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Résumé. This study is devoted to the polynomial representation of the matrix pth root

functions. The Fibonacci-Hörner decomposition of the matrix powers and some tech-

niques arisen from properties of generalized Fibonacci sequences, notably the Binet for-

mula, serves as a triggering factor to provide explicit formulas for the matrix pth roots.

Special cases and illustrative numerical examples are given.
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1. Introduction

The pth root of a square matrix occurs in various fields of mathematics, applied sciences,

and engineering. For example, this matrix is involved in control and systems theory, matrix

differential equations, nonlinear matrix equations, finance and health care. Many methods

and techniques have been expanded to provide exact and approximate representations of

the matrix pth root (see [1], [4], [9], [17], and references therein). In this study, we consider

the Fibonacci-Hörner decomposition of the matrix powers (see [2], [5], [6] and [7]) and some

techniques based on some properties of generalized Fibonacci sequences (see [10] and [18]),

to provide some explicit formulas of the matrix pth roots.

Let A be a matrix in Md(C), the algebra of d× d matrices with complex entries (d ≥ 2),

and p ≥ 2 a positive integer. Usually a matrix pth root of A, is defined as a matrixX ∈ Md(C)

satisfying the equation,

Xp = A. (1)

A matrix pth root can be defined using several definitions of a matrix function of the current

literature (see [11], [12], [13], [16] and [19]). In general, a matrix pth root may not exist or

there may be an infinite number of solutions for (1). In this study, we are particularly

interested in the polynomial solutions of Equation (1), when A is nonsingular, in other

words the matrix pth roots that are expressible as polynomials in A. Such solutions are

polynomial functions of a matrix, known as primary matrix functions (see [11], [13] and

[16]). The function considered here is nothing else but only the complex pth root function

f(z) ≡ z1/p, which is a multi-valued function. Indeed, for every non-zero complex number

z = |z| exp[i arg(z)] (−π < arg(z) ≤ π), it is well known that z admits p pth roots given

e-mail : bentaher89@hotmail.fr, elkhatabi.youness@gmail.com, mu.rachidi@gmail.com.
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through the use of the functions

fj(z) = |z|1/p exp(i[arg(z) + 2πj]/p) = z1/p exp(2iπj/p), j ∈ R(p), (2)

where R(p) = {0, 1, . . . , p − 1}. Since f(z) ≡ z1/p is defined on the spectrum of any non-

singular matrix A (see [11, Ch. 5]) and giving a choice of p branches for each eigenvalue

λj (1 ≤ j ≤ l) of A, many polynomial solutions of Equation (1) may be furnished. To em-

phasize, the matrix A has precisely ps matrix pth roots that are primary matrix functions,

classified by specifying which branch of the pth root function is taken in the neighborhood

of each eigenvalue λj (see [11], [12], [13], [15] and [17]). In particular, the unique matrix X ,

solution of (1), such that its eigenvalues are in {z ∈ C\{0} : | arg(z)| < π/p} is called the

principal matrix pth root of A and will be denoted by A1/p. For the sake of simplicity, this

primary matrix function will also be denoted by f(A) = A1/p.

Consider a matrix A ∈ Md(C) and a nonzero real parameter t satisfying ρ(tA) < 1, where

Id is the identity matrix and ρ(A) denote the spectral radius of A. The matrix function

g(tA) = (Id−tA)1/p may be defined from the Taylor series expansion (1−z)1/p =
∑∞

n=0 bnz
n,

which converges on the open disk D(0, 1) = {z ∈ C : |z| < 1}, where b0 = 1 and bn =

(−1)n
1
p
( 1
p
−1)···( 1

p
−n+1)

n! < 0 for n ≥ 1. That is to say

g(tA) = (Id − tA)1/p =

∞
∑

n=0

bnt
nAn. (3)

The matrix power series expansion of the adequate function has been used to study the prin-

cipal matrix pth root (see [1]) and the principal matrix logarithm (see [2]). One of our main

goals is to determine an explicit formula for the principal matrix pth root function g(tA),

based mainly on the formula (3) and the Fibonacci-Hörner decomposition. We highlight

that our approach for computing the principal matrix pth root function does not necessarily

require the knowledge of the minimal polynomial. Indeed, by employing the characteristic

polynomial or any nonzero annihilator polynomial P (z) (of degree r), the nth power of A

(n ≥ r) may be expressed as a linear combination in the Fibonacci-Hörner system associa-

ted to A ; where the scalar coefficients are the terms of a particular r-generalized Fibonacci

sequence. By substituting this expression in (3), the Fibonacci-Hörner decomposition of the

principal matrix pth root of Id − tA is obtained. Then the application of the Binet’s for-

mula of the r-generalized Fibonacci sequence, mentioned above, leads to derive an explicit

compact representation of the matrix function g(tA), defined in (3). As a result, by setting

t = 1 and A = Id −B, the principal matrix pth root of B is determined.

The remainder of this study is organized as follows. In Section 2, an explicit expression

of (Id − tA)1/p is provided using the Fibonacci-Hörner decomposition approach. Section

3 is devoted to the presentation of some basic special cases illustrating the method of the

preceding section for the computation of the principal matrix pth root. In Section 4 we discuss

the polynomial decompositions of the primary matrix pth root functions, that satisfy (1), for

nonsingular matrices reduced to their Jordan canonical forms. Examples and applications

are provided.
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2. Fibonacci-Hörner decomposition of the principal matrix pth root

2.1. Fibonacci-Hörner decomposition of g(tA) = (Id− tA)1/p. Let A be in Md(C) and

a polynomial P (z) = zr−a0z
r−1−· · ·−ar−1 (ar−1 6= 0) such that P (A) = Θd (zero matrix).

The Hörner polynomials associated to P (z) are given by P0(z) = 1, Pj+1(z) = zPj(z)− aj

(j = 0; 1; ...; r − 1) and the Hörner system associated to A is given by A0 = P0(A) = Id,

A1 = P1(A) = A − a0Id, · · · , Ar−1 = Pr−1(A) = Ar−1 − a0A
r−2 − · · · − ar−2Id. The

Fibonacci-Hörner decomposition of the powers An (n ≥ r) is given by,

An = unA0 + un−1A1 + ...+ un−r+1Ar−1, for n ≥ r (4)

where u0 = 1, u−1 = · · · = u−r+1 = 0 (see [2], [6] and [7]). For every n ≥ 1, we show that

the term un satisfies the linear recursive relation of order r of Fibonacci type,

un+1 = a0un + · · ·+ ar−1un−r+1, (5)

where a0, a1, · · · , ar−1 are specified as the coefficients of {un}n≥−r+1 (see [10]). With the aid

of Expression (4), we are led to the Fibonacci-Hörner decomposition of the matrix function

g(tA).

Theorem 2.1. Fibonacci-Hörner decomposition. Let A be in Md(C) and let P (z) =

zr − a0z
r−1 − · · · − ar−1 (r ≥ 2, ar−1 6= 0) be an annihilator polynomial of A, i.e. satisfying

P (A) = Θd. Let {As}0≤s≤r−1 be the Fibonacci-Hörner system associated to A. Then, for

every t ∈ R\{0} such that |t|ρ(A) < 1, we have

g(tA) = (Id − tA)1/p =

r−1
∑

s=0

ϕs(t)As, where ϕs(t) =

∞
∑

n=s

un−sbnt
n, (6)

where the un are computed from Expression (5).

Démonstration. Since |t|ρ(A) < 1, expression (Id − tA)
1
p =

∑∞
n=0 bnt

nAn shows that (1 −
tA)

1
p = Q(t) +H(t), where Q(t) =

∑r−1
n=0 bnA

ntn and H(t) =
∑

n≥r bnA
ntn. A straightfor-

ward computation, using Expression (4), permits us to deriveH(t) =
∑r−1

s=0(
∑∞

n=r un−sbnt
n)As,

where {As}0≤s≤r−1 is the Fibonacci-Hörner system associated to A. As Expression (4) is

still valid for n ≥ 0, we show that Q(t) =
∑r−1

n=0 t
nbnA

n =
∑r−1

n=0 t
nbn

∑n
s=0 un−sAs, be-

cause un−s = 0 when n < s. Hence, Q(t) =
∑r−1

s=0(
∑r−1

n=s un−sbnt
n)As. Finally, we get

(Id − tA)1/p =
∑r−1

s=0(
∑∞

n=s un−sbnt
n)As =

∑r−1
s=0 ϕs(t)As. The permutation of the finite

sums
∑r−1

s=0 and
∑+∞

n=r, follows by the uniform convergence of the power series in its conver-

gence disc. Here the power series (1 − z)1/p =
∑∞

n=0 bnz
n converges in D(0; 1) and, for any

fixed polynomial S(z), the power series
∑+∞

n=0 S(n)bnz
n−j converges also in D(0; 1). �

Example 2.2. Algebraic matrix of order 3. Let A be in M3(C) fulfilling the conditions

of Theorem 2.1, with P (A) = Θ3, where P (z) = z3 − a0z
2 − a1z − a2 with a0, a1, a2 ∈ C

(a2 6= 0). The Fibonacci-Hörner decomposition of g(tA) = (I3 − tA)1/p is given as g(tA) =
∑2

s=0 ϕs(t)As, with

ϕ0(t) =

∞
∑

n=0

unbnt
n , ϕ1(t) =

∞
∑

n=1

un−1bnt
n and ϕ2(t) =

∞
∑

n=2

un−2bnt
n.

The sequence {un}n≥−2 is such that u−2 = u−1 = 0, u0 = 1 and un+1 = a0un + a1un−1 +

a2un−2.
3



For every n ≥ r a direct computation leads to

An =

r−1
∑

s=0





s
∑

j=0

ar−s+j−1un−j



As,

the so-called polynomial decomposition of An. Therefore, the polynomial decomposition of

the matrix function g(tA) = (Id − tA)1/p can also be provided. Indeed, let P (z) = zr −
a0z

r−1 − · · · − ar−1 (r ≥ 2, ar−1 6= 0) be an annihilator polynomial of A. Then, for every

t ∈ R\{0} such that |t|ρ(A) < 1 we have g(tA) = (Id − tA)1/p =
∑r−1

s=0 Ωs(t)A
s, where

Ωs(t) = bst
s +

∞
∑

n=r

v(s)n bnt
n, for s = 0, 1, · · · , r − 1 with v

(s)
n =

∑s
j=0 ar−s+j−1un−j .

Remark 2.3. Let A, B two similar matrices in Md(C), and let {As}0≤s≤r−1, {Bs}0≤s≤r−1

be the Fibonacci-Hörner systems associated to A and B respectively. Then, a direct verifica-

tion shows that As and Bs are also similar. Therefore, if A or B satisfies the conditions of

Theorem 2.1, then these two matrices admit similar Fibonacci-Hörner decomposition. Some

interesting practical situations could be studied, throughout similarity of matrices.

2.2. Main result. Let A be in Md(C) such that P (A) = Θd, where P (z) = zr − a0z
r−1 −

· · · − ar−1 (r ≥ 2, ar−1 6= 0). For the sequence {un}n≥0 satisfying the recursive relation of

Fibonacci type (5), the Binet formula of its general term is un =

l
∑

i=1

mi−1
∑

j=0

Ci,jn
jλn

i , for all

n ∈ N, where the λi (1 ≤ i ≤ l ≤ d) are the pairwise distinct roots of the polynomial P (z),

with algebraic multiplicities mi (
∑l

i=1 mi = r) (see [10], [14] and [18] for example). The

coefficients Ci,j are obtained by solving the following linear system of equations,

l
∑

i=1

mi−1
∑

j=0

Ci,jn
jλn

i = un, n = 0, 1, ..., r − 1,

An explicit expression of the Ci,j can be obtained from a recent work of R. Ben Taher

and M. Rachidi [3]. Indeed, it is shown that,

l
∑

i=1

mi−1
∑

j=0

Ci,jn
jλn

i =
l
∑

i=1

mi−1
∑

j=0

(

n+ r − 1

j

)

γ
[i]
j (λi)

n+r−1−j ,

with γ
[i]
j = γ

[i]
j (λ1, . . . , λl) defined by,

γ
[i]
j =















(−1)r−mi
∑

∑
nt=mi−j−1

[

∏

1≤t6=i≤l

(nt+mt−1

nt
)

(λt−λi)nt+mt

]

, if 1 < l ≤ d

1 when j = r − 1 and 0 otherwise, if l = 1.

.

Hence, for a fixed i = 1, . . . , l, by aid of the Vandermonde’s identity

mi−1
∑

j=0

Ci,jn
j =

mi−1
∑

j=0

(

n+ d− 1

j

)

γ
[i]
j λr−1−j

i

=

mi−1
∑

j=0

γ
[i]
j λr−1−j

i

j
∑

k=0

(

r − 1

j − k

) k
∑

ℓ=0

Sk,ℓ

k!
nℓ,
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where Sk,ℓ are the Striling numbers of the first kind. Finally, for i = 1, . . . , l and j =

0, . . . ,mi − 1

Ci,j =

mi−1
∑

h=j

λr−1−h
i γ

[i]
h

h
∑

k=j

(

r − 1

h− k

)

Sk,j

k!
. (7)

Set ∆1 = {i (1 ≤ i ≤ l);mi = 1} and ∆2 = {i (1 ≤ i ≤ l); 1 < mi ≤ r}. The Binet formula

takes the form,

un =
∑

i∈∆1∪∆2

C̃iλ
n
i +

∑

i∈∆2

mi−1
∑

j=1

Ci,jn
jλn

i , (8)

where C̃i =
∑

i∈∆1
Ci,0 +

∑

i∈∆2
Ci,0, which may be described as below

C̃i =











(−1)r−1λr−1

i∏

1≤t6=i≤l

(λt−λi)mt
, if i ∈ ∆1

∑mi−1
h=0 λr−1−h

i γ
[i]
h

(

r−1
h

)

, if i ∈ ∆2.

(9)

Notice that C̃i is directly derived from the general expression of the Ci,j (7), it will be

introduced in the explicit formula of (Id − tA)1/p, provided by the following Theorem.

In the particular case when ∆2 = ∅, the λi (1 ≤ i ≤ d) are simple, and thus un =
∑d

i=1
(−1)r−1λr−1

i∏

1≤t6=i≤l

(λt−λi)mt
λn
i . For reason of generality we suppose in the sequel that ∆1 6= ∅

and ∆2 6= ∅.
The main result of this section is presented as follows.

Theorem 2.4. Let A be in Md(C) such that P (A) = Θd, where P (z) = zr − a0z
r−1− · · · −

ar−1 (ar−1 6= 0). Then, for every t ∈ R\{0} with |t|ρ(A) < 1, there results (Id − tA)1/p =

ϕ0(t)Id +
∑r−1

s=1 [Φs(t) + Ψs(t)]As, where ϕ0(t), Φs(t) and Ψs(t) are given by

ϕ0(t) =
∑

i∈∆1∪∆2

C̃i(1− λit)
1/p +

∑

i∈∆2

mi−1
∑

j=1

Ci,jD
j(1− λit)

1/p,

Φs(t) =
∑

i∈∆1∪∆2

C̃i

λs
i

(1− λit)
1/p,

Ψs(t) =
∑

i∈∆2

mi−1
∑

j=1

j
∑

k=0

Ci,j

λs
i

(

j

k

)

(−s)j−kDk
(

(1 − λit)
1/p
)

. (10)

Here D is the differential operator D = t
d

dt
(derivation degree operator), Ci,j and C̃i are

respectively given by (7) and (9).

Démonstration. Substitution of the Binet formula (8) of un−s in Expression (6) of the ϕs(t)

(taking into account that un−s = 0 if n < s), allows us to show that these functions can be

expanded under the form,

ϕs(t) =



































∑

i∈∆1∪∆2
C̃i

∑∞
n=0 bnt

nλn
i +

∑

i∈∆2

∑mi−1
j=1 Cij

∑∞
n=0 n

jbnt
nλn

i ,

if s = 0,

∑

i∈∆1∪∆2

C̃i

λs
i

∑∞
n=s bnt

nλn
i +

∑

i∈∆2

∑mi−1
j=1

Cij

λs
i

Γijs(t),

if 1 ≤ s ≤ r − 1,
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where Γijs(t) =
∑∞

n=s bn(n− s)jtnλn
i . Since |t|ρ(A) < 1 we have

ϕ0(t) =

∞
∑

n=0

unbnt
nλn

i =

∞
∑

n=0





∑

i∈∆1∪∆2

C̃iλ
n
i +

∑

i∈∆2

mi−1
∑

j=1

Ci,jn
jλn

i



 bnt
n.

Therefore, we have

ϕ0(t) =
∑

i∈∆1∪∆2

C̃i(1− λit)
1/p +

∑

i∈∆2

mi−1
∑

j=1

Ci,jD
j(1− λit)

1/p,

whereD denotes the operatorD = t
d

dt
. Second, for s ≥ 1, we have ϕs(t) =

∞
∑

n=s

un−sbnt
nλn

i =

∞
∑

n=s





∑

i∈∆1∪∆2

C̃iλ
n−s
i +

∑

i∈∆2

mi−1
∑

j=1

Ci,j(n− s)jλn−s
i



 bnt
n. We show that ϕs(t) = ϕs,1(t) +

ϕs,2(t), where ϕs,1(t) =
∑∞

n=s

∑

i∈∆1∪∆2
C̃iλ

n−s
i bnt

n and ϕs,2(t) =
∑∞

n=s

∑

i∈∆2

∑mi−1
j=1 Ci,j(n−

s)jλn−s
i bnt

n. A direct computation implies that

ϕs,1(t) = Rs,1(t) +
∑

i∈∆1∪∆2

C̃i

λs
i

(1− λit)
1/p,

where Rs,1(t) = −∑s−1
n=0

∑

i∈∆1∪∆2
C̃iλ

n−s
i bnt

n. A similar computation gives

ϕs,2(t) =

∞
∑

n=s

∑

i∈∆2

mi−1
∑

j=1

j
∑

k=0

Ci,j

λs
i

(jk)(−s)j−knkλn
i bnt

n = Rs,2(t) + Ωs(t),

where Rs,2 is the polynomial

Rs,2(t) = −
s−1
∑

n=0

∑

i∈∆2

mi−1
∑

j=1

j
∑

k=0

Ci,j(
j
k)(−s)j−knkλn−s

i bnt
n,

and Ωs(t) =
∑

i∈∆2

∑mi−1
j=1

∑j
k=0

Ci,j

λs
i

(jk)(−s)j−kDk(1− λit)
1/p. According to the fact that

un = 0 for n < 0, it is easy to show that

3
∑

ℓ=1

Rs,ℓ(t) = −
s−1
∑

n=0





∑

i∈∆1∪∆2

C̃iλ
n−s
i +

∑

i∈∆2

mi−1
∑

j=1

Ci,j(n− s)jλn−s
i



 bnt
n

= −
s−1
∑

n=0

un−sbnt
n = 0.

Expressions of the functions ϕs,1 and ϕs,2 are derived from the permutations of the finite

sums
∑

i∈∆1∪∆2
and

∑

i∈∆2

∑mi−1
j=1

∑j
k=0 with the infinite sum

∑∞
n=0. Thus the results of

the theorem are achieved. �

The family of functions Ψs(t) in (10) can be constructed by an induction process as

follows.

Proposition 2.5. Under the data of Theorem 2.4, the functions Ψs(t) are given by

Ψs(t) = Ψs,0(t) +
∑

i∈∆2

mi−1
∑

j=1

j
∑

k=1

Ci,j

λs
i

(

j

k

)

(−s)j−kPk,i(t;λi) (1− λit)
−k+1/p ,

6



where Ψs,0(t) =
∑

i∈∆2

∑mi−1
j=1

Cij

λs
i

(−s)j (1− λit)
1/p

and Pk,i(t;λi) are the polynomials sa-

tisfying the equations,

Pk+1,i(t;λi) = t(1− λit)
dPk,i(t;λi)

dt
+

λi(pk − 1)

p
tPk,i(t;λi), (11)

with P1,i(t;λi) = −λit

p
.

Formula (11) is obtained by a simple induction. We establish also that functions Ψs(t)

given by (10) in Theorem 2.4 may be formulated under the following compact form,

Ψs(t) =
∑

i∈∆2

Ws,i(D)(1 − λt)
1
p , (s ≥ 1), (12)

where W0,i(D) =
∑mi−1

j=0 Ci,jD
j and Ws,i(D) =

∑mi−1
j=1

∑j
k=0

Ci,j

λs (jk)(−s)j−kDk.

Example 2.6. Square root of algebraic matrix of order 2. Let A be in Mr(C),

with P (A) = Θ2, where P (z) = MA(z) = z2−a0z−a1 is the minimal polynomial of A, with

a0, a1 ∈ C\{0}. Moreover, we suppose that A satisfies the conditions of Theorem 2.1. We

have

(I2 − tA)
1
2 = (ϕ0(t)− a0ϕ1(t))I2 + ϕ1(t)A,

where the ϕs(t) (s = 0, 1) are given by (6). Suppose that A admits two distinct eigenvalues

λ1 and λ2. It’s obvious here that a0 = λ1 + λ2. A direct computation using techniques and

results of Theorem 2.4 implies that

ϕ0(t) = α(1 − λ1t)
1
2 + β(1 − λ2t)

1
2 and ϕ1(t) =

α

λ1
(1− λ1t)

1
2 +

β

λ2
(1− λ2t)

1
2 ,

where α = λ1

λ1−λ2
and β = λ2

λ2−λ1
. Particularly, if A =

(

e g

f h

)

satisfies the conditions of

Theorem 2.1, we obtain

(Id − tA)
1
2 =

(

ϕ0(t) + (e − a0)ϕ1(t) gϕ1(t)

fϕ1(t) ϕ0(t) + (h− a0)ϕ1(t)

)

.

Therefore, the square root of the matrix B = Ir −A is given by

B
1
2 =

(

ϕ0(1) + (e− a0)ϕ1(1) gϕ1(1)

fϕ1(1) ϕ0(1) + (h− a0)ϕ1(1)

)

.

As a numerical illustration, if we consider the matrix B =

(

1
6 −1
1
6 1

)

, we can check that

A = I2 − B =

(

5
6 1
−1
6 0

)

and the root of PA(z) = z2 − 5
6z + 1

6 are λ1 = 1
2 , λ2 =

1
3 . Therefore, a direct computation shows that the square root of the matrix B is B

1
2 =

√
2

(

3
2 − 2

√
3

3 3− 2
√
3

−1
2 +

√
3
3 −1 +

√
3

)

.
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3. Special cases

We are interested here in the principal matrix pth root of a matrix A ∈ Md(C), whose

annihilating-polynomial assumes one of the following forms : P (z) = (z − λ)r , P (z) =

(z − µ)(z − λ)r−1 and P (z) = (z − λ)m1(z − µ)m2 (m1 + m2 = r), where r ≥ 2. In this

subsection we suppose that the matrix A ∈ Md(C) satisfies the conditions of Theorem 2.4,

and P (A) = Θd.

Case P (z) = (z−λ)r. The recurrence relation associated to the sequence {un}n≥0 is defined

by

un+1 =

r−1
∑

s=0

asun−s ; as = −
(

r

s+ 1

)

(−λ)s+1,

and the customary initial conditions are u0 = 1, un = 0, for n ≤ −1. We notice here

that ∆1 = ∅ and ∆2 = {λ}. Consequently, the Binet formula (8), provided the formula

un =
(

C0 +
∑r−1

j=1 Cjn
j
)

λn, with C0 = 1.

According to the formula (7), the expression of the Cj (j = 0, . . . , r − 1) takes the form

Cj =

r−1
∑

h=j

(

r − 1

h

)

Sh,j

h!
.

Therefore, by Theorem 2.4, we obtain the result.

Proposition 3.1. Let A be in Md(C) satisfying the data of Theorem 2.4 with P (A) = Θd,

where P (z) = (z − λ)r (r ≥ 2). Then, for every t ∈ R\{0}, with |t|ρ(A) < 1, (Id − tA)1/p =

∑r−1
s=0 ϕs(t)As, where the ϕs(t) are given by ϕ0(t) = (1 − λt)

1
p +

r−1
∑

j=1

CjD
j(1 − λt)

1
p and

ϕs(t) =
1
λs (1−λt)

1
p +
∑r−1

j=1

∑j
k=0

Cj

λs (−s)j−k(jk)D
k(1−λt)

1
p for s ≥ 1 (recall that D = t d

dt).

As in Expression (12), the preceding results may take the following compact form.

Corollary 3.2. Let D = t d
dt be the derivation degree operator. Under the data of Proposition

3.1, (Id − tA)1/p =
∑r−1

s=0 ϕs(t)As. The ϕs(t) are given by

ϕ0(t) = W0(D)(1 − λt)
1
p and ϕs(t) = Ws(D)(1 − λt)

1
p , for s ≥ 1,

and the operators W0(D) and W1(D) are given by

W0(D) = 11 +
r−1
∑

j=1

CjD
j and Ws(D) =

1

λs
11 +

r−1
∑

j=1

j
∑

k=0

Cj

λs
(−s)j−k(jk)D

k.

We recall that 11 is the identity operator.

Example 3.3. Compute the principal square root of the matrix,

B =

















10
6 − 2

3 − 1
3

7
12

1
6 − 1

6

35
12 − 5

3 − 1
3

















.
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Let consider the matrix A = I3 − B, the minimal polynomial of A takes the form P (z) =

MA(z) = (z − 1
2 )

2. Therefore, applying the Proposition 3.1 we obtain

(I3 −A)
1
2 = ϕ0I3 + ϕ1(A− a0I3),

where ϕ0 = ϕ0(1) =
√
2
2 + C1D(1− 1

2 t)
1
2

|t=1
and

ϕ1 = ϕ1(1) =
√
2 + 2C1

1
∑

k=0

(−1)1−kDk(1 − 1

2
t)

1
2

|t=1
=

√
2− 3

2

√
2C1.

By a straightforward computation, we show that a0 = 1 and C1 = 1. Thus, we obtain

ϕ0 =
√
2
4 and ϕ1 = −

√
2
2 . Consequently, B

1
2 = (I3−A)

1
2 = ϕ0I3+ϕ1(A− I3) = ϕ0I3−ϕ1B,

which allows to compute the entries of the principal matrix square root of B.

Remark 3.4. In the precedent example, any annihilator polynomial of A = I3 − B could

be used for computing the square root of the matrix B. For instance, by considering the

characteristic polynomial of A the expression of the principal matrix square root of B will

take the form :

B1/2 = ϕ̃0I3 + ϕ̃1B + ϕ̃2B
2,

where ϕ̃0 = 5
√
2

16 , ϕ̃1 =
√
2
4 and ϕ̃2 =

√
2
2 . As has been stated, the latter expression permits

to obtain the same matrix that was obtained using the minimal polynomial of A.

Case P (z) = (z − µ)(z − λ)r−1. The sequence {un}n≥0 is defined by un+1 =
∑r−1

s=0 asun−s

of coefficients

ar−1 = µ(−λ)r−1 and as =
[

(r−1
s+1)λ+ (r−1

s )µ
]

(−λ)s, for s = 0, . . . , r − 2,

and initial data u0 = 1, un = 0 for n ≤ −1. Since ∆1 = {µ} and ∆2 = {λ}, the Binet

formula, Expression (8) yield un = Cµµ
n +

(

∑r−2
j=0 n

jCλ,j

)

λn. Here the coefficients Cµ and

Cλ,j are obtained using the formula (7). Consequently, by Theorem 2.4, we obtain the result.

Proposition 3.5. Let A be in Md(C) satisfying the conditions of Theorem 2.4 with P (A) =

Θd, where P (z) = (z − µ)(z − λ)r−1 (r ≥ 2). Then, for every t ∈ R\{0} with |t|ρ(A) < 1,

there results (Id − tA)1/p =
∑r−1

s=0 ϕs(t)As, where the ϕs(t) are given by ϕ0(t) = Cµ(1 −
µt)

1
p +

∑r−2
j=0 Cλ,jD

j(1− λt)
1
p , and

ϕs(t) =
Cµ

µs
(1− µt)

1
p +

r−2
∑

j=0

j
∑

k=0

Cλ,j

λs
(−s)j−k(jk)D

k(1− λt)
1
p ,

for s ≥ 1, where D = t d
dt and D0 = 11 the identity operator.

Similarly to Expression (12) and Corollary 3.2, the functions ϕs(t) can be expressed as

follows ϕ0(t) = Cµ(1−µt)
1
p +W0,λ(D)(1−λt)

1
p and ϕs(t) =

Cµ

µs (1−µt)
1
p +Ws,λ(D)(1−λt)

1
p ,

for s ≥ 1, where W0,λ(D) =
∑r−2

j=0 Cλ,jD
j and

Ws,λ(D) =
r−2
∑

j=0

j
∑

k=0

Cλ,j

λs
(−s)j−k(jk)D

k =
r−2
∑

j=0

Cλ,j

λs
(D − s)k, for s ≥ 1.
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Example 3.6. Compute the principal cubic root of the matrix B such that,

B =

















3
4 1 −1

1
24

1
2 − 1

6

5
48

1
4

1
12

















.

For A = I3 − B, we have PA(z) = MA(z) = (z − λ)2(z − µ), with λ = 1
2 and µ = 2

3 . Using

Proposition 3.5, we derive

B
1
3 = (I3 −A)

1
3 = ϕ0I3 + ϕ1A1 + ϕ2A2

= ϕ0I3 + ϕ1(A− a0I3) + ϕ2(A
2 − a0A− a1I3)

= [ϕ0 + (1− a0)ϕ1 + (1− a0 − a1)ϕ2] I3 + [(a0 − 2)ϕ2 − ϕ1]B + ϕ2B
2,

where a0 = 5
3 , a1 = − 11

12 and the formulas of ϕi = ϕi(1), (i=0,1,2) are given by Proposition

3.5. Hence, ϕ0 = Cµ(1 − µ)
1
3 +

∑1
j=0 Cλ,jD

j
|t=1

(1− λt)
1
3 ,

ϕ1 =
Cµ

µ
(1− µ)

1
3 +

1
∑

j=0

j
∑

k=0

Cλ,j

λ
(−1)j−k(jk)D

k
|t=1

(1− λt)
1
3 and

ϕ2 =
Cµ

µ2
(1− µ)

1
3 +

1
∑

j=0

j
∑

k=0

Cλ,j

λ2
(−2)j−k(jk)D

k
|t=1

(1− λt)
1
3 .

It follows from (7) that Cµ = 16, Cλ,0 = −15 and Cλ,1 = −3. Thus, by a direct computation,

we derive ϕ0 = 16(13 )
1
3 − 15(12 )

1
3 + 2−

1
3 , ϕ1 = 24(13 )

1
3 − 24(12 )

1
3 + 2

2
3 and ϕ2 = 36(13 )

1
3 −

36(12 )
1
3 + 2

5
3 . Therefore, B

1
3 = αI3 + βB + ϕ2B

2, where α = 9(13 )
1
3 − 8(12 )

1
3 + 2

2
3

3 and

β = 36(12 )
1
3 − 36(13 )

1
3 − 5

32
2
3 . The entries of the principal matrix 3th root can be derived

easily.

Case P (z) = (z−λ1)
m1(z−λ2)

m2 . Let {un}n≥0 be the associated recursive sequence, with

customary initial conditions u0 = 1, un = 0 for n ≤ −1. From the Binet formula, Expressions

(8) yields un =
(

∑m1−1
j=0 C1,jn

j
)

λn
1 +

(

∑m2−1
j=0 C2,jn

j
)

λn
2 . Easily , we show that ∆1 = ∅

and ∆2 = {λ1, λ2}. Therefore, applying Theorem 2.4, we obtain the result.

Proposition 3.7. Let m1,m2 ∈ N\{0; 1} and A in Md(C) satisfying the conditions of

Theorem 2.4 such that P (A) = Θd, for P (z) = (z − λ1)
m1(z − λ2)

m2 . Then, for every

t ∈ R\{0} with |t|ρ(A) < 1, we have (Id − tA)1/p =
∑m1+m2−1

s=0 ϕs(t)As. The functions

ϕs(t) are given by ϕ0(t) =

2
∑

i=1

mi−1
∑

j=0

Ci,jD
j(1− λit)

1
p and

ϕs(t) =
2
∑

i=1

Ci,0

λs
i

(1− λit)
1/p +

2
∑

i=1

mi−1
∑

j=1

j
∑

k=0

Ci,j

λs
i

(

j

k

)

(−s)j−kDk
(

(1− λit)
1/p
)

,

for s ≥ 1, where D = t d
dt .

As in Expression (12) and Corollary 3.2, the compact expressions of the functions ϕs(t)

can be given as follows,

ϕ0(t) =

2
∑

i=1

Wi,0(D)(1 − λit)
1
p and ϕs(t) =

2
∑

i=1

Wi,s(D)(1 − λit)
1
p .

10



where Wi,0(D) =
∑mi−1

j=0 Ci,jD
j and

Wi,s(D) =
Ci,0

λs
i

11 +

mi−1
∑

j=1

j
∑

k=0

Ci,j

λs
i

(

j

k

)

(−s)j−kDk.

Note that the result of Proposition 3.7 is nothing else but the superposition of two cases of

the formula given in Proposition 3.1.

Example 3.8. Let compute the principal 4th root of the matrix,

B =

























3
4 7 −1 − 3

2

0 0 0 1
8

1
8

15
4 0 − 7

8

0 −1 0 3
4

























.

For B = Ir − B we have PA(z) = (z − 1
2 )

2(z − 3
4 )

2, thus application of the Proposition 3.7

leads to the formula,

(I4 −A)
1
4 = [ϕ0 − a0ϕ1 − a1ϕ2 − a2ϕ3] I4 + [ϕ1 − a0ϕ2 − a1ϕ3]A

+ [ϕ2 − a0ϕ3]A
2 + ϕ3A

3,

where the ai (i = 0, 1, 2, 3) are calculated from the coefficients of the polynomial P (z) =

(z − 1
2 )(z − 3

4 ). Therefore, a0 = 5
2 , a1 = − 37

16 , a2 = 15
16 and a3 = − 9

64 . The formulas of the

coefficients ϕs, are given by ϕ0 =
∑2

i=1

∑1
j=0 Ci,jD

j
|t=1

(1 − λit)
1
4 and ϕs =

∑2
i=1

Ci,0

λs
i
(1 −

λi)
1
4 +

∑2
i=1

∑1
k=0

Ci,1

λs
i

(−s)1−kDk
|t=1

(

(1− λit)
1/p
)

for s = 1, 2, 3, here λ1 =
1

2
and λ2 = 3

4 .

The following coefficients are computed by applying Formula (7) C1,0 = 28, C1,1 = 4, C2,0 =

−27 and C2,1 = 9. Therefore, we have the numerical result, ϕ0 = 28(12 )
1
4 −27(14 )

1
4 − 1

2 (
1
2 )

− 3
4 −

27
16 (

1
4 )

− 3
4 , ϕ1 = 48(12 )

1
4 −48(14 )

1
4 −(12 )

− 3
4 − 9

4 (
1
4 )

− 3
4 , ϕ2 = 80(12 )

1
4 −80(14 )

1
4 −2(12 )

− 3
4 −3(14 )

− 3
4

and ϕ3 = 128(12 )
1
4 − 128(14 )

1
4 − 4(12 )

− 3
4 − 4(14 )

− 3
4 . Hence, the principal matrix 4− th root of

B is given as follows

B
1
4 = αI4 + β(I4 −B) + γ(I4 −B)2 + ϕ3(I4 −B)3,

where α = −27(12 )
1
4 +28(14 )

1
4 + 9

8 (
1
2 )

− 3
4 + 3

4 (
1
4 )

− 3
4 , β = 144(12 )

1
4 −144(14 )

1
4 − 21

4 (12 )
− 3

4 −4(14 )
− 3

4

and γ = −240(12 )
1
4 +240(14 )

1
4 +8(12 )

− 3
4 +7(14 )

− 3
4 . Finally, the entries of the matrix B

1
4 can

be obtained by a direct calculation.

4. General settings

In this section we make use of the results performed in sections 2 and 3, combined with

[8, Theorem 2], to determine the polynomial decompositions of all primary matrix pth root

functions of a non-singular matrix.

The following result is a direct consequence of Proposition 3.1.
11



Proposition 4.1. Let A be in Md(C) with minimal polynomial MA(z) = (z − λ)m and

j ∈ R(p) = {0, 1, . . . , p− 1}. Then, for every non-zero parameter t such that |tλ| < 1

fj(Id − tA) = exp(2iπj/p)

m−1
∑

s=0

ϕs(t)As,

where fj(z) (j ∈ R(p)) are given as in (2), ϕ0(t) = (1−λt)
1
p +

m−1
∑

j=1

CjD
j(1−λt)

1
p , ϕs(t) =

1
λs (1−λt)

1
p +
∑m−1

j=1

∑j
k=0

Cj

λs (−s)j−k(jk)D
k(1−λt)

1
p (for s ≥ 1) and Cj =

∑m−1
h=j

(

m−1
h

)Sh,j

h! .

Consider A ≡ ⊕l
k=1 Mk (where Mk = Mk(λk)) with minimal polynomial MA(z) =

∏l
i=1(z − λi)

mi (
∑l

i=1 mi ≤ d), and a non-zero real parameter t such that |t|σ(A) < 1. It

is known that the Mk are of minimal polynomial (z − λk)
mk and characteristic polynomial

(z−λk)
dk , where dk is the sum of sizes of all Jordan blocks associated to λk. It follows from

the previous proposition that,

f[j](Id − tA) =
l
⊕

k=1

fjk(Idk
− tMk)

=

l
⊕

k=1

exp(2iπjk/p)

[

ϕ(k,0)(t)Idk
+

mk−1
∑

τ=1

ϕ(k,τ)(t)M(k,τ)

]

,

where [j] ≡ (j1, . . . , jl) (jk ∈ R(p)) and M(k,τ) = M τ
k −∑τ−1

ℓ=0 a(k,ℓ)M
τ−1−ℓ
k . Obviously

ϕ(k,j)(t) and a(k,ℓ) take the same explicit expressions as presented in Proposition 4.1 ; for

the case of a unique eigenvalue. Set b(k,0) = 1 and b(k,ℓ) = −a(k,ℓ−1) for ℓ = 1, . . . , τ . Hence,

we have

M(k,τ) =

τ
∑

ℓ=0

b(k,ℓ)M
τ−ℓ
k = b(k,τ)Idk

+

τ−1
∑

ℓ=0

b(k,ℓ)M
τ−ℓ
k .

Besides, the τ − th powers of the matrices Mk may take the form

M τ
k = [(Mk − λkIdk

) + λkIdk
]
τ
= λτ

kIdk
+

τ
∑

η=1

(

η

τ

)

λτ−η
k (Mk − λkIdk

)η.

Thus, we obtain

M(k,τ) =

τ
∑

ℓ=0

b(k,ℓ)λ
τ−ℓ
k Idk

+

τ−1
∑

ℓ=0

b(k,ℓ)

τ−ℓ
∑

η=1

(

η

τ − ℓ

)

λτ−ℓ−η
k (Mk − λkIdk

)η.

Consequently, we have

f[j](Id − tA) =
l

∑

k=1

exp(2iπjk/p)

[

ϕ(k,0)(t) +

mk−1
∑

τ=1

ϕ(k,τ)(t)
τ

∑

ℓ=0

b(k,ℓ)λ
τ−ℓ
k

]

I(dk,A)

+

l
∑

k=1

exp(2iπjk/p)

[

mk−1
∑

τ=1

ϕ(k,τ)(t)Υ(k, τ )(Mk − λkIdk)
η
A

]

,

where Υ(k, τ) = Υ(A, k, τ) =
∑τ−1

ℓ=0 b(k,ℓ)
∑τ−ℓ

η=1

(

η
τ−ℓ

)

λτ−ℓ−η
k , I(dk,A) = Θd1

⊕ · · · ⊕Θdk−1
⊕

Idk
⊕Θdk+1

⊕· · ·⊕Θdl
and (Mk−λkIdk

)A = Θd1
⊕· · ·⊕Θdk−1

⊕ (Mk(λk)−λkIdk
)⊕Θdk+1

⊕
12



· · · ⊕ Θdl
. It was established in Theorem 2 of [8] that the η − th powers of this matrix are

given by

(Mk(λk)− λkIdk
)ηA =

l
∏

ω=1,ω 6=k

(A− λωId)
mω

(λk − λω)mω

mk−η−1
∑

i=0

αi,k(A− λkId)
η+i, (13)

with α0,k = 1 and

αi,k =
−1

a0,k

i
∑

θ=1

bθ,kαi−θ,k with bi,k =
∑

Γi,k

l
∏

t=1,t6=k

(

ht

mt

)

(λk − λt)
mt−ht ,

where bi,k = 0 for i > m1 + · · ·+mk−1 +mk+1 + · · ·+ms and the set Γi,k is composed of

(h1, . . . , hk−1, hk+1, . . . , hl) ∈ Nl−1 satisfying the relation h1+. . .+hk−1 + hk+1+. . .+hl = i

with ht ≤ mt. More precisely, in [5], an explicit formula of αi,k is provided as follows

αi,k = (−1)i
∑

Γi,k

l
∏

t=1,t6=k

(

ht

mt + ht − 1

)

(λk − λt)
−ht . (14)

For the sake of simplicity, in the remainder of this section, it will be denoted by A a

nonsingular matrix, in Md(C), reduced to its Jordan canonical form. More precisely, whether

A admits l eigenvalues λ1, . . . , λl, A will take the form
⊕l

k=1 Mk, where the matrix Mk =

Mk(λk) is the direct sum of all Jordan blocks associated to λk ; which size will be denoted

by dk (
∑l

k=1 dk = d).

The above discussion is summarized in the following proposition,

Proposition 4.2. Let A ∈ Md(C) with minimal polynomial MA(z) =
∏l

i=1(z − λi)
mi

(
∑l

i=1 mi ≤ d) and t ∈ R\{0} such that |t|σ(A) < 1. Then,

f[j](Id − tA) =
l

∑

k=1

exp(2iπjk/p)

[

ϕ(k,0)(t) +

mk−1
∑

τ=1

ϕ(k,τ)(t)
τ

∑

ℓ=0

b(k,ℓ)λ
τ−ℓ
k

]

I(dk,A)

+
l

∑

k=1

exp(2iπjk/p)

[

mk−1
∑

τ=1

ϕ(k,τ)(t)Υ(k, τ )(Mk − λkIdk)
η
A

]

,

where j ≡ (j1, . . . , jl) (jk ∈ R(p)) and the η − th powers of (Mk − λkIdk
)A are given by

(13)-(14).

Explicit formula for all primary matrix pth roots may be obtained using the Lagrange-

Sylverster interpolation polynomial [11]. However, as far as we know our formula presented

in Proposition 4.2 is not known under this form in the literature.

The following two corollaries are immediately derived from the Proposition 4.2.

Corollary 4.3. Consider A with minimal polynomial MA(z) = (z − λ1)
m1(z − λ2)

m2 and

t a non-zero real number, such that |t| < 1
max{|λ1|,|λ2|} . Then,

f[j](Id − tA) =

2
∑

k=1

exp(2iπjk/p)

[

ϕ(k,0)(t) +

mk−1
∑

τ=1

ϕ(k,τ)(t)

τ
∑

ℓ=0

b(k,ℓ)λ
τ−ℓ
k

]

I(dk,A)

+

2
∑

k=1

exp(2iπjk/p)

[

mk−1
∑

τ=1

ϕ(k,τ)(t)Υ(k, τ )(Mk − λkIdk)
η
A

]

,

where [j] ≡ (j1, j2) (jk ∈ R(p)) and the ϕ(k,τ) are as in Proposition 4.1.
13



Example 4.4. Compute the square roots of the 4× 4 matrix given by,

B =











2/3 −1 0 0

0 2/3 0 0

0 0 1/3 −1

0 0 0 1/3











.

For A = I4−B, we have MA(z) = (z−λ1)
2(z−λ2)

2 with λ1 = 1/3 and λ2 = 2/3. Therefore,

according to Corollary 4.3, the matrix square roots of B = I4 −A are given as follows,

f[j](B) =
2
∑

k=1

exp(iπjk)

[

ϕ(k,0)(1) + ϕ(k,1)(1)
1
∑

ℓ=0

b(k,ℓ)λ
1−ℓ
k

]

I(2,A)

+
2
∑

k=1

exp(iπjk)ϕ(k,1)(1)b(k,0)(Mk − λkI2)A

where [j] ≡ (j1, j2) ∈ ({0, 1})2, b(1,0) = b(2,0) = 1, b(1,1) = −2/3, b(2,1) = −4/3, ϕ(1,0)(1) =
√

2
3 − 1

6

√

3
2 , ϕ(1,1)(1) = − 1

2

√

3
2 , ϕ(2,0)(1) = 0 and ϕ(2,1)(1) = −

√
3
2 . Consequently the 4× 4

square roots of the matrix B correspond to the following matrices,














√

2
3 − 1

2

√

3
2 0 0

0
√

2
3 0 0

0 0
√
3
3 −

√
3
2

0 0 0
√
3
3















;















−
√

2
3

1
2

√

3
2 0 0

0 −
√

2
3 0 0

0 0
√
3
3 −

√
3
2

0 0 0
√
3
3















;















√

2
3 − 1

2

√

3
2 0 0

0
√

2
3 0 0

0 0 −
√
3
3

√
3
2

0 0 0 −
√
3
3















;















−
√

2
3

1
2

√

3
2 0 0

0 −
√

2
3 0 0

0 0 −
√
3
3

√
3
2

0 0 0 −
√
3
3















.

Corollary 4.5. Consider A with minimal polynomial MA(z) = (z − λ1)
m1(z − λ2)

m2(z −
λ3)

m3 and t a non-zero real number, such that |t| < 1
max{|λ1|,|λ2|,|λ3|} . Then,

f[j](Id − tA) =
3

∑

k=1

exp(2iπjk/p)

[

ϕ(k,0)(t) +

mk−1
∑

τ=1

ϕ(k,τ)(t)
τ

∑

ℓ=0

b(k,ℓ)λ
τ−ℓ
k

]

I(dk,A)

+
3

∑

k=1

exp(2iπjk/p)

[

mk−1
∑

τ=1

ϕ(k,τ)(t)Υ(k, τ )(Mk − λkIdk)
η
A

]

,

where [j] ≡ (j1, j2, j3) (jk ∈ R(p)) and the ϕ(k,τ) are as in Proposition 4.1.

Example 4.6. Compute the square roots of the 5× 5 matrix,

B =

















1/2 −1 0 0 0

0 1/2 0 0 0

0 0 2/3 −1 0

0 0 0 2/3 0

0 0 0 0 3/4

















.

For A = I5 −B, we have MA(z) = (z − λ1)
2(z − λ2)

2(z − λ3) with λ1 = 1/2, λ2 = 1/3 and

λ3 = 1/4. Therefore, according to Corollary 4.5 the matrix square roots of B = I5 − A are
14



given by,

f[j](B) =

2
∑

k=1

exp(iπjk)

[

ϕ(k,0)(1) + ϕ(k,1)(1)

1
∑

ℓ=0

b(k,ℓ)λ
1−ℓ
k

]

I(dk,A)

+

2
∑

k=1

exp(iπjk)ϕ(k,1)(1)b(k,0)(Mk − λkI2)A + exp(iπj3)ϕ(3,0)(1)I(d3,A),

where [j] ≡ (j1, j2, j3) ∈ ({0, 1})3, b(1,0) = b(2,0) = 1, b(1,1) = −1, b(2,1) = −2/3, ϕ(1,0)(1) =
√
2
4 , ϕ(1,1)(1) = −

√
2
2 , ϕ(2,0)(1) = 3

4

√

2
3 , ϕ(2,1)(1) = − 1

2

√

3
2 and ϕ(3,0)(1) =

√

3
4 . Conse-

quently, the 8 square roots of the matrix B, computed using all primary matrix functions of

B, are presented by the matrices,

f[j](B) =





















exp(iπj1)
√

2
2

− exp(iπj1)
√

2
2

0 0 0

0 exp(iπj1)
√

2
2

0 0 0

0 0 exp(iπj2)
√

2
3

−

exp(iπj2)
2

√

3
2

0

0 0 0 exp(iπj2)
√

2
3

0

0 0 0 0 exp(iπj3)
√

3
4





















,

where [j] ≡ (j1, j2, j3) ∈ ({0, 1})3.
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