When using WBNF for prediction, we initialize D0 to the
distribution of minimal L2 norm following Eq. (10). At each
time step, Ki and Di−1 are fed together to WBNF, yielding
raw predictions D(raw)

i By SOCP correction, we reconstruct
physically accurate forces Fk,i and extract the corresponding
dynamic features Di, used for prediction at the next time step.

We depict the two proposed architectures in Fig. 3. Note
that for WBND, raw predictions D(raw)

i may be corrected inde-
pendently from each other, enabling opportunities for parallel
computing if desired. In contrast, the intertwined RNN-SOCP
approach of WBNF imposes a sequential prediction process.

VI. RESULTS

A. Prediction-Correction Framework

We implement the two proposed neural network architec-
tures within the Torch7 framework [40] as two LSTM hidden
layers of size 256 followed by a linear output layer of size
6Nc, the number of output features. We partition the whole-
body kinodynamics dataset into three subsets of respective size
70%, 15% and 15% for training, validation and testing. We
train the neural networks by minimizing a mean square error
regression criterion using mini-batch stochastic gradient de-
scent and dropout to avoid overfitting [41]. We estimated from
the dataset that participants maintained each contact on aver-
age for 2.07 s. We thus set the length of the training batches to
2.0 s. The SOCP correction is implemented separately using
the CVXOPT library for convex optimization [42]. We run the
prediction process for each task of the testing set and compute
the root mean square errors (RMSE) between reconstructed

forces and ground truth distributions. We normalize the RM-
SEs with the range of the normal forces measured in the
testing set, fzmax = 1378N. For the sake of completeness, we
also quantify the force sensor measurement uncertainties, the
estimation errors for distributions computed by straightforward
minimization of their L2 norm, and prediction errors for the
neural networks alone, without SOCP correction. We report
the resulting normalized RMSE (NRMSE) in Table II.

Expectedly, the lowest estimation errors are attained using
physical force sensors, that directly measure the applied con-
tact wrenches. Still, this level of accuracy was obtained using
costly, cumbersome force sensors. Table II yields three major
outcomes. First, we confirm the previous observation that
physics-based optimization alone does not suffice to address
the issue of force indeterminacy in multi-contact, since the L2-
minimizing cost function provides the worst results of the 2nd
column. Second, even without SOCP correction (first column),
the accuracy of WBNF exceeds that of WBND, and even that of
the L2-minimizing SOCP alone. Thus, RNNs can successfully
capture interaction force patterns even without enforcing the
equations of motion during training. In particular, the bet-
ter performance of WBNF compared to WBND shows that
providing the RNN with past forces as inputs helps handle
force indeterminacy, i.e., associating a given motion (unique
Ki) to multiple possible distributions (different Di). Third,
combining RNN and SOCP yields the best results overall,
improving the accuracy of WBND and WBNF by 23% and
11% respectively, and that of the SOCP alone by 17%.

B. Accuracy in Multi-Contact Indeterminacy
The effectiveness of the SOCP to correct inaccurate force

predictions is particularly visible for the hopping sequence
depicted in Fig. 4. Indeed, for this motion, the presence of only
one foot on the ground at each instant makes it straightforward
for the SOCP to enforce that the force exerted at the only
contact is exactly causing the acceration of the centroid. We
further investigate the respective contributions of RNN and
SOCP by separating experiments with only feet or with both
feet and hands. Since the former involves relatively large
impulses (e.g., during jumping), we normalize the estimation
errors of each category by the range of their respective mea-
surements. We report the resulting NRMSEs in Table III. For
both categories, combining RNN and SOCP yields significant
improvements compared to either in isolation. Importantly,
the NRMSEs of all three estimation methods are larger when
also considering hand contacts, which illustrates the increased
multi-contact indeterminacy.

Finally, we further decompose the tasks involving feet and
hands and assess the estimation accuracy by body segment
in Table IV. For all configurations, again, the SOCP greatly
improves the accuracy of both neural network architectures.
However, while for the feet, the three estimation methods
yield comparable NRMSEs, the estimation errors of the SOCP
alone on the hands (rightmost column) are now significantly
larger than that of WBN variants. This result shows that
recurrent neural networks are well suited to tackle the issue of
force indeterminacy in multi-contact, for which physics-based
optimization can serve as a valuable complement.



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. X, MM 20YY 8

TABLE III
ESTIMATION ERRORS BY CONTACT CONFIGURATION

Feet only (13min) Feet + hands (10min)
fz

max = 1378N fz
max = 750N

Raw SOCP Raw SOCP
Force sensors 2.1% ground truth 1.9% ground truth
SOCP min.L2 N/A 8.7% N/A 9.6%

WBND 9.9% 7.6% 12.2% 9.4%

WBNF 7.5% 6.6% 10.3% 9.3%

TABLE IV
ESTIMATION ERRORS BY SEGMENT ON FEET + HAND TASKS (10min)

Feet: fz
max = 750N Hands: fz

max = 177N
Raw SOCP Raw SOCP

Force sensors 2.0% ground truth 5.7% ground truth
SOCP min.L2 N/A 10.8% N/A 21.9%

WBND 14.2% 11.0% 14.4% 10.5%

WBNF 12.0% 10.8% 13.2% 12.9%

We depict sample force reconstruction results for two-,
three- and four-contact motions in Fig. 5. In all cases, we
confirm that the net force is reconstructed accurately by all
methods, as expected. In the two-contact balancing scenario,
we see that the WBND network fails to capture weight shifts
between feet (Z component, rightmost column) and tends
to predict uniform distributions, while the WBNF network
tracks them suitably thanks to its ability to capture time-
dependent variations. With more contacts, time-dependency
over pressure-distribution becomes less significant and both
networks perform reasonably.

VII. DISCUSSION AND FUTURE WORK

Our work establishes that the estimation of interaction
forces, a problem that pertains to the human sense of touch,
could be tackled through the lens of motion capture. The dual
optimization and learning framework we propose extends the
state of the art in capturing human force distribution patterns
beyond gait analysis, to general multi-contact configurations
used to interact with the environment. This important result
makes it possible to completely circumvent costly, cumber-
some and intrusive transducing technologies with any whole-
body tracking system. Indeed, while we collected our (public)
dataset using inertial motion capture, the RNN architectures
we propose only rely on centroidal dynamics, making them
agnostic with respect to the actual motion capture system
employed. Meanwhile, an SOCP can be formulated for any
whole-body kinematic model. As such, our framework is
readily compatible with existing markerless visual tracking
techniques, thus enabling novel interfaces for in-home, unob-
trusive force monitoring for personal robotics or rehabilitation.

In its current implementation, our work has some limita-
tions. First we consider the academic point-contact model,
whereas in practice contacts are between surfaces, yielding
additional complementarity conditions [35] that are, as we
observed, difficult to take into account under motion-tracking
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(a) Two contacts: upper-body balancing with static feet.
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(b) Three contacts: taking support on a table with one hand (alternating).
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(c) Four contacts: leaning against a wall with two hands at the same time.

Fig. 5. Force profiles in various contact configurations. Net forces are
measured in the world frame, while contact forces are reported in their
respective (local) contact frames.

uncertainties. Contacts also include a certain amount of defor-
mation that we did not model. Assessing the contact force
by a portable force sensor also affects the natural motion
behavior. Instead, one could distribute force sensing devices in
the experimented environment, but at the cost of many more
sensing units. Considering all body limbs for contact would
be presently difficult, as wearable force sensing suits do not
exist in the current state of the technology. We therefore chose
to focus on foot and hand contacts, at the expense of other
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kinds of interaction such as shoulder or waist contacts (e.g.
for seated motions).

To deal with these limitations and consider other features,
our work can (and should) be extended to arbitrary contact
configurations and motions. While a short-term solution could
be to collect additional force and motion measurements (e.g.,
with force sensors at the knees and elbows), we anticipate
that the increased level of instrumentation would strongly in-
terfere with natural interaction behaviors, or even render some
impossible (e.g., performing a cartwheel). Instead, our future
work involves considering the distribution of contact forces as
an inverse optimal control problem, i.e., finding optimization
criteria privileging the forces measured in reality. Note that
in the meantime, we ensured that the forces estimated by our
framework would always be at least physically plausible (if not
resembling human forces) by making the SOCP formulation
independent of the acquired dataset. In the long term, we also
plan to apply our framework to force-based robot learning
from demonstration, on-line multi-contact motion retargeting
and knowledge-based multi-contact planning and control [43].
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[39] S. Lengagne, Ö. Terlemez, S. Laturnus, T. Asfour, and R. Dillmann,
“Retrieving contact points without environment knowledge,” in IEEE-
RAS International Conference on Humanoid Robots, 2012, pp. 841–846.

[40] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like
environment for machine learning,” in BigLearn, NIPS Workshop, 2011.

[41] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from overfit-
ting,” Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–
1958, 2014.

[42] M. Andersen, J. Dahl, and L. Vandenberghe, “Cvxopt: A python package
for convex optimization,” abel.ee.ucla.edu/cvxopt, 2013.

[43] K. Bouyarmane and A. Kheddar, “Humanoid robot locomotion and
manipulation step planning,” Advanced Robotics, vol. 26, no. 10, pp.
1099–1126, 2012.

Tu-Hoa Pham is currently a postdoctoral researcher
at IBM Research Tokyo. He received the Dipl.-
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