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Abstract. Human working memory is capable to generate dynamically
robust and flexible neuronal sequences for action planning, problem solv-
ing and decision making. However, current neurocomputational models
of working memory find hard to achieve these capabilities since intrinsic
noise is difficult to stabilize over time and destroys global synchrony. As
part of the principle of free-energy minimization proposed by Karl Fris-
ton, we propose a novel neural architecture to optimize the free-energy
inherent to spiking recurrent neural networks to regulate their activity.
We show for the first time that it is possible to stabilize iteratively the
long-range control of a recurrent spiking neurons network over long se-
quences. We identify our architecture as the working memory composed
by the Basal Ganglia and the Intra-Parietal Lobe for action selection and
we make some comparisons with other networks such as deep neural net-
works and neural Turing machines. We name our architecture INFERNO
for Iterative Free-Energy Optimization for Recurrent Neural Network.
abstract environment.
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1 Introduction

Hierarchical plans and tree structures are a hallmark for human language and
cognition [2]. But how the brain does to construct and retrieve them dynami-
cally? For instance, the spontaneous activity within the network rapidly perturbs
the neural dynamics and it is rather difficult then to maintain any stability for
controlling long-range synchrony.

Making an analogy with the butterfly effect in chaos theory, small perturba-
tions can destroy the dynamics even after few iterations. At reverse, exploiting
this intrinsic noise can serve to make to converge neural dynamics to attractors,
as a chaotic itinerancy [12]. In spiking neural networks, we propose that the tiny
control of the neurons’ sub-threshold activity (small events) can drive at another
order of magnitude the generation of spikes (big events).

As a novel mechanism, we propose to exploit this intrinsic noise to regulate
the neural activity and the neurons’ firing; an idea in line with the free-energy
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minimization principle proposed by Karl Friston [3]. The minimization of the
free energy means to predict for one particular policy its expected state and to
optimize it over time in order to minimize future errors [4]. Our neural model
is based on this principle of Iterative Free-Energy Optimization for Recurrent
Neural Networks, and we named it INFERNO [9], see Fig. 1.

Moreover, this architecture is supported by several proposals and observa-
tions that consider the functional organization between the cortex with the sub-
cortical regions (the basal ganglia); c.f. [10, 6, 11, 8, 1, 7].

Fig. 1. Neural architecture INFERNO for Iterative Free-Energy Optimiza-
tion of Recurrent Neural Networks. This neural architecture is based on the
coupled system formed by an associative memory (AM) and a recurrent neural net-
work (RNN). INFERNO generates, selects and stores a set of rules in AM to assemble
dynamically a neuronal sequence from a reservoir of dynamics in RNN toward a desired
goal and based on free-energy minimization. It has some similarities with a Turing ma-
chine that a table of instructions, Write and Read heads to generate a code from an
infinite tape.

2 Methods

We use the Rank-Order Coding (ROC) algorithm to model spiking neurons and
the learning mechanism of Spike Timing-Dependent Plasticity [13]. The neurons’
output y is computed by multiplying the rank order of the sensory signal vector
x, f(x) = 1

rank(x) , by the synaptic weights w so that y =
∑
wf(x). The function

rank(x) corresponds to the argsort function in Matlab and the synaptic weights
of the neurons ∆w are updated at each iteration.

The first neural architecture consists of one recurrent neural network of spik-
ing neurons RNN arranged as in Fig 1 a) in red. The second neural network
consists on one associate neural network ANN as in Fig 1 a) in blue. The output
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vector y of RNN is compared to one desired goal activity y∗ to compute the error
prediction e = y∗ − y. Based on the variational error ∆e, a stochastic descent
gradient is used to generate the input vector x that will minimize error e on the
long-term. The ANN learns to reconstruct the RNN input vector x based on
the error prediction e on the output vector y so that x =

∑
vf(y). The coupled

system composed of ANN and RNN attempts to minimize error dynamically.
The former learns to control the latter system to generate a temporal sequence
directly based on the feeded back activity. We describe below the stochastic
search algorithm.

Table 1. Free-energy optimization based on stochastic gradient descent to
minimize prediction error.

Stochastic optimization as
Accumulation Evidences Process

#01 At time t = 0, initialize V, V ∗, I
#02 choose randomly Isearch
#03 compute Vsearch(t) from V (t), I + Isearch
#04 While t ≤ horizon time, repeat:
#05 compute Vsearch(t + 1) from Vsearch(t)
#06 If V ∗ − V ≥ V ∗ − Vsearch(t + 1):
#07 I = I + Isearch
#08 V = Vsearch

#09 break
#10 t = t + 1
#11 Goto #02

Prediction error E on the output vector V is used as a reinforcement signal to control
the level of noise Isearch to inject in the input dynamics I in order to explore local or
global minima toward V ∗.

3 Results

We propose at first to explain how ANN controls the neural dynamics of RNN
with respect to one goal vector and error prediction relative to it. We plot in
Fig 2 the dynamics of RNN after several iteration of error descent gradient and
explorative search till discovery of the solution (a). After few iterations, ANN
finds the input dynamics that makes to converge RNN (b). That is, the coupled
system self-organizes itself to minimize error toward a goal dynamically (c-d).

We propose to use the ANN-RNN architecture for controlling one 3 DOF arm
motion toward goals that we give on the fly, see Fig. 3. Only three RNN neurons
control the normalized angles of the robot. We emphasize also hat ANN has no
information about it, just about distance error between the location of the end
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a) b)

c) d)

Fig. 2. Explored dynamics toward a goal. (a) ANN makes to converge the RNN
neurons (in blue) to some desired dynamics (in black) thanks to prediction error. (b)
the ANN prediction error diminishes to reach a local minimal value during the first 20
iterations. (c-d) Dynamics of the ANN to control the dynamics of the RNN.

effector and the location of the target. We change dynamically the target place
and the arm is searching for a new configuration that minimizes error. ANN
dynamics are changing everytime the target is placed at a new location (middle,
upper chart), as do the three neurons of RNN, which converge to angles that
reach the goal (middle, lower chart). Over time, each ANN neuron learns the
dynamics that control the RNN, see Fig 3. This neural architecture is capable
to generate neuronal sequences based on habit learning once ANN has learned
to control RNN (exploitation), before this happens, ANN searches to minimize
error in a supervised manner toward a desired goal (exploration).

We can let the two coupled networks to self-organize their dynamics so that
ANN triggers one specific neural trajectory in RNN, which triggers back one
ANN neuron, the most problable one from the generated neural trajectory, see
Fig 4. For each neuron in ANN, ANN triggers one specific rule to direct RNN
dynamics. The most probable ANN rule is then selected depending on the y
vector found in RNN. In this way, the two systems control themselves to generate
serial neuronal sequence several for hundreds of iterations without error. We
emphasize that these dynamics are not completely learned but generated off-
the-shelf.

In an experience of serial ordering computation, ANN learns simple connect-
ing rules to trigger the RNN dynamics. During this task, eventhough error and
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a) b)

c)

d)

Fig. 3. RNN Arm control based on predictive coding. On the left, RNN controls
the three joint angles of one planar robot. ANN controls RNN based on error prediction
toward targets. In the middle, ANN and RNN dynamics when switching dynamically
to the euclidean distance to the goal location furnishes a reward to the motor neurons.
On the right, ANN controls the neural activity of RNN over time.

a) b)

Fig. 4. ANN-RNN Long-range neuronal sequences. Each neuron of ANN can
control the neural dynamics of RNN for a relative long period (20 iterations in our
case), which in return selects the correct ANN neuron to pursue the sequence. By
doing so, the coupled system can produce the serial ordering of chunks toward multistep
computation. The same sequence is generated within the dashed lines.

variability occur they are minimized dynamically to retrieve the goal vector. The
three trajectories of spiking neurons present similar dynamics, mixing variability
and robustness. The coupled system ANN-RNN formed by INFERNO presents
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some of the properties of a working memory to be robust and flexible at the
same time. To some point, INFERNO appears to overcome the exploration and
exploitation dilemna of machine learning algorithms thanks to predictive coding.

Fig. 5. Self-Organized serial ordering sequence. Three examples of dynamic se-
quence ordering show that self-organization is not rigid and that variability occurs
during time. The error minimization serves to rebind the two systems from each other.

4 Discussion

We propose a framework based on a coupled recurrent spiking neuronal system
that achieves to perform long sequential planning by controlling the amplitude
level of the spiking neurons through reinforcement signals. The control done is
weak so that the propagated reinforced signals let the working memory plastic
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enough to converge to the desired internal states from various trajectories. Used
in a robotic simulation, the neural dynamics can drive a three d.o.f. arm to reach
online different locations.

The neural control is done by controlling tiny variations injected into the
recurrent network that can iteratively change its dynamics to make it to converge
to attractors. To this respect, our framework embodies some aspects of the free-
energy optimization principle proposed by [4].

INFERNO generates, selects and stores a set of rules to assemble dynamically
a neuronal sequence from a reservoir of dynamics toward a desired goal and based
on free-energy minimization.

While the RNN working memory provides, stores, and manipulates represen-
tations; the ANN maps current states to courses of action. ANN can serve for
selection of complex, sequenced actions at RNN. Thus, it can be interpreted as
a repertoire of if-then rules or a set of stimulus-response associations to select
appropriate cortical chains. To some points, we think it has some similarities
with a Turing machine with a table of instructions, Write and Read heads to
generate a code from an infinite tape [14] [5]. Unwrapped in time, INFERNO
generates tree-like trajectories as a A* algorithm and as a virtually deep feed-
forward neural network, see Fi. 6. With INFERNO, we make a parallel with
the cortico-basal system to construct a working memory. Iteratively, the basal
ganglia forms ’habits’ or rules that select cortical primitives in order to generate
neuronal sequences based on a desired goal provided by the prefrontal cortex.
The reinforcement signals given by the dopaminergic neuromodulator is similar
to error prediction optimization or to free-energy minimization.

Fig. 6. Working memory for tree-like sequences. Unwrapped in time, INFERNO
generates tree-like trajectories as a A* algorithm and as a virtually deep feed-forward
neural network. RNN has neuronal primitives that ANN can selects, amplifies. This is
similar to cortico-basal loops, having the basal ganglia to control the dynamics of the
cortical maps and learns context-dependent rules depending on prefrontal cortex goal
state.
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