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Abstract

The origin of the amniotic egg was a major event in vertebrate evolution and is though to have

contributed to the spectacular evolutionary radiation of amniotes. We test one of the most popular

scenarios proposed by Carroll in 1970 to explain the origin of the amniotic egg using a novel method

based on an asymmetric version of linear parsimony (aka Wagner parsimony) for identifying the

most parsimonious split of a tree into two parts between which the evolution of the character is

allowed to differ. The new method evaluates the cost of splitting a phylogenetic tree at a given

node as the integral, over all pairs of asymmetry parameters, of the most parsimonious costs that

can be achieved by using the first parameter on the subtree pending from this node and the second

parameter elsewhere. By testing all the nodes, we then get the most parsimonious split of a tree

with regard to the character values at its tips. Among the nine trees and two characters tested, our

method yields a total of 517 parsimonious trend changes in Permo-Carboniferous stegocephalians,

a single one of which occurs in a part of the tree (among stem-amniotes) where Carroll’s scenario

predicts that there should have been distinct changes in body size evolutionary trends. This refutes

the scenario because the amniote stem does not appear to have elevated rates of evolutionary trend

shifts. Our nodal body size estimates offer less discriminating power, but they likewise fail to find

strong support for Carroll’s scenario.
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1 Introduction

The origin of the amniotic egg has long been taken as an example of a major evolutionary innovation

among vertebrates.This egg, which is adapted to be laid on emerged land, allowed amniotes to become

fully terrestrial (Romer 1957, Tihen 1960, Carroll 1970, 1988, Laurin 2010), though some view its im-

portance as potentially overstated (Skulan 2000). Several scenarios have been proposed to explain how

the amniotic egg may have appeared, and how this is related to the move onto land by amniotes or their

ancestors.

Romer (1957) suggested that the first amniotes were still mostly aquatic animals and that they came

to land only or mostly to lay eggs, because the land was safer (inhabited by fewer predators) than

the water and because he thought that stem-amniotes experienced seasonal drought, which would be

disadvantageous for aquatic larvae. Romer’s (1957) scenario no longer reflects the current consensus,

partly because his interpretations about the lifestyle of the earliest amniotes have not been confirmed

by recent research. For instance, ophiacodontids, which he viewed as some of the basalmost amniotes

and the most representative of their lifestyle, appear to have been much much more terrestrial than he

suggested, based on both bone microanatomy (Laurin and de Buffrénil 2016) and morphology (Felice

and Angielczyk 2014). Similarly, the sediments in which early amniotes and their presumed relatives

have been found are no longer believed to have been deposited in environments with seasonal drought

(Laurin et al. 2007).

Tihen (1960) proposed a modification of Romer’s (1957) scenario by suggesting that the terrestrial

egg was first laid in a very humid, probably tropical and swampy environment, which would minimize

dehydration problems for the eggs. Similarly, Goin and Goin (1962), suggested that stem-amniote

terrestrial egg-laying is likely to have occurred in a humid montane environment. This was based on the

observation that many extant lissamphibians that lay terrestrial eggs inhabit the vicinity of cool, rapidly

flowing streams. These ideas were expanded by Szarski (1968), who suggested that the evolutionary

pressure that drove development of the extra-embryonic membranes in stem-amniotes was the need to

store urea into the allantois, and the osmoregulatory advantages of doing so (namely, increased ability

to retain and even absorb water from the surroundings).

Carroll (1970, 1991) developed these ideas further by suggesting that the aquatic larval stage that

characterized most early stegocephalians (Carroll 1988, Laurin 2010) was lost before the amniotic egg

appeared. More importantly, contrary to his predecessors, he suggested that the earliest amniotes had

already become terrestrial, which is compatible with the current ideas about the lifestyle of the earliest

amniotes. Comparisons with eggs of some plethodontid salamanders (which lay eggs on land and have

terrestrial hatchlings) suggest that the egg could not have measured more than 9 or 10 mm in diameter

because of the initial lack of specialized surfaces to help gas exchange. In amniotic eggs, the chorion,

allantois, and even (sometimes) the yolk sac facilitate gas exchange (Ferner and Mess 2011), whereas in

anurans, the tail may be used for this, and in gymnophionans, external gills are used. Carroll (1970, 1991)

also observed a correlation between egg size and adult body size, at least between species of urodeles
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having a similar reproductive mode (one of which occurs only in plethodontid salamanders and consists

of laying eggs on land) and among squamates. Because of this, Carroll (1970, 1991) suggested that the

adults of the stem-amniotes that laid anamniotic eggs on land measured no more than 8-10 cm in snout-

vent length. This implies a decrease in body size, compared to that of older (possibly stem-tetrapod, or

simply older stem-amniote) ancestors, given what we know about body size of early tetrapods from the

fossil record. After the appearance of the amniotic egg (selective pressures to improve gas exchange may

have led to the appearance or further development of the extra-embryonic membranes), the constraint

on egg size would have been released, and body size would consequently have increased.

Kohring (1995) suggested a scenario opposite to Romer’s (1957). Namely, he hypothesized that the

predecessor of the amniotic egg was laid in water and that even the first amniotes, which he inferred to

have been terrestrial, continued laying their eggs in water for some time. In this context, he hypothesized

that the amniotic extra-embryonic membranes appeared in an aquatic egg, and that only the outer egg

membranes, which are more water-proof in amniotes than in amphibians, evolved in the terrestrial

environment. Indeed, extant amniotes still show much variability in the degree of mineralization of

the external membrane and in water permeability, both of which are intimately linked (Oftedal 2002).

However, the universal development of the amniotic egg in the terrestrial environment despite large outer

membrane permeability (Oftedal 2002) militates against Kohring’s (1995) hypothesis. Similarly, the

fact that mesosaurs, the first amniotes to have returned to a predominantly aquatic lifestyle, display

extended embryo retention, perhaps in the form of viviparity (Piñeiro et al. 2012), suggests that very

early in amniote evolution, the amniotic egg was adapted to be laid on emerged land.

While the fossil record yields few data directly relevant to origin of the amniotic egg because this event

involves mostly the appearance of new structures that do not fossilize, the amnion, chorion, and allantois

(Kohring 1995), Carroll’s (1970, 1991) scenario (contrary to the others) makes predictions about how

various stages of its development must have affected body size of the ancestral stem-amniotes, and these

predictions can be tested using the fossil record. These predictions concern both changes in the direction

of evolutionary trends and maximum body size. Namely, these predictions are (listed in chronological

order in which they should be observed in the fossil record):

H1, There was a change from the absence of trend, or possibly a slight trend towards increase in body

size, to a relatively short-lived trend towards lower body size associated with some stem-amniotes,

associated with egg-laying on land and the elimination of the aquatic larval stage.

H2, Some stem-amniotes measured less than 10 cm in snout-vent length.

H3, Body size started increasing shortly after appearance of the amniotic egg (or simultaneously with

this even), prior to the divergence between synapsids and sauropsids.

These predictions were tested only once, to our knowledge (Laurin 2004), using a dataset comprised

of 107 Permo-Carboniferous taxa, through parsimony squared-change optimization of body size to infer
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the length of hypothetical stem-amniote ancestors on paleontological timetrees, and through phylogeny-

informed regressions of size vs geological time, to assess the presence of trends. These methods were

not ideal for this test. Squared-change parsimony optimization rests on a hypothesis that the studied

characters evolved according to a Brownian motion model, which stipulates that there is no trend,

whereas the tested scenario suggests that evolutionary trends should have been present during part of

the evolutionary history of amniotes and of their ancestors. Indeed, the analyses of body size data

suggest that there was a trend towards body size increase, at least in the amniote total clade (Laurin

2004, tables 9 and 10). Carroll’s (1970, 1991) scenario also stipulates that at some point, there must

have been a decrease in size of early stem-amniotes. While Laurin (2004) detected no evidence of this

transient decrease in body size, this may well result from the paucity of the fossil record in this part of

the tree, at least under most of the tested phylogenies; one of the topologies used in our tests, inspired by

Panchen and Smithson (1988) suggests a far richer fossil record of stem amniotes than the other topology,

which reflects Vallin and Laurin (2004). In the presence of trends, squared-change parsimony is expected

to yield biased estimates, which hampers testing H2. The phylogeny-informed regressions performed in

Laurin (2004) can assess the presence of a trend towards body size increase in early amniotes, but not

the transient change in trends in body size evolution predicted above (H1).

New methodological developments described below allow a more rigorous test of this scenario, for

two reasons. First, the new method that we describe below allows us to test where on the tree the most

significant changes in trends occur. This is the most direct way of testing H1 and H3. Second, a recent

linear parsimony optimization that incorporates branch length information allows character values at

internal nodes to be inferred in the presence of trends (Didier 2017). This should allow a more rigorous

test of H2. If our results falsified Carroll’s (1970, 1991) scenario, they would indirectly favor (to an

extent) alternative scenarios, such as those proposed by Kohring (1995), which we cannot test directly

because they do not make clear predictions about body size evolution in amniotes and their predecessors.

We propose here a novel parsimony-based approach to assess where shifts in evolutionary trends

occur. This approach, which we use to test Carroll’s (1970, 1991) scenario on amniotic egg origin, does

not require a priori hypotheses on where shifts may occur. Our approach is based on an asymmetric

version of the linear parsimony introduced in Csűrös (2008) and further studied in Didier (2017), in

both cases in an ancestral reconstruction context. This version of linear parsimony is called asymmetric

because it allows different costs to be assigned to similarly-sized increases and decreases of a continuous

character. To this end, the approach uses a parameter, referred to as the asymmetry parameter, which is

defined as the ratio between the cost of an increase and that of a decrease of the same extent in Didier

(2017) (we shall consider a slightly different parametrization here). Moreover, the version studied in

Didier (2017) accounts for branch lengths in the evolutionary cost as a multiplicative factor defined as a

function of the duration associated with a branch.

All the approaches developed so far for studying shifts in evolutionary trends are based on stochastic

models of evolution for continuous characters, mainly Brownian motion or Ornstein-Uhlenbeck processes
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(Bastide et al. 2017, Fuentes-G. et al. 2016, Cressler et al. 2015, Eastman et al. 2011, Khabbazian et al.

2016, Ingram and Mahler 2013, Landis et al. 2013, O’Meara et al. 2006, Revell 2008, Revell and Collar

2009, Slater 2013). The method presented in Butler and Losos (1997) used parsimony approaches but

only for reconstructing ancestral states, which were next compared with simulations under Brownian

models. Other approaches addressed the related question of testing the significance of splits given a

priori (e.g., from environmental or dietary considerations) with regard to stochastic models (Thomas

et al. 2006, 2009, Slater et al. 2010).

The problem that we are studying here can be formally stated as follows. Being given a phylogenetic

tree and a continuous character which is known only for the tips of the branches, we aim to identify the

node of the tree at which the evolution of the character starts to follow a different trend from the rest of

tree, if such a node exists.

A parsimonious framework enables us to compute the minimal evolutionary cost (which reflects the

amount of change implied) of the extant character values. This cost plays the role of the likelihood in

probabilistic models. In the asymmetric linear parsimony case, the evolutionary cost depends on the

asymmetry parameter α. In order to evaluate the relevance of putting an evolutionary shift at a node

n, we consider evolutionary costs obtained by using an asymmetry parameter on the subtree Tn and

another parameter on the rest of the tree. Testing all the nodes of the tree enables us to identify the

subtree on which the evolution of the character differs the most. We first provide a polynomial algorithm

for computing such costs and for integrating them over all pairs of asymmetry parameters. This way we

get a parsimonious method for finding the subtree on which evolution differs the most.

We developed ParSplit, a computer program that performs the parsimonious split of a phylogenetic

tree at all possible locations with regard to tip values of characters written in C language. Source code

of the software is available at https://github.com/gilles-didier/ParSplit.

Thus, Section 2 presents definitions, notations and asymmetric linear parsimony, then outlines the ap-

proach. In the same section, we define the partial cost functions, which form the basis of our computations

and show how to integrate the split costs over all the possible values of the asymmetry parameter(s).

The approach is illustrated on two contrived examples and on two biological datasets in Section

3. The two contrived examples show that considering more than one asymmetric parameter does not

always lower the evolutionary cost. The two biological datasets, from Slater et al. (2010) and Thomas

and Freckleton (2012), were previously studied using stochastic methods to assess shifts in trends. They

are used to demonstrate that our method yields sensible results often congruent with those of stochastic

methods. Shifts detected with our approach are consistent with those obtained from methods based

on stochastic models and separate well clades with specific evolutionary patterns like baleen whales

(mysticetes) from other cetaceans. Our main results are presented in Section 4, in which a dataset about

body size evolution of early stegocephalians is used to assess Carroll’s (1970, 1991) scenario about the

appearance of the amniotic egg. For this purpose, we use the body size data and phylogenies previously

used by Laurin (2004) to test this scenario using other methods. Results are discussed in Section 5.
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2 New method: parsimonious detection of trend changes

2.1 Asymmetric parsimony

2.1.1 Definitions and Notations

We use the same notations as Didier (2017). The cardinal of any finite set S is noted |S|. In what

follows, T designates a rooted tree which may or may not be binary. As it should lead to no confusion,

we still write T for its set of nodes. For all nodes n ∈ T , we put

• Cn for the set of child nodes of n,

• τn for the length of the branch ending at n,

• Tn for the subtree of T rooted at n.

Let us consider a subset K of nodes of T and a map ϑ from K to the set of real numbers R. The map

ϑ will be referred to as the initial function and the nodes of K are said known. For all nodes n of T ,

we put Kn for the subset of known nodes of the subtree Tn, i.e. Kn = K ∩ Tn. Though the general case

can be treated as in Didier (2017), we assume that all and only the tips of the tree have known values

in order to lighten the statements. In plain English, K (resp. Kn) is the set of tips of T (resp. of Tn).

The values of {ϑ(k) | k ∈ K} are the known values of T . For all nodes n, we put ϑ(Kn) for the set

{ϑ(k) | k ∈ Kn}.

A ϑ-assignment of T is a map ξ from T to the set of real numbers which extends ϑ (i.e. such that

ξ(n) = ϑ(n) for all nodes n ∈ K). The set of all ϑ-assignments of T is noted Ξϑ.

2.1.2 Asymmetric parsimonious cost

A parsimony framework is based on a way of computing the evolutionary cost of an assignment. In the

time-dependent-asymmetric-linear parsimony (TDALP, Didier 2017) case, an ancestor/child transition

from value x at node n to value y at its child m is associated with the cost:

∆γ,λ(x, y, τm) =

 γφ(τm)(y − x) if x < y,

λφ(τm)(x− y) if x ≥ y,

where λ and γ are two nonnegative real numbers and φ is a function from R>0 to R>0 (in what

follows, we make the assumption that τn > 0 for all nodes n ∈ T ). The case where φ is constant with

φ(τ) = 1 for all τ corresponds to the standard parsimony scheme (Csűrös 2008, Farris 1970). In an

evolutionary context, it makes sense to choose a decreasing function φ, i.e., the cost of a certain amount

of chance decreases with the time during which it occurs, but from a computational point de view, any

positive function can be used. In the current implementation of the approach, users can choose between

φ(τ) = 1
τ and φ(τ) = 1.

The cost ∆γ,λ(ξ) of an assignment ξ of T is then the sum of all the costs of its ancestor/child

transitions:
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∆γ,λ(ξ) =
∑
n∈T

∑
m∈Cn

∆γ,λ(ξ(n), ξ(m), τm)

Let us first remark that multiplying both λ and γ by a positive constant factor just leads to multiply

the assignment costs by the same factor. Since computing an evolutionary cost with γ = λ = 0 makes

no sense, we can assume γ + λ > 0 and divide both parameters by γ + λ in order to normalize the

parsimonious costs. From now on, we assume that γ + λ = 1. The cost of an assignment then only

depends on a single parameter α = γ
γ+λ which belongs to [0, 1], and is called α-cost :

(1)∆α(x, y, τm) =

 αφ(τm)(y − x) if x < y,

(1− α)φ(τm)(x− y) if x ≥ y.

Below, α will be referred to as the asymmetry parameter. Reconstructing with α < 1
2 (resp. with

α = 1
2 , with α > 1

2 ) makes the cost of an increase smaller than (resp. equal as, greater than) that

of a decrease of the same amount. Intuitively, it corresponds to the assumption that the character

evolves with a positive trend (resp. without trend, with a negative trend). Note that a slightly different

parametrization is considered in Didier (2017).

The (parsimonious) α-cost of the pair (T , ϑ) is defined as the minimal cost which can be achieved

by a ϑ-assignment:

(2)q∆α(T , ϑ) = min
ξ∈Ξϑ

∆α(ξ).

2.2 Outline of the approach

Our aim is to find the most parsimonious way of splitting a phylogenetic tree T into two parts according

to an initial function ϑ (i.e., the character values of tips). In what follows, we will consider the two ways

of splitting a phylogenetic tree at a node n displayed in Figure 1 and below referred to as A-split and

B-split, which split the tree either just below a node or just above it, on one of the daughter-branches,

respectively. Devising a parsimonious approach for identifying evolutionary shifts first requires to be

able to associate an evolutionary cost to a given split.

In a parsimonious context, a natural idea should be to define the cost of a split of a tree into two

parts as the minimum cost, over all pairs (α, α′) ∈ [0, 1]2, which can be achieved by using parameter

α on a part of the tree and parameter α′ on the other part. Unfortunately, even without splitting the

tree, minimizing the parsimonious cost over all parameters α leads to trivial solutions: by setting α = 0

(resp. α = 1) the assignment which associates the greatest (resp. the smallest) of the known values to

all unknown nodes has a null α-cost!

In order to overcome this issue, we first define the no-split cost of (T , ϑ) as the sum over all parameters

α ∈ [0, 1] of the α-parsimonious costs q∆α(T , ϑ). Note that this cost is parameter-free and depends only

on T and ϑ. It somehow reflects the disparity of the character with regard to the tree. We then define

the cost of a split of T into two parts as the sum over all pairs of parameters (α, α′) ∈ [0, 1]2 of the

smallest cost which can be achieved by using parameter α on the first part and parameter α′ on the
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second one. The most parsimonious split of a phylogenetic tree with regard to a given initial function is

either the whole tree if the no-split cost is lower than all the costs of the A- and B-splits, or the A- or

B- split with the smallest cost otherwise.

The next two subsections show how to compute the no-, A- and B-splits costs.

2.3 Partial cost functions

For all nodes n of T , we shall define and study the partial cost functions fn(α, x), pfn(α, x), hn(α, x) and

phn(α, x) that give the minimal costs which be obtained by associating x to n or its direct ancestor and

by using parameter α on the corresponding parts of the tree as displayed in Figure 1.

Namely, following Csűrös (2008) and Didier (2017), for all nodes n of T , we put fn(α, x) for the

minimal cost which can be achieved by an assignment ξ of the subtree Tn (red part of Figure 1-left)

such that ξ(n) = x. For all nodes n of T but its root, we put pfn(α, x) for the minimal cost which can

be achieved by an assignment ξ of the tree consisting of m, the direct ancestor of n and of the subtree

Tn, which will be referred to as the branch-based subtree of n and noted pTn (called stem subtree of n in

Didier (2017), red part of Figure 1-right), verifying ξ(m) = x.

Cost functions hn(α, x) and phn(α, x) give the complementary costs of pfn(α, x) and fn(α, x). Namely,

for all nodes n of T , we put hn(α, x) for the minimum reconstruction cost of T without n, the branch

bearing n and the subtree rooted at n (i.e. the complementary of the branch-based subtree of n in the

whole tree, blue part of Figure 1-right), which associates x to the direct ancestor of n. Last, we put

phn(α, x) for the minimal cost which can be achieved by an assignment ξ of the whole tree with n and

the branch bearing n but without the subtree rooted at n (blue part of Figure 1-left) which is such that

ξ(n) = x.

The two following theorems provide the form of the partial cost functions (i.e., they are piecewise

linear) and some of their properties, notably their convexity. Let us first recall and slightly adapt a

Theorem from Didier (2017).

Theorem 1 (Didier 2017). Let n be an unknown node of T . The maps fn and pfn are piecewise-linear

and continuous and, for all α > 0, the maps x→ fn(α, x) and x→ pfn(α, x) are both convex.

More precisely, if all the nodes of Tn are unknown, then fn(α, x) = 0 for all α > 0 and all x.

Otherwise, there exist:

• an integer un and a strictly increasing positive real sequence (Γni )1≤i≤un ,

• an integer sequence (vni )0≤i≤un and for all 0 ≤ i ≤ un, a sequence (κni,j)1≤j≤vni of known values

of Tn (i.e. in ϑ(Kn)) verifying κni,j < κni,j′ ⇔ j < j′ ; by convention we set κni,0 = −∞ and

κni,vni +1 = +∞,

• two nonnegative real bi-sequences (Ani,j)0≤i≤un,0≤j≤vni and (Bni,j)0≤i≤un,0≤j≤vni ,

• two real bi-sequences (Cni,j)0≤i≤un,0≤j≤vni and (Dn
i,j)0≤i≤un,0≤j≤vni
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such that, by setting Γn0 = 0 and Γnun+1 = 1 and for all 0 ≤ i ≤ un, all 0 ≤ j ≤ vni , all α ∈ (Γni ,Γ
n
i+1]

and all x ∈ (κni,j , κ
n
i,j+1], we have

fn(α, x) = −Ani,jαx+Bni,jx+ Cni,jα+Dn
i,j ,

all the coefficients being such that fn is continuous. Moreover, the sequence (−Ani,jα + Bni,j)0≤j≤vni

(i.e. the x-coefficients of fn) increases with Ani,0 = Ani,vni = Bni,vni ≤
∑
m∈Cn φ(τm) and Bni,0 = 0.

In the same way, if all the nodes of Tn are unknown, then pfn(α, x) = 0 for all α > 0 and all x. Other-

wise there exist pun, (pΓni )1≤i≤pun , (pvni )0≤i≤un , (pκni,j)0≤i≤pun,1≤j≤pvni
, ( pAni,j)0≤i≤un,0≤j≤pvni

, ( pBni,j)0≤i≤pun,0≤j≤pvni
,

( pCni,j)0≤i≤pun,0≤j≤pvni
and ( pDn

i,j)0≤i≤pun,0≤j≤pvni
verifying the same properties as their fn-counterparts ex-

cept that we have pAni,0 = pAni,pvni
= pBni,pvni

≤ φ(τn) and pBni,0 = 0, and such that, for all 0 ≤ i ≤ pun, all

0 ≤ j ≤ pvni , all α ∈ (pΓni ,
pΓni+1] and all x ∈ (pκni,j , pκ

n
i,j+1], we have

pfn(α, x) = − pAni,jαx+ pBni,jx+ pCni,jα+ pDn
i,j .

Proof. In Didier (2017), this theorem was established by considering another parametrization of the

parsimony cost, namely

(3)∆γ(x, y, τm) =

 γφ(τm)(y − x) if x < y,

φ(τm)(x− y) if x ≥ y.

The version above was obtained by dividing the cost just above and the corresponding partial cost

functions by γ+1 and by applying the substitution α = γ
γ+1 to transform the coefficients and the bounds

of these cost functions.

A similar result can be stated for hn and phn.

Theorem 2. Let n be a non-root unknown node of T . The maps hn and phn are piecewise-linear and

continuous and, for all α > 0, the maps x→ hn(α, x) and x→ phn(α, x) are both convex.

More precisely, if all the nodes of Tn are unknown then hn(α, x) = 0 for all α > 0 and all x.

Otherwise, there exist:

• an integer wn and a strictly increasing positive real sequence (Υn
i )1≤i≤wn ,

• an integer sequence (zni )0≤i≤wn and for, all 0 ≤ i ≤ wn, a sequence (ρni,j)1≤j≤zni of known values

of T\Tn (i.e. in ϑ(K\Kn)) verifying ρni,j < ρni,j′ ⇔ j < j′ ; by convention we set ρni,0 = −∞ and

ρni,zni +1 = +∞,

• four real bi-sequences (Oni,j)0≤i≤wn,0≤j≤zni , (Pni,j)0≤i≤wn,0≤j≤zni , (Qni,j)0≤i≤wn,0≤j≤zni and (Rni,j)0≤i≤wn,0≤j≤zni

such that, by setting Υn
0 = 0 and Υn

wn+1 = 1 and for all 0 ≤ i ≤ wn, all 0 ≤ j ≤ zni , all α ∈ (Υn
i ,Υ

n
i+1]

and all x ∈ (ρni,j , ρ
n
i,j+1], we have

hn(α, x) = −Oni,jαx+ Pni,jx+Qni,jα+Rni,j ,

all the coefficients being such that hn is continuous. Moreover, the sequence (−Oni,jα + Pni,j)0≤j≤zni

(i.e. the x-coefficients of hn) is increasing with −Oni,zni α+ Pni,zni ≥ 0 for all α ∈ (Υn
i ,Υ

n
i+1].
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In the same way, if all the nodes of Tn are unknown, then phn(α, x) = 0 for all α > 0 and all x. Other-

wise there exist pwn, (pΥn
i )1≤i≤ pwn , (pzni )0≤i≤wn , (pρni,j)0≤i≤ pwn,1≤j≤pzni

, ( pOni,j)0≤i≤wn,0≤j≤pzni
, ( pPni,j)0≤i≤ pwn,0≤j≤pzni

,

( pQni,j)0≤i≤ pwn,0≤j≤pzni
and ( pRni,j)0≤i≤ pwn,0≤j≤pzni

verifying the same properties as their hn-counterparts and

such that, for all 0 ≤ i ≤ pwn, all 0 ≤ j ≤ pzni , all α ∈ (pΥn
i ,

pΥn
i+1] and all x ∈ (pρni,j , pρ

n
i,j+1], we have

phn(α, x) = − pOni,jαx+ pPni,jx+ pQni,jα+ pRni,j .

Proof. See Appendix A.

Theorem 2 suggests the procedure sketched in Algorithm 1 for computing the functions hn and phn

for all non-root nodes n. The complexity of Algorithm 1 is studied in Appendix B.

Theorem 3. Under the assumption that the number of children of any node is bounded independently

of the size of the tree, the algorithmic complexity of the computation of the cost functions hn and phn for

all nodes n of a tree T with a set of known nodes K is O(|T |2.|K|2) both in time and memory space.

Proof. See Appendix B.1.

2.4 Integrating parsimonious costs over asymmetry parameter(s)

2.4.1 Single parameter case: no-split cost

We show here how to sum the parsimonious α-cost q∆α(T , ϑ) over all asymmetry parameters α. Let us

start by recalling Remark 3 from Didier (2017).

Remark 1 (Didier (2017)). Let r be the root of T and ( 9Γrk)0≤k≤wr+1 be the elements of ⋃
1≤i≤ur

({
Bri,j
Ari,j

| 0 ≤ j ≤ vri

}
∩ (Γri ,Γ

r
i+1)

)⋃ {Γri | 0 ≤ i ≤ ur + 1} ,

indexed in increasing order. There exists a sequence (ρrk)0≤k≤wr of increasing values in ϑ(K) such

that for all 0 ≤ k ≤ wr and all 9Γrk ≤ α < 9Γrk+1, an α-parsimonious reconstruction associates ρrk to r. If

9Γrk < α < 9Γrk+1, then all α-parsimonious reconstructions associate ρrk to r.

An algorithm computing ( 9Γrk)0≤k≤wr+1 and (ρrk)0≤k≤wr from fr is provided in Didier (2017). Its

complexity is linear with the total number of bounds required for defining fr.

From Theorem 1, we have that the most parsimonious α-cost is, for all 9Γrk < α < 9Γrk+1,

q∆α(T , ϑ) = min
x
fn(α, x)

=
(
−Ari(k),j(k)α+Bri(k),j(k)

)
ρrk + Cri(k),j(k)α+Dr

i(k),j(k)

where i(k) is the index i such that ( 9Γrk,
9Γrk+1] ⊆ (Γri ,Γ

r
i+1] and j(k) is the index j such that ρrk ∈

(κni(k),j , κ
n
i(k),j+1].

Integrating the parsimonious cost of (T , ϑ) over all possible values of the asymmetry parameter can

then be done explicitly:
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Function compute h and ph
input : a tree T of root r

/* Compute functions hk and phk for all children k of the root */

forall k ∈ Cr do

hk ←
∑
c∈(Cr)\{k}

pfc;

recursion h and ph (k);

Function recursion h and ph
input : a node n of T

/* Call function to stem on hn for computing phn, use it for computing hk for all children k of

n then recursively treat all children k */

phn ← to stem(hn);

forall k ∈ Cn do

hk ← phn +
∑
c∈(Cn)\{k}

pfc;

recursion h and ph (k);

Function to stem

input : a piecewise linear function hn given under notations of Theorem 2

output: the piecewise linear function phn given under notations of Theorem 2

/* Compute phn from hn */

pwn ← −1; pΥn
0 ← Υn

0 ;

for i← 0 to wn do

j+ ← min
{
j | P

n
i,j−1+φ(τn)

Oni,j−1+φ(τn)
> Υn

i

}
; M+ ← max

{
j | P

n
i,j−1+φ(τn)

Oni,j−1+φ(τn)
< Υn

i+1

}
;

j− ← min
{
j | Pni,j

Oni,j+φ(τn)
> Υn

i

}
; M− ← max

{
j | Pni,j

Oni,j+φ(τn)
< Υn

i+1

}
;

while j− ≤M− or j+ ≤M+ do

pwn ← pwn + 1;

for pΥn
pwn
< γ < pΥn

pwn+1, set

phn(α, x) =


(1 − α)φ(τn)(ρn

i,j+
− x) + hn(α, ρn

i,j+
) if x < ρn

i,j+
,

hn(α, x) if ρn
i,j+

≤ x < ρn
i,j−

,

αφ(τn)(x− ρn
i,j−

) + hn(α, ρn
i,j−

) if x ≥ ρn
i,j−

.

;

if j− ≤M− or j+ ≤M+ then

pΥn
pwn+1 ← min

{
Pn
i,j+−1

+φ(τn)

On
i,j+−1

+φ(τn) ,
Pn
i,j−

On
i,j−

+φ(τn)

}
;

if
Pn
i,j+−1

+φ(τn)

On
i,j+−1

+φ(τn) ≤ pΥn
pwn

then j+ ← j+ + 1;

if
Pn
i,j−

On
i,j−

+φ(τn) ≤ pΥn
pwn

then j− ← j− + 1;

else pΥn
pwn+1 ← Υn

i+1;

return phn

Algorithm 1: Computation of hn and phn for all non-root nodes n of T .
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∫ 1

0

q∆α(T , ϑ)dα =
∑

0≤k≤wr

∫ 9Γrk+1

9Γrk

q∆α(T , ϑ)dα

=
∑

0≤k≤wr

[(
−Ari(k),j(k)ρ

r
k + Cri(k),j(k)

)( ( 9Γrk+1)2 − ( 9Γrk)2

2

)

+
(
Bri(k),j(k)ρ

r
k +Dr

i(k),j(k)

)(
9Γrk+1 − 9Γrk

)]
The quantity thus obtained will be referred to as the no-split cost of (T , ϑ).

2.4.2 Two parameters case: A- and B-split costs

In order to test a trend change at a node n of T , we shall consider the two ways of splitting T at n

displayed in Figure 1, namely, the most parsimonious costs obtained with

(A) an asymmetry parameter α′ on the subtree Tn (i.e., the node-based subtree of n ) and an asymmetry

parameter α on the rest of T (i.e., with α′ on the red part and with α on the blue part of Figure

1-a).

(B) an asymmetry parameter α′ on the subtree consisting of the direct ancestral lineage of n, the

branch bearing n and Tn (i.e., the branch-based subtree of n) and an asymmetry parameter α on

the rest of T (i.e., with α′ on the red part and with α on the blue part of Figure 1-b);

In Case A, given two asymmetry parameters α and α′, we are able to compute the smallest cost that

can be achieved by associating x to n with asymmetry parameters α′ on Tn and α on the rest of T .

Namely, this cost is

ΩA

n(α, α′, x) = phn(α, x) + fn(α′, x).

In the same way, for Case B, the smallest cost that can be achieved by associating x to the direct

ancestral lineage of n and by using the asymmetry parameter α′ on the branch-based subtree of n and

α on the rest of T is given by

ΩB

n(α, α′, x) = hn(α, x) + pfn(α′, x).

Let us define qΩA
n(α, α′) (resp. qΩB

n(α, α′)) as the smallest cost obtained with asymmetry parameter α′

on Tn (resp. on pTn) and with asymmetry parameter α elsewhere, namely,

qΩA

n(α, α′) = min
x

ΩA

n(α, α′, x)
(

resp. qΩB

n(α, α′) = min
x

ΩB

n(α, α′, x)
)
.

The A-split cost (resp. the B-split cost) of (T , ϑ) at n is the integral of qΩA
n (resp. of qΩB

n) over all

pairs of asymmetry parameters (α, α′) ∈ [0, 1]2, namely,∫ 1

0

∫ 1

0

qΩA

n(α, α′)dα′dα

(
resp.

∫ 1

0

∫ 1

0

qΩB

n(α, α′)dα′dα

)
.

In Appendix C, we show that the space of parameters to which belong (α, α′) can be split into

trapezoids on which the map ΩA
n (resp. ΩB

n) is linear with respect to α and α′, yielding an explicit

evaluation of the integral over all the pairs of parameters (α, α′) of the most parsimonious cost of A-

splits (resp. of B-splits), i.e., the A- and B-split costs.
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3 Empirical tests of the new method

For all examples and datasets below, the parsimonious split identification was performed by setting

φ(τ) = 1
τ for computing the evolutionary costs.

3.1 Two contrived examples

Figure 2 and Table 1 illustrate the fact that considering more than one asymmetry parameter on a tree

may or may not lead to lower the parsimonious cost. The two examples displayed in Figure 2 are based

on the same tree but with different character values at tips (in brackets just after idents of the tips).

Table 1 displays the A- and B-split costs for all nodes of the tree with regard to the character values of

Figure 2.

In the example of Figure 2-a, the lowest split cost observed is the A-split cost at node ‘n’. It is smaller

than the no-split cost (i.e., the A-split at the root ‘r’, first line of Table 1-a). Conversely, in the example

of Figure 2-b, there is no A- or B-split cost lower than the no-split cost.

From a general point of view, it may be worth paying interest not only to the most parsimonious

split but also to the other splits with costs smaller than the no-split cost.

3.2 Two biological datasets previously analyzed with stochastic methods

Figures 3 and 4 display all the splits that lead to a cost lower than the no-split one. Splits are represented

with ‘×’ at the corresponding nodes (only A-splits were found for these datasets). Figures also display

the ranks of the splits with regard to their costs (ordered from lowest to highest). The color of the

subtree pending from a split depends on the corresponding split cost, more precisely on the cost of the

“most recent” split including it. The color scale starts from blue, which corresponds to the no-split cost,

to red for the lowest cost observed (most parsimonious split). These two figures were output by our

software ParSplit.

For the two datasets studied here, all the most parsimonious splits are A-splits. Moreover, no B-split

costs were smaller than the no-split cost. This is not a general behavior since, in some datasets (e.g.,

Section 4 and Figure 5), we did encounter cases in which some of the B-split costs were lower than than

the no-split cost and even smaller than the A-split costs at the same nodes.

We observe in Figure 3, which shows average adult female body length in meters, that the split

with the lowest cost occurs at the most recent common ancestor of the mysticetes (i.e., Balaenidae,

Neobalaenidae and Balaenopteridae). First, this split is consistent with a probable shift in diet type,

since mysticetes are filter feeders. Second, Slater et al. (2010) also distinguished this clade and found

that “The largest phylogenetic mean body size was recovered for Mysticeti . . . ” by using approaches

based on heterogeneous stochastic models from Thomas et al. (2006, 2009).

Figure 4 displays the parsimonious splits of the tree of Anolis squamates according to the body size

of males (maximal snout-vent length, in mm). This dataset comes from Thomas and Freckleton (2012),
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in which two methods, called trait medusa 1 and 2 and both based on stochastic models, were used for

identifying rate shifts. These methods were inspired by a method for detecting shifts in diversification

rates (Rabosky 2006, Alfaro et al. 2009; “MEDUSA” stands for Modelling Evolutionary Diversification

Using Stepwise AIC). Method trait medusa 1 detected only two shifts at the same nodes as those of our

two splits with the smallest costs, ranked in the same order as with our approach. Method trait medusa

2 identified a third shift at the same node as that of the split ranked 5 with our method, for which the

costs of split of ranks 3, 4 and 5 are very close.

4 New empirical study: stegocephalian body size evolution and

origin of the amniotic egg

4.1 Dataset on stegocephalian body size

We used the dataset presented in Laurin (2004) to study body size in early stegocephalians. These

data comprise 107 terminal taxa ranging in age from Frasnian (Late Devonian) to the Late Permian,

but most taxa are not more recent than Early Permian. The data thus comprises taxa spanning about

125 Ma, from about 380 Ma to 255 Ma. This includes some finned tetrapodomorphs (Eusthenopteron,

Panderichthys), but most (105) taxa are limbed vertebrates (stegocephalians) representing the tetrapod

stem, stem-amphibians, and early stem-amniotes, as well as 37 terminal taxa of crown-amniotes. Exact

counts vary between hypotheses because there is a controversy about the origin of lissamphibians and

amniotes (e.g., Ruta and Coates 2007, Marjanović and Laurin 2018), but under all hypotheses, stem-

amphibians and amniotes are well-represented.

Body size is represented by cranial and presacral length (defined as the length from anterior surface

of atlantal centrum to anterior surface of first sacral centrum), both in mm, and presented here (Sup-

plementary Online Material [SOM] 1) log-transformed (ln) because body size distribution of most taxa

is closer to a log-normal distribution than to a normal distribution, so evolutionary analyses of body

size are better performed on log-transformed values than on raw values (e.g., Bokma et al. 2016). This

presumably reflects the fact that the amplitude of body size variations are proportional to body size

itself ; thus, for instance, it is far easier for a 1 m long animal to increase its length by 1 cm than for

another animal measuring only 5 cm.

Recent work has resulted in a slight shift in the established soft consensus on stegocephalian phy-

logeny, but to facilitate comparisons with the results of Laurin (2004), we reanalyzed the data using

our new methods on the same set of phylogenies, to better highlight the differences in results reflect-

ing the methodological innovations introduced by Didier (2017) and here (see below). In addition, we

produced two new trees that reflect more recent analyses that place Solenodonsaurus either at the base

of lepospondyls (Danto et al. 2012) or stemward of seymouriamorphs (Marjanović and Laurin 2018).

Other than that, only minor changes would need to be made to reflect the current consensus; recent
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research has confirmed that the trees used here still adequately represent the current views on early

stegocephalian phylogeny (Marjanović and Laurin 2013). The main controversy concerns the origin of

lissamphibians (Marjanović and Laurin 2013, 2018). In most of our trees (all except for trees 13 and

14; see Table 2 and SOM 2), we assume that it was among lepospondyls and label the relevant clades

(Tetrapoda, Amphibia, and Reptiliomorpha or pan-amniotes) as such, but note that assuming an origin

of lissamphibians among temnospondyls (as is done under trees 13 and 14; see Table 2 and SOM 2) does

not alter our results or conclusions (see below). As in Laurin (2004), we tested six variants of the main

reference tree, by varying minimal internal branch lengths (3 or 5 Ma), and by placing the controversial

taxon Westlothiana in three positions: as sister-group of the clade that we interpret as the tetrapod

crown (lepospondyls, Solenodonsaurus, and cotylosaurs), as the basalmost amphibian (lepospondyl), or

as the basalmost reptiliomorph (pan-amniote). The topology of Panchen and Smithson (1988), which we

use as the seventh tree (trees 13 and 14 in Table 2 and SOM 2), has not been recovered in recent analyses,

but we retained it because it reflects the long-held conception that lepospondyls are amphibians, which

is still correct according to some studies, including those that we favor (Marjanović and Laurin 2013,

2018). It also reflects the hypothesis that embolomeres and seymouriamorphs are stem-amniotes, which

is also favored by most recent studies (e.g., Ruta and Coates 2007), though this is incompatible with

our preferred topology (Marjanović and Laurin 2013, 2018). These seven trees have been used as such

to assess evolution of skull length, and they were pruned to assess evolution of the presacral vertebral

length, because the latter was available in a subset of taxa. This yields 14 trees representing those

previously used by Laurin (2004), on which our tests were carried out. In addition, we modified the

variant of the main reference tree with 3 ma minimal internal branch lengths and with Westlothiana as a

basal amphibian (lepospondyl) by placing Solenodonsaurus closer to lepospondyls than to Westlothiana

(Danto et al. 2012) or stemward of seymouriamorphs (Marjanović and Laurin 2013, 2018), which gave

two more trees used only for analysis of cranial characters. This results in a total of 16 analyses tied to

as many trees, which are presented in SOM 2 (and also present in SOM 1).

4.2 Analytical methods

We use the new method described above to determine if there is evidence of a higher rate of changes in

trends in body size evolution in and near the amniote stem than in other parts of the tree, or if changes

there are more probable than elsewhere. This is predicted by H1 and H3 (see introduction). We looked

for trend changes on the amniote stem and in its vicinity, expanding the search both stemward (along

much of the tetrapod stem) and along the basalmost branches of Amphibia, in case that some changes

actually occurring on the tetrapod stem might be slightly misplaced by our analysis. The changes are

numbered according to their significance rank, with rank 1 being the most significant.

Given the ability of asymmetric linear parsimony to account for trends in character evolution (Didier

2017), some nodal reconstructions are more plausible than others. Thus, for the nodal reconstructions

where our previous analyses (Laurin 2004) found trends for body size increase (in reptiliomorphs), we
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distinguish between all equiparsimonious reconstuctions and the most plausible ones. In practice, this

means that for Amniota and nodes just below (Cotylosauria) or above (Synapsida and Sauropsida),

the lower half of the nodal values are the most plausible (because these reflect estimates that assume

a trend towards increasing values over time). Under the topology derived from Panchen and Smithson

(1988), the amniote stem is very long, but we apply this preference (for lower half of the estimates) only

from the node basal to Solenodonsaurus and cotylosaurs and upwards. This is because the small size of

Westlothiana (located immediately stemward of this) suggests that the amniotic egg had not appeared

at the node just below Westlothiana, and because the presence of aquatic larvae in seymouriamorphs

(Laurin 2000), and the presence of lateral-line canalys in embolomeres (e.g., Holmes and Carroll 2010)

also indicate that these taxa did not lay amniotic eggs and exhibited the biphasic reproductive lifestyle

retained in many lissamphibians (Duellman and Trueb 1986). However, if Carroll’s (1970, 1991) scenario

is correct, the estimates near the base of stem-amniotes should on the contrary be closer to those yielded

by the asymmetry parameter favoring decrease in body size (upper range of size estimates).

4.3 Detected changes in evolutionary trends

Among the nine trees and two characters tested, our method yields a single change (but it is only the

seventh most significant possible change in skull length on that tree) that may add limited support to

Carroll’s (1970, 1991) scenario (Table 2). In the tree with the main topology in which Westlothiana

is placed among stem-amniotes (tree 5, T1swr in Table 2 and SOM 2), we detect a shift in trends in

skull length associated with Tetrapoda, the node that includes cotylosaurs and lepospondyls, according

to some recent studies (Marjanović and Laurin 2013, 2018). This presumably reflects a shift towards

decreasing size, given the small size of most lepospondyls and that of Westlothiana. This is a surprisingly

low number of shifts congruent with Carroll’s (1970, 1991) scenario, as shown by a thorough examination

of the set of possible shifts detected over one of the trees, selected as a representative example. Under

our main reference tree, which we illustrate (Fig. 5; this matches tree 1, T1s in Table 2 and SOM 2)

to facilitate comparisons with the results of Laurin (2004), our new method finds 42 possible locations

of trend changes in the skull, but none of them are located on the amniote stem or in the basalmost

branches of Amniota. The five most significant shifts are within sphenacodontid synapsids, apparently

linked with a changes induced by the comparatively small Tetraceratops, the putative first therapsid

(Amson and Laurin 2011). The next several changes are likewise in branches within Amniota fairly far

from its root. The only change located close to the amniote stem (though not directly on it) is the 21st

most significant, which is located at the base of lepospondyls, and which presumably reflects their fairly

small size. This pattern is typical of the nine trees over which we performed our analyses for cranial

length; we found an average of 42 changes per tree. For presacral length, we found fewer changes (an

average of 20 per trees), which is unsurprising given that we had fewer data for this character. Thus, out

of 517 possible trend changes identified by our analyses, a single one may support Carroll’s (1970, 1991)

scenario. Remarkably, this remains true even if we interpret temnospondyls, rather than lepospondyls,
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as the amphibian stem.

4.4 Nodal estimates of body size in selected clades

Our results on nodal estimates of body size are more ambiguous than those on trend changes (Tables

3-5), even if we consider only the lower half of the estimates on parts of the tree where increase in body

size is expected (see Section 4.2). All trees yield nodal reconstructions that are compatible with the

hypothesis that at least some stem-amniotes may have measured less than 10 cm in snout-vent length

(Fig. 6; Table 5), and this is congruent with Carroll’s (1970, 1991) scenario. However, in all cases, the

smallest hypothetical ancestor is the last common ancestor of lepospondyls and amniotes (Tables 3-5),

which we interpret as the origin of the tetrapod crown. After that, body size increases, and only the

node Cotylosauria (Fig. 6) may still have a snout-vent length inferior to 10 cm. However, in all cases,

only the minimal size estimate (which implies a strong trend towards body size increase) is congruent

with Carroll’s (1970, 1991) scenario. There is substantial ambiguity in the nodal reconstructions, which

reflects the wide range in asymmetry coefficient considered, and the maximal snout-vent length of the

ancestors mentioned above systematically reaches at least 1.64 m, so uncertainty about the size of these

hypothetical ancestors spans more than one order of magnitude, which prevents us from drawing firm

conclusions on this basis. Again, interpreting temnospondyls rather than lepospondyls as the amphibian

stem does not change our results because inferred nodal values in the basal parts of the tree tend to be

higher than in what we interpret as the tetrapod crown.

5 Discussion

Changes in the rate and/or the trend of character evolution are often associated with major biological

phenomenons such as adaptation or evolutionary convergence (Ingram and Mahler 2013). Detecting

shifts in the evolution of a trait is thus an important question, which has been widely addressed, notably

in the case of quantitative characters. The performance of the new method that we presented above

seems to be good. It is worth noting that, as observed on the two biological datasets presented in

Section 3.2 (on cetacean and Anolis squamate body size), our parsimony-based approach identifies the

evolutionary shifts detected using methods based on stochastic models of evolution. In all the situations

where parsimony is preferred, our approach provides a parsimonious solution for identifying evolutionary

shifts.

We emphasize the fact that the various splits displayed in Figures 3, 4 and 5 have to be considered

as different alternatives for splitting the tree into two parts and absolutely not as multiple, simultaneous

splits of the tree into more than two parts. Finding the most parsimonious split of the tree into k > 2

parts in the same sense as above could be performed with ideas similar as those developed in this work.

The algorithmic complexity increases exponentially with k, but computations would be still feasible for

small k (e.g. smaller than 5 for usual phylogenetic trees). In particular, one could seek this for the most
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parsimonious cost obtained with a same asymmetry parameter on k subtrees and another parameter

for the rest of the tree, following the ideas of Ingram and Mahler (2013) for studying convergence with

Ornstein-Uhlenbeck processes.

Our results refute Carroll’s (1970, 1991) scenario about the origin of the amniotic egg. Of the 16

tested combinations of trees and characters, only one yielded a change that may lend additional support to

Carroll’s (1970, 1991) scenario. This change (in skull length) is located at the base of a clade that includes

lepospondyls and cotylosaurs. We interpret this as the base of Tetrapoda, and the change is probably

towards a reduction in size near the base of this clade. This is not entirely congruent with Carroll’s

(1970, 1991) scenario because that scenario does not postulate a decrease in size in early amphibians.

Lepospondyls are sometimes interpreted as reptiliomorphs (Ruta and Coates 2007), though we consider

it more likely that they are stem-amphibians (Marjanović and Laurin 2013, 2018). However, even if

lepospondyls are considered as reptiliomorphs, this change is still not really congruent with Carroll’s

(1970, 1991) scenario because some lepospondyls, such as Microbrachis, retained aquatic larvae with

external gills (Olori 2015), wheres others were neotenic with a well-developed hyobranchial apparatus,

and as such, may have retained external gills through adulthood, although this latter point is uncertain

(Wellstead 1991). This suggests that this node (the smallest clade that includes lepospondyls and

amniotes) is not associated with the origin of the amniotic egg. Thus, under this alternative interpretation

of the position of lepospondyls (as reptiliomorphs rather than amphibians), the only way to reconcile the

decrease in body size with Carroll’s (1970, 1991) scenario is to suppose that this node is associated with

the shift towards terrestrial egg-laying that preceded the appearance of the amniotic egg, but that in

lepospondyls (at least; reproductive mode is unknown in diadectomorphs), aquatic larvae were retained.

This is possible if eggs were laid close to the water, which would have allowed the larvae to reach it within

minutes after hatching. Finally, the fact that this possible change in trends in skull length evolution is

only the seventh most significant one weakens further the support that this may lend to Carroll’s (1970,

1991) scenario. Also, it is striking that out of 517 possible shifts in trends in body size evolution identified

by our method, a single one may lend some support to Carroll’s (1970, 1991) scenario. Obviously, our

results suggest that the amniote stem was not a part of the tree with a higher rate of change in body

size trends than the background rate found in Permo-Carboniferous stegocephalians, whether that stem

originates at the divergence between amniotes and lepospondyls (our preferred hypothesis) or between

amniotes and temnospondyls.

Our results about nodal body size estimates show less discriminating power. The minimal estimates

for some nodes are compatible with Carroll’s (1970, 1991) scenario, but the maximal parsimonious

estimates are far above the size predictions consistent with that scenario. However, we can state that

our nodal estimates do not provide substantial support for that scenario, without refuting it strongly

either. In this respect, they are congruent with our previous analysis based on squared-change parsimony

(Laurin 2004).

The new analyses presented here reinforce the confidence that we can have in the mismatch between
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Carroll’s (1970, 1991) predictions and our inferences about body size evolution around the origin of the

amniotic egg because our new analyses do not rest on a hypothesis that body size (log-transformed)

evolved according to a Brownian motion model, though Laurin (2004) found that this was a reasonable

assumption, and because the method that we used here (Didier 2017) allows us to estimate nodal values

in the presence of strong trends in body size evolution (which is not possible using squared-change

parsimony). In addition, our new method allowed us to check if significant shifts in trends in body size

evolution occurred in the parts of the tree in which such shifts should occur, under Carroll’s (1970, 1991)

scenario, something that was not attempted by Laurin (2004). Nevertheless, our results overlap broadly,

which is not surprising given that both methods yield a fairly broad range of values. Another reason for

the lack of obvious discrepancy in the results of both studies is the fact that we did not find evidence of

drastic trend changes in the critical part of the tree, coupled with the fact that Laurin (2004: tables 9,

10) had found evidence of a trend in only a small part of the tree (amniotes and their stem), and only

in some trees. The only remaining caveat is that this part of the tree is poorly represented in the fossil

record under our preferred topology (but not if temnospondyls are assumed to be stem-amphibians), and

in this respect, the situation has not changed significantly in the last two decades, even though the fossil

record of amniote embryos has recently been pushed back from the Triassic (Cheng et al. 2004) to the

Early Permian (Piñeiro et al. 2012). However, fossils are discovered every day, and it is possible that in

a few years, a more robust test of Carroll’s (1970, 1991) scenario will be possible.

Our study cannot discriminate between the other scenarios about the origin of the amniotic egg

because they make no predictions about body size evolution in early reptiliomorphs, but research on the

reproductive biology of extant tetrapods (e.g., Shine et al. 2018) and on the physiological constraints

applying to tetrapod eggs (e.g., Skulan 2000, Oftedal 2002) should continue shedding new light on this

major evolutionary innovation.
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Finding jumps in the evolution of continuous traits. Systematic Biology , 62(2), 193–204.

Laurin, M. (2000). Seymouriamorphs. In H. Heatwole and R. L. Carroll, editors, Amphibian biology ,

pages 1064–1080. Surrey Beatty & Sons Chipping Norton.

Laurin, M. (2004). The evolution of body size, Cope’s rule and the origin of amniotes. Systematic

Biology , 53(4), 594–622.

Laurin, M. (2010). How vertebrates left the water . University of California Press, Berkeley.

Laurin, M. and de Buffrénil, V. (2016). Microstructural features of the femur in early ophiacodontids:

A reappraisal of ancestral habitat use and lifestyle of amniotes. C. R. Palevol , 15(1-2), 115–127.

Laurin, M., Meunier, F. J., Germain, D., and Lemoine, M. (2007). A microanatomical and histological

study of the paired fin skeleton of the Devonian sarcopterygian Eusthenopteron foordi. Journal of

Paleontology , 81(1), 143–153.
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A Proof of Theorem 2

Proof. The proof follows the same ideas as that of Theorem 1 from Didier (2017), a noticeable difference

being that here the induction goes from the root to the tips. Namely, we shall prove the theorem by

proving the three following assertions:

1. if n is a child of the root, then hn satisfies the properties of the theorem;

2. for all nodes n, if hn satisfies the properties of the theorem, then so it is for phn;

3. for all nodes n, if phn satisfies the properties of the theorem, then so it is for all hk with k child of

n.

By construction, if n is a direct descendant of the root r, we have that

(4)hn(α, x) =
∑

k∈(Cr)\{n}

pfk(α, x).

Assertion 1 then follows from Theorem 1.

In order to prove Assertion 2, let us remark that for all nodes n, by setting

gx(y) = ∆α(y, x, τn) + hn(α, y),

we have

phn(α, x) = inf
y∈R

gx(y).

Let us assume that hn satisfies the properties of the theorem. In particular, hn is piecewise linear

with, for all 0 ≤ i < wn, all α ∈ [Υn
i ,Υ

n
i+1), all 0 ≤ j ≤ zni and all y ∈ (ρni,j , ρ

n
i,j+1]:

hn(α, y) = −Oni,jαy + Pni,jy +Qni,jα+Rni,j .

Let us first consider the case where y ≥ x for which we have ∆α(x, y, τn) = (1− α)φ(τn)(y − x).
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For all 0 ≤ i < wn, all α ∈ [Υn
i ,Υ

n
i+1), all 0 ≤ j ≤ zni and all y ∈ (ρni,j , ρ

n
i,j+1], we get that

gx(y) = (1− α)φ(τn)(y − x)−Oni,jαy + Pni,jy +Qni,jα+Rni,j

=
[
−(Oni,j + φ(τn))α+ Pni,j + φ(τn)

]
y − (1− α)φ(τn)x+Qni,jα+Rni,j

Since hn satisfies the properties of the theorem, it is convex with respect to x. The sequence (−(Oni,j+

φ(τn))α+ Pni,j + φ(τn))0≤j≤zni thus increases with j. Let j+
α be defined as

• j+
α = 0 if −(Oni,j + φ(τn))α+ Pni,j + φ(τn) ≥ 0 for all 0 ≤ j ≤ pzni ;

• the greatest integer smaller or equal to zni and such that −(On
i,j+α−1

+φ(τn))α+Pn
i,j+α−1

+φ(τn) < 0

otherwise. In other words, j+
α − 1 is the index of the last interval on which gx strictly decreases

with y ≥ x and is the greatest index such that α ≤
Pn
i,j

+
α−1

+φ(τn)

On
i,j

+
α−1

+φ(τn) .

Since gx decreases before ρn
i,j+α

and increases after this value, we get that

(5)inf
y ≥x

gx(y) =

 gx(ρn
i,j+α

) if x < ρn
i,j+α

,

gx(x) otherwise,

and that

(6)gx(ρn
i,j+α

) ≤ gx(x) for all x < ρn
i,j+α

.

Let us now consider the case where y < x for which we have ∆α(x, y, τn) = αφ(τn)(x − y). For all

0 ≤ i < wn, all α ∈ [Υn
i ,Υ

n
i+1), all 0 ≤ j ≤ zni and all y ∈ (ρni,j , ρ

n
i,j+1], we get that

gx(y) = αφ(τn)(x− y)−Oni,jαy + Pni,jy +Qni,jα+Rni,j

=
[
−(Oni,j + φ(τn))α+ Pni,j

]
y + αφ(τn)x+Qni,jα+Rni,j

Let us define j−α as

• j−α = zni + 1 if −(Oni,j + φ(τn))α+ Pni,j < 0 for all 0 ≤ j ≤ pzni ;

• the smallest index such that −(Oni,j +φ(τn))α+Pni,j ≥ 0 otherwise. In other words, j−α corresponds

to the first interval on which gx does not decrease with y < x and is the smallest index such that

α ≥
Pn
i,j
−
α

On
i,j
−
α

+φ(τn) .

We have that

(7)inf
y <x

gx(y) =

 gx(x) if x < ρn
i,j−α

,

gx(ρn
i,j−α

) otherwise.

and that

(8)gx(ρn
i,j−α

) ≤ gx(x) for all x ≥ ρn
i,j−α

.

Since φ(τn) is positive, −(Oni,j + φ(τn))α+ Pni,j ≥ 0 implies that −(Oni,j + φ(τn))α+ Pni,j + φ(τn) ≥ 0

for all i and j. It follows that that

j+
α ≤ j−α and ρn

i,j+α
≤ ρn

i,j−α
.
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The fact that

phn(α, x) = inf
y∈R

gx(y)

= min{ inf
y≥x

gx(y), inf
y<x

gx(y)},

altogether with Equations 5 and 7 and Inequalities 6 and 8 imply that

(9)phn(α, x) =


(1− α)φ(τn)(ρn

i,j+α
− x) + hn(α, ρn

i,j+α
) if x < ρn

i,j+α
,

hn(α, x) if ρn
i,j+α
≤ x < ρn

i,j−α
,

αφ(τn)(x− ρn
i,j−α

) + hn(α, ρn
i,j−α

) if x ≥ ρn
i,j−α

.

We assume here that hn satisfies the properties of the theorem. This first implies that for all α, the

map x→ phn(α, x) is piecewise linear and continuous. Next, the map x→ hn(α, x) is convex, in particular

between ρn
i,j+α

and ρn
i,j−α

. Moreover, definitions of j+
α and j−α ensure that if j+

α > 0 then −On
i,j+α

α+Pn
i,j+α
≥

(1− α)φ(τn) and if j−α ≤ zni then −On
i,j−α−1

α+ Pn
i,j−α−1

≤ αφ(τn). It follows that the map x→ pfn(α, x)

is still convex. Moreover, if j−α ≤ zni , then the x-coefficient of phn for x ≥ ρn
i,j−α

is αφ(τn), which is

nonnegative. Otherwise, we have in particular that − pOni,pzni
α + pPni,pzni

= −Oni,zni α + Pni,zni > αφ(τn) ≥ 0,

which implies that the x-coefficient of phn for x ∈ (ρni,zni ,∞] is positive.

Let us put Φ1, . . . , Φp for the elements of({
Pni,j + φ(τn)

Oni,j + φ(τn)

∣∣∣∣∣0 ≤ j ≤ zni
}⋃{

Pni,j
Oni,j + φ(τn)

∣∣∣∣∣0 ≤ j ≤ zni
})⋂

(Υn
i ,Υ

n
i+1)

indexed in increasing order. By construction, the indices j+
α and j−α are both constant over all the

sub-intervals (Υn
i ,Φ1], (Φ1,Φ2] , . . . , (Φp−1,Φp], (Φp,Υ

n
i+1]. The fact that hn satisfies the properties

of the theorem and Equation 9 imply that for all values x, the map α → phn(α, x) is linear over all the

sub-intervals above. We get that the map phn is piecewise linear and its continuity with regard to α is

straightforward to verify at all bounds Φk for 1 ≤ k ≤ p.

Last, Assertion 3 follows straightforwardly from Theorem 1 and from the fact that, for all children k

of n, we have

(10)hk(α, x) = phn(α, x) +
∑

c∈(Cn)\{k}

pfc(α, x),

which ends the proof.

B Complexity of Algorithm 1 – Proof of Theorem 3

Like the algorithm computing (fn)n∈T and ( pfn)n∈T provided in Didier (2017), the complexity of Algo-

rithm 1 depends on the total number of bounds (over asymmetry parameters and over character values)

required for defining (hn)n∈T and (phn)n∈T . The number of bounds over character values, below referred

to as x-bounds, is, by construction, smaller than |K| (we don’t count the two extrema −∞ and +∞). We

shall bound the number of intervals over asymmetry parameters, below referred to as α-bounds, following

the same ideas as in Didier (2017).
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From now on, we make the implicit assumption that all bounds of the partial cost functions are

actually required to define it. Namely, under the notations of Theorem 2 and for all nodes n of T , the

cost function hn is such that:

• for all 0 ≤ i ≤ wn and all 0 ≤ j < zni , we have that

(Oni,j , P
n
i,j , Q

n
i,j , R

n
i,j) 6= (Oni,j+1, P

n
i,j+1, Q

n
i,j+1, R

n
i,j+1);

• for all 0 ≤ i < wn, there exists 0 ≤ j ≤ zni and 0 ≤ j′ ≤ zni+1 such that

(ρni,j , ρ
n
i,j+1)∩(ρni+1,j′ , ρ

n
i+1,j′+1) 6= ∅ and (Oni,j , P

n
i,j , Q

n
i,j , R

n
i,j) 6= (Oni+1,j′ , P

n
i+1,j′ , Q

n
i+1,j′ , R

n
i+1,j′);

and that the same holds for the partial cost functions phn, fn and pfn.

Remark that since hn is continuous, the first assertion implies that for all 0 ≤ i ≤ wn and all

0 ≤ j < zni , we have that

(Oni,j , P
n
i,j) 6= (Oni,j+1, P

n
i,j+1);

Lemma 1. Let n be an unknown node of T . For all x ∈ R, the x-coefficient of hn (resp. of phn) decreases

with γ.

Proof. We shall follow the same three steps as for the proof of Theorem 2 and the same ideas as for that

of Lemma 1 from Didier (2017). Let us first recall that Lemma 1 from Didier (2017) ensures that the

x-coefficient of phk decreases with α for all children k of the root different from n. Actually, a slightly

different parametrization is used in Didier (2017) but the same change of variable as for Theorem 1 shows

that this lemma remains true with the parametrization used here.

First, for all children n of the root of T , Equation 4 and Lemma 1 from Didier (2017) ensure that

the lemma holds for hn.

Second, let us prove that if the lemma is true for hn then it is true for phn. Let α ∈ [0, 1] be an

asymmetry parameter and i be the index such that Υn
i−1 < α ≤ Υn

i . From the proof of Theorem 2,

there exists an index 0 ≤ j ≤ zni such that, by setting π+
α = ρni,j , the x-coefficient of phn(α, x) is equal to

−(1− α)φ(τn) for x < π+
α and greater than −(1− α)φ(τn) otherwise (π+

α is possibly equal to −∞).

Symmetrically, there exists an index 0 ≤ j ≤ zni such that, by setting π−α = ρni,j , the x-coefficient of

phn(α, x) is equal to αφ(τn) for x > π−α and smaller than αφ(τn) otherwise.

By construction and from the induction hypothesis, we get that both π+
α and π−α increase with α.

Let us now consider two asymmetry parameters 0 ≤ α′ ≤ α′′ ≤ 1. We then have π+
α′ ≤ π−α′ ,

π+
α′′ ≤ π

−
α′′ , π

+
α′ ≤ π

+
α′′ and π−α′ ≤ π

−
α′′ . The first two inequalities come from construction (see the proof of

Theorem 2) and the two last ones from the remark just above. This leaves only two cases to investigate:

1. π+
α′ ≤ π

−
α′ ≤ π

+
α′′ ≤ π

−
α′′ and

2. π+
α′ ≤ π

+
α′′ ≤ π

−
α′ ≤ π

−
α′′ .
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By checking all the possible positions of x with regard to the bounds π+
α′ , π

−
α′ , π

+
α′′ and π−α′′ as in the

proof of Lemma 1 of Didier (2017), we verify that the x-coefficient of phn(α′, x) is always greater than that

of phn(α′′, x), either directly or from the induction hypothesis both in Cases 1 and 2. The x-coefficient of

phn(α, x) does decrease with α.

Third, we remark that if the x-coefficient of phn(α, x) decreases with α then, since the same holds for

all children k of n from Lemma 1 of Didier (2017), Equation 10 implies that the x-coefficient of phc(α, x)

decreases with α for all children c of n.

Proposition 1. Under the notations of Theorem 2 and for all nodes n of T , we have that

pwn − wn ≤ 2|K\Kn |.

Proof. Let n be a node of T with pwn > wn. There exists an index ` in {1, . . . , pwn} such that pΥn
` 6∈ {Υn

k |

1 ≤ k ≤ wn}. Let i be the index such that Υn
i <

pΥn
` < Υn

i+1. From the proof of Theorem 2, there exists

an index 0 ≤ j ≤ zni such that at least one of the following assertions holds:

1. pΥn
` =

Pni,j + φ(τn)

Oni,j + φ(τn)
,

2. pΥn
` =

Pni,j
Oni,j + φ(τn)

.

In other words, there are two types of α-bounds of phn which are not α-bounds of hn.

If pΥn
` =

Pni,j+φ(τn)

Oni,j+φ(τn) (Type 1) and still from the proof of Theorem 2, we have that ρn`−1,1 = ρni,j <

ρni,j+1 = ρn`,1. Lemma 1 then ensures that for all i′ ≥ i and all j′ such that (ρni′,j′ , ρ
n
i′,j′+1]∩(ρni,j , ρ

n
i,j+1] 6= ∅,

we have that −Oni′,j′α′+Pni′,j′ ≤ −Oni,jα+Pni,j for all α′ ∈ (Υn
i′ ,Υ

n
i′+1] and all α ∈ (Υn

i ,Υ
n
i+1] with α′ ≥ α.

It follows that, if ρni′,j′ ≤ ρni,j , then −(Oni′,j′α
′ − φ(τn)) + Pni′,j′ ≤ 0 for all α′ ≥ pΥn

` . This implies that

ρn`,1 ≤ ρn`′,1 for all `′ ≥ `. In plain English, each time that an α-bound pΥn
` of Type 1 appears, there is a

x-bound which is no longer required for defining pΥn
` (α, x) for all α > pΥn

` .

The situation is symmetrical if pΥn
` =

Pni,j
Oni,j+φ(τn) . Each time that an α-bound pΥn

` of Type 2 appears,

there is a x-bound of hn which is no longer required for defining pΥn
` (α, x) for all α < pΥn

` .

Since all x-bounds used in the definition of hn belong to ϑ(K\Kn) and can be involved at most once

in the appearance of α-bounds of Type 1 and at most once in the appearance of α-bounds of Type 2, we

get that the number of “new” α-bounds of phn is smaller than 2|K\Kn |.

Corollary 1. Under the notations of Theorem 2 and for all nodes n of T , both wn and pwn are smaller

than 4|T |.|K|

Proof. From Equation 4 and Theorem 3 from Didier (2017), if n is a child of the root then wn ≤

2|Tn|.|K\Kn |≤ 2|T |.|K|. Let m is a non-root node of T , there exists a path k1, k2, . . . k` of T with

` < |T | going from a child of the root k0 to k` = m. The number wm of α-bounds of hm is obtained by

adding all the increases along the path k1, k2, . . . k` to wk1 :

wm = wk1 +

`−1∑
i=1

( pwki − wki) +

`−1∑
i=1

(
wki+1 − pwki

)
.
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From Equation 4 and Theorem 3 from Didier (2017) and since k1 is a child of the root, we have

wk1 ≤ 2|Tk1 |.|K\Kk1 |.

Proposition 1 ensures that

pwki − wki ≤ 2|K\Kki |, for all 1 ≤ i ≤ `.

Equation 10 and Theorem 3 of Didier (2017) imply that

wki+1
− pwki ≤

∑
c∈(Cki )\{ki+1}

2|Tc|.|Kc|, for all 1 ≤ i < `.

We get that

wm ≤ 2|Tk1 |.|K\Kk1 |+
`−1∑
i=1

2|K\Kki |+
`−1∑
i=1

 ∑
c∈Cki\{ki+1}

2|Tc|.|Kc|


≤ 2|T |

|K\Kk1 |+ `−1∑
i=1

 ∑
c∈(Cki )\{ki+1}

2|Tc|.|Kc|

+

`−1∑
i=1

2|K\Kki |

≤ 2|T |.|K\Km |+2(`− 1)|K|
≤ 4|T |.|K|.

Since pwm − wm ≤ 2|K\Km | (Proposition 1), we have that

pwm ≤ 2|T |.|K\Km |+2`|K|
≤ 4|T |.|K|.

B.1 Proof of Theorem 3

Proof. From Theorem 1, less than 4|T |.|K| α-bounds are required for defining phn. Over intervals between

two successive α–bounds, phn requires at most |Kn| x-bounds. It follows that the total number of bounds

required for defining phn is O(|T |.|K|2). Since the part of Algorithm 1 computing phn from hn is linear

with the total number of bounds required to define phn, its complexity is O(|T |.|K|2) both in time and

memory space.

The cost function hn is obtained by summing the partial cost functions phm of its direct ancestor m

and the partial cost functions pfc of its siblings c, which is performed by using a procedure similar to that

of merging sorted lists. Under the assumption that the number of children m is bounded independently

of the size of the tree, this operation is linear with the sum of all the bounds of these cost functions cost

functions which is O(|T |.|K|2).

In conclusion, the computation of all the partial cost functions of T is O(|T |2.|K|2) both in time and

memory space.
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C Integrating parsimonious costs over two asymmetry param-

eters

We shall detail only Case A, Case B being very similar.

From Theorems 1 and 2, the map ΩA
n : (α, α′, x) → phn(α, x) + fn(α′, x) is piecewise linear and

continuous. Namely, under the notations of these theorems, for all 0 ≤ i ≤ pwn, all 0 ≤ j ≤ un and by

putting (πni,j,k)0≤k≤cni,j for the elements of {pρni,k | 0 ≤ k ≤ pzni } ∪ {κni,k | 0 ≤ k ≤ vnj } sorted in increasing

order, we have that, for all 0 ≤ i ≤ pwn, all α ∈ (pΥn
i ,

pΥn
i+1], all 0 ≤ j ≤ un, α′ ∈ (Γnj ,Γ

n
j+1], all 0 ≤ k ≤ cni,j

and all x ∈ (πni,j,k, π
n
i,j,k+1],

ΩA

n(α, α′, x) = (− pOni,k
ph
α+ pPni,k

ph
)x+ pQni,k

ph
α+ pRni,k

ph
+ (−Ani,kfα+Bni,kf )x+ Cni,kfα+Dn

i,kf

= (−Tni,j,kα− Uni,j,kα′ + V ni,j,k)x+Wn
i,j,kα+Xn

i,j,kα
′ + Y ni,j,k,

where k
ph is the index such that πni,j,k = pρni,k

ph
, kf is the index such that πni,j,k = κni,kf , Tni,j,k = pOni,k

ph
,

Uni,j,k = Ani,kf , V ni,j,k = pPni,k
ph

+Bni,kf , Wn
i,j,k = pQni,k

ph
, Xn

i,j,k = Cni,kf , Y ni,j,k = pRni,k
ph

+Dn
i,kf

.

Let us remark that, from Theorems 1 and 2, for all asymmetry parameters α and α′, the map

x→ ΩA
n(α, α′, x) is convex.

The smallest cost obtained with asymmetry parameter α′ on Tn and with asymmetry parameter α

elsewhere is

qΩA

n(α, α′) = min
x

ΩA

n(α, α′, x).

Since ΩA
n is convex with respect to x, for all 0 ≤ i ≤ pwn, all α ∈ (pΥn

i ,
pΥn
i+1], all 0 ≤ j ≤ un and all

α′ ∈ (Γnj ,Γ
n
j+1], we have that

qΩA

n(α, α′) = (−Tni,j,`α− Uni,j,`α′ + V ni,j,`)π
n
i,j,` +Wn

i,j,`α+Xn
i,j,`α

′ + Y ni,j,`,

where ` is the smallest index such that −Tni,j,`α− Uni,j,`α′ + V ni,j,` ≥ 0. Such an index ` always exists

since Theorems 1 and 2 imply that −Tni,j,cni,jα− U
n
i,j,cni,j

α′ + V ni,j,cni,j ≥ 0.

For all indices 0 ≤ i ≤ pwn, 0 ≤ j ≤ un, the lines of −Tni,j,kα − Uni,j,kα′ + V ni,j,k = 0 with 0 ≤ k ≤ cni,j

partition (pΥn
i ,

pΥn
i+1]×(Γnj ,Γ

n
j+1] into subsets on which the smallest index ` such that −Tni,j,`α−Uni,j,`α′+

V ni,j,` ≥ 0 remains the same, i.e. in which qΩA
n is linear with respect to α and α′ (see Figure 7 without

taking into account the dotted line).

Proposition 2. For all indices 0 ≤ i ≤ pwn, 0 ≤ j ≤ un, if there exists 0 ≤ ` ≤ cni,j such that Uni,j,` 6= 0

and such that the line of −Tni,j,`α−Uni,j,`α′+V ni,j,` intersects (pΥn
i ,

pΥn
i+1]×(Γnj ,Γ

n
j+1], then the points (α, α′)

for which −Tni,j,`α−Uni,j,`α′+V ni,j,` ≥ 0 are those which are below the line of −Tni,j,`α−Uni,j,`α′+V ni,j,` = 0.

Proof. Since from Theorem 1, Uni,j,k is nonnegative for all 0 ≤ k ≤ cni,j , we have that −Tni,j,kα−Uni,j,kα′+

V ni,j,k ≥ 0 if and only if α′ ≤ −T
n
i,j,k

Uni,j,k
α+

V ni,j,k
Uni,j,k

, i.e., the point (α, α′) is below the line of −Tni,j,`α−Uni,j,`α′+

V ni,j,` = 0 (Fig. 7).

31



Proposition 3. For all indices 0 ≤ i ≤ pwn, 0 ≤ j ≤ un and 0 ≤ k < k′ ≤ cni,j, the lines of equation

−Tni,j,kα − Uni,j,kα′ + V ni,j,k = 0 and −Tni,j,k′α − Uni,j,k′α′ + V ni,j,k′ = 0 do not intersect each other at any

point in (pΥn
i ,

pΥn
i+1)× (Γnj ,Γ

n
j+1).

Proof. Since x→ ΩA
n(α, α′, x) is convex, we have that −Tni,j,kα−Uni,j,kα′+V ni,j,k ≤ −Tni,j,k′α−Uni,j,k′α′+

V ni,j,k′ . It follows that −Tni,j,kα − Uni,j,kα′ + V ni,j,k > 0 implies −Tni,j,k′α − Uni,j,k′α′ + V ni,j,k′ > 0 for all

(α, α′) ∈ (pΥn
i ,

pΥn
i+1)× (Γnj ,Γ

n
j+1).

From the implicit assumption that all the bounds of partial functions are required, if k 6= k′ then

(Tni,j,k, U
n
i,j,k, V

n
i,j,k) 6= (Tni,j,k′ , U

n
i,j,k′ , V

n
i,j,k′), i.e., two lines intersect each other at a single point. If the

lines of equation −Tni,j,kα − Uni,j,kα
′ + V ni,j,k = 0 and −Tni,j,k′α − Uni,j,k′α

′ + V ni,j,k′ = 0 intersect each

other at a point of (pΥn
i ,

pΥn
i+1) × (Γnj ,Γ

n
j+1), they split (pΥn

i ,
pΥn
i+1] × (Γnj ,Γ

n
j+1] into four non-empty

parts among which at least one contains points (α, α′) such that −Tni,j,kα − Uni,j,kα′ + V ni,j,k > 0 and

−Tni,j,k′α − Uni,j,k′α′ + V ni,j,k′ < 0 which is in contradiction with the convexity of ΩA
n with respect to x

since we assume k < k′.

Proposition 4. Let i and j be two indices with 0 ≤ i ≤ pwn and 0 ≤ j ≤ un.

a. If there exists 0 ≤ ` ≤ cni,j such that both Tni,j,` = Uni,j,` = 0 and V ni,j,` ≥ 0, then there is no line of

−Tni,j,kα− Uni,j,kα′ + V ni,j,k = 0 with k > ` intersecting (pΥn
i ,

pΥn
i+1]× (Γnj ,Γ

n
j+1].

b. If there exists 0 ≤ ` ≤ cni,j such that Tni,j,` 6= 0 and Uni,j,` = 0, then

• if Tni,j,` > 0 and
V ni,j,`
Tni,j,`

> pΥn
i , then there is no line of −Tni,j,kα−Uni,j,kα′ + V ni,j,k = 0 with k > `

intersecting
´

pΥn
i ,min

{
pΥn
i+1,

V ni,j,`
Tni,j,`

}ı
× (Γnj ,Γ

n
j+1].

• if Tni,j,` < 0 and
V ni,j,`
Tni,j,`

< pΥn
i+1, then there is no line of −Tni,j,kα − Uni,j,kα′ + V ni,j,k = 0 with

k > ` intersecting
´

max
{
pΥn
i ,

V ni,j,`
Tni,j,`

}
, pΥn

i+1

ı

× (Γnj ,Γ
n
j+1].

c. For all 0 ≤ k < k′ ≤ cni,j, the part of the line corresponding to k′ intersecting (pΥn
i ,

pΥn
i+1]×(Γnj ,Γ

n
j+1]

is above that of k on (pΥn
i ,

pΥn
i+1]× (Γnj ,Γ

n
j+1].

Proof. These three properties are again consequences of the convexity of the map x → ΩA
n(α, α′, x) for

all (α, α′) ∈ (pΥn
i ,

pΥn
i+1]×(Γnj ,Γ

n
j+1], i.e., of the fact that the sequence (−Tni,j,kα−Uni,j,kα′+V ni,j,k)0≤k≤cni,j

increases with k. In particular, this implies that if there exist a part I ⊆ (pΥn
i ,

pΥn
i+1] × (Γnj ,Γ

n
j+1]

and an index ` such that −Tni,j,`α − Uni,j,`α
′ + V ni,j,` ≥ 0 for all (α, α′) ∈ I, then there is no line of

−Tni,j,kα − Uni,j,kα′ + V ni,j,k = 0 with k > ` splitting I into two non-empty parts, since this would imply

the existence of points (α, α′) ∈ I with −Tni,j,kα− Uni,j,kα′ + V ni,j,k < 0.

The three assertions are proved as follows.

a. If Tni,j,` = Uni,j,` = 0 and V ni,j,` ≥ 0, then we have that −Tni,j,`α − Uni,j,`α
′ + V ni,j,` ≥ 0 for all

(α, α′) ∈ (pΥn
i ,

pΥn
i+1]× (Γnj ,Γ

n
j+1].

b. Let us assume that Tni,j,` 6= 0 and Uni,j,` = 0.
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• If Tni,j,` > 0 and
V ni,j,`
Tni,j,`

> pΥn
i , then we have that −Tni,j,`α− Uni,j,`α′ + V ni,j,` ≥ 0 for all (α, α′) ∈

(pΥn
i ,min{pΥn

i+1,
V ni,j,`
Tni,j,`
}]× (Γnj ,Γ

n
j+1].

• If Tni,j,` < 0 and
V ni,j,`
Tni,j,`

< pΥn
i+1, then we have that −Tni,j,`α − Uni,j,`α

′ + V ni,j,` ≥ 0 for all

(α, α′) ∈ (max{pΥn
i ,

V ni,j,`
Tni,j,`
}, pΥn

i+1]× (Γnj ,Γ
n
j+1].

c. The property directly follows from Proposition 2 and from the opening remark of this proof.

The A-split cost of (T , ϑ) at n is the integral of qΩA
n over all pairs (α, α′) ∈ [0, 1]2:∫ 1

0

∫ 1

0

qΩA

n(α, α′)dα′dα =

pwn∑
i=0

un∑
j=0

∫
pΥni+1

pΥni

∫ Γnj+1

Γnj

qΩA

n(α, α′)dα′dα.

For all 0 ≤ i ≤ pwn and all 0 ≤ j ≤ un, computing∫
pΥni+1

pΥni

∫ Γnj+1

Γnj

qΩA

n(α, α′)dα′dα

can be performed by splitting (pΥn
i ,

pΥn
i+1]× (Γnj ,Γ

n
j+1] into trapezoids of the form {(α, α′) | β < α ≤

ω and aα + b < α′ ≤ cα + d} (i.e., with two vertical sides) in which the coefficients of qΩA
n are constant

and of the form:

qΩA

n(α, α′) = (−Tni,j,kα+−Uni,j,kα′ + V ni,j,k)κni,j,k +Wn
i,j,kα+Xn

i,j,kα
′ + Y ni,j,k,

for a certain index k. The different lines of Figure 7, here including the dotted one, partition

(pΥn
i ,

pΥn
i+1]× (Γnj ,Γ

n
j+1] into such trapezoids (the triangle below the line of −Tni,j,kα−Uni,j,kα′+V ni,j,k = 0

is seen as a degenerated trapezoid with a left side of length 0).

The algorithm partitioning (pΥn
i ,

pΥn
i+1] × (Γnj ,Γ

n
j+1] into trapezoids is not presented here since it is

quite basic thanks to Propositions 2, 3 and 4, which limit the number of situations that we have to deal

with.

The integral of qΩA
n over a trapezoid {(α, α′) | β < α ≤ ω and aα+ b < α′ ≤ cα+ d} can be explicitly

computed:∫ ω

β

∫ cα+d

aα+b

qΩA

n(α, α′)dα′dα =

∫ ω

β

∫ cα+d

aα+b

(
(−Tni,j,kα+−Uni,j,kα′ + V ni,j,k)κni,j,k +Wn

i,j,kα+Xn
i,j,kα

′

+ Y ni,j,k
)

dα′dα

=
1

2

[
ω3 − β3

3

(
2(−Tni,j,kκni,j,k+Wn

i,j,k)(c−a)+(−Uni,j,kκni,j,k+Xn
i,j,k)(c2−a2)

)
+ (ω2 − β2)

(
(−Tni,j,kκni,j,k +Wn

i,j,k)(d− b) + (V ni,j,kκ
n
i,j,k + Y ni,j,k)(c− a)

+ (−Uni,j,kκni,j,k +Xn
i,j,k)(cd− ab)

)
+ (ω− β)

(
2(V ni,j,kκ

n
i,j,k + Y ni,j,k)(d− b) + (−Uni,j,kκni,j,k +Xn

i,j,k)(d2 − b2)
)]

Symmetrically, by setting

qΩB

n(α, α′) = min
x

ΩB

n(α, α′, x),
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we define the B-split cost of (T , ϑ) at n as∫ 1

0

∫ 1

0

qΩB

n(α, α′)dα′dα =

wn∑
i=0

un∑
j=0

∫ Υni+1

Υni

∫
pΓnj+1

pΓnj

qΩB

n(α, α′)dα′dα.

All the remarks stated above about A-split costs still hold for B-split costs which are computed in

the very same way.
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compatible with Carroll’s (1970, 1991) scenario. . . . . . . . . . . . . . . . . . . . . . . . . 41

7 Partition of (pΥn
i ,

pΥn
i+1] × (Γnj ,Γ

n
j+1] resulting from the lines of equation −Tni,j,k+1α −

Uni,j,k+1α
′ + V ni,j,k+1 = 0 and −Tni,j,kα−Uni,j,kα′+ V ni,j,k = 0 (the top and the bottom solid

lines respectively). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
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Figure 2: A tree with two sets of character values (in brackets) for tips. a: A A-split at node ‘n’ improves
the parsimonious cost of the whole tree. b: No split improves the parsimonious cost of the whole tree
(see Table 1).
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Balaena mysticetus (18.0 m)
Balaena glacialis (13.7 m)
Eubalaena australis (13.8 m)

×8

Caperea marginata (6.2 m)
Balaenoptera acutorostrata (10.7 m)
Eschrichtius robustus (14.6 m)
Megaptera novaeangliae (18.0 m)
Balaenoptera physalus (21.2 m)
Balaenoptera musculus (33.6 m)
Balaenoptera omurai (10.8 m)
Balaenoptera edeni (15.4 m)
Balaenoptera borealis (16.1 m)

×2

×1

Physeter catodon (11.0 m)
Kogia simus (2.4 m)
Kogia breviceps (3.4 m)
Platanista minor (2.5 m)
Platanista gangetica (2.5 m)

×
15

Tasmacetus shepherdi (6.5 m)
Ziphius cavirostris (6.4 m)
Berardius arnuxii (8.8 m)
Berardius bairdii (12.0 m)

×3

Indopacetus pacificus (7.2 m)
Hyperoodon ampullatus (7.9 m)
Hyperoodon planifrons (7.5 m)

×11

Mesoplodon layardii (6.2 m)
Mesoplodon mirus (5.1 m)
Mesoplodon bidens (5.0 m)
Mesoplodon bowdoini (4.5 m)
Mesoplodon europaeus (5.2 m)
Mesoplodon ginkgodens (4.9 m)
Mesoplodon hectori (4.4 m)
Mesoplodon stejnegeri (5.7 m)
Mesoplodon densirostris (4.7 m)
Mesoplodon grayi (5.3 m)

×6

Lipotes vexillifer (2.0 m)
Pontoporia blainvillei (1.5 m)
Inia geoffrensis boliviensis (2.0 m)
Inia geoffrensis geoffrensis (2.0 m)

×14

Delphinapterus leucas (3.8 m)
Monodon monoceros (4.3 m)

×9

Neophocaena phocaenoides (1.4 m)
Phocoena phocoena (1.9 m)
Phocoenoides dalli (1.9 m)

×12

Phocoena dioptrica (1.9 m)
Phocoena sinus (1.1 m)
Phocoena spinipinnis (1.7 m)

×
13

Orcinus orca (7.9 m)
Orcaella brevirostris (2.2 m)
Pseudorca crassidens (5.1 m)
Grampus griseus (3.7 m)
Feresa attenuata (2.4 m)
Globicephala melas (5.1 m)
Globicephala macrorhynchus (4.8 m)

×7

×4

Lagenorhynchus acutus (2.4 m)
Lagenorhynchus albirostris (3.0 m)
Lissodelphis borealis (2.3 m)
Lagenorhynchus obscurus (1.9 m)
Lagenorhynchus obliquidens (2.4 m)
Lagenorhynchus cruciger (1.8 m)
Lagenorhynchus australis (2.1 m)
Cephalorhynchus heavisidii (1.7 m)
Cephalorhynchus hectori (1.5 m)
Cephalorhynchus commersonii (1.5 m)

×
10

Steno bredanensis (2.5 m)
Sotalia fluviatilis (1.5 m)
Stenella longirostris (2.0 m)
Sousa chinensis (2.4 m)
Lagenodelphis hosei (2.6 m)
Stenella attenuata (2.1 m)
Tursiops truncatus (2.4 m)
Tursiops aduncus (2.1 m)
Stenella frontalis (2.1 m)
Delphinus delphis (2.3 m)
Stenella coeruleoalba (2.3 m)
Stenella clymene (1.9 m)

×5
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Figure 3: Parsimonious splits of the tree of cetaceans according to their body sizes with their ranks.
All the parsimonious splits are A-splits. Dataset from Slater et al. (2010). Color shading reflects the
strength of the signal for change in trends in body size, with increasing values from blue (weak) to red
(strong).
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A occultus (40.0 mm)
A bartschi (80.0 mm)
A vermicul (124.5 mm)
A coelesti (84.0 mm)
A chlorocy (80.0 mm)
A aliniger (60.0 mm)
A singular (52.0 mm)
A darlingt (74.0 mm)
A monticol (56.0 mm)
A bahoruco (51.0 mm)
A dolichoc (51.0 mm)
A henderso (49.3 mm)

×9

A equestri (190.0 mm)
A luteogul (191.0 mm)
A baracoae (172.0 mm)
A noblei (190.0 mm)
A smallwoo (190.0 mm)×10

×5

A barbouri (44.0 mm)
A etheridg (43.0 mm)
A fowleri (77.0 mm)
A insolitu (47.0 mm)
A olssoni (50.0 mm)
A alumina (40.0 mm)
A semiline (47.0 mm)×7

×12

A marcanoi (65.0 mm)
A longitib (72.0 mm)
A strahmi (79.0 mm)
A breslini (60.0 mm)
A whiteman (67.0 mm)
A armouri (67.0 mm)
A shrevei (60.0 mm)
A cybotes (81.0 mm)
A haetianu (75.0 mm)
A argenteo (59.8 mm)
A lucius (70.0 mm)
A barbatus (170.0 mm)
A porcus (162.0 mm)
A chamaele (177.0 mm)

×4

A cuvieri (137.0 mm)
A christop (49.0 mm)
A eugenegr (72.0 mm)
A ricordii (160.0 mm)
A baleatus (180.0 mm)
A barahona (160.0 mm)×6

×1

×2

A alutaceu (37.5 mm)
A inexpect (37.0 mm)
A vanidicu (39.0 mm)
A alfaroi (36.0 mm)
A macilent (41.0 mm)
A clivicol (49.4 mm)
A rejectus (37.0 mm)
A cupeyale (33.0 mm)
A cyanople (43.0 mm)

×3

A sheplani (41.0 mm)
A placidus (45.3 mm)×11

A alayoni (46.8 mm)
A angustic (53.0 mm)
A paternus (50.0 mm)
A altitudi (52.0 mm)
A porcatus (74.3 mm)
A allisoni (100.0 mm)×8

A garridoi (41.8 mm)
A guazuma (48.5 mm)×

13

A loysiana (47.2 mm)
A pumilis (34.2 mm)
A centrali (47.2 mm)
A argillac (46.2 mm)

×14

A distichu (58.0 mm)
A websteri (51.0 mm)
A breviros (51.0 mm)
A caudalis (48.0 mm)
A marron (50.0 mm)
A evermann (78.0 mm)
A stratulu (50.0 mm)
A krugi (55.0 mm)
A pulchell (51.0 mm)
A gundlach (75.0 mm)
A poncensi (48.0 mm)
A cooki (70.0 mm)
A cristate (75.0 mm)
A lineatop (73.0 mm)
A recondit (100.0 mm)
A valencie (86.0 mm)
A grahami (75.0 mm)
A garmani (132.0 mm)
A opalinus (56.0 mm)
A imias (67.4 mm)
A rubribar (65.9 mm)
A ahli (61.7 mm)
A allogus (62.8 mm)
A guafe (48.8 mm)
A jubar (62.0 mm)
A confusus (53.0 mm)
A homolech (70.0 mm)
A mestrei (56.5 mm)
A ophiolep (39.8 mm)
A sagrei (73.0 mm)
A bremeri (72.0 mm)
A quadrioc (55.0 mm)

Figure 4: Parsimonious splits of the tree of Anolis squamates according to their body sizes with their
ranks. All the parsimonious splits are A-splits. Dataset from Thomas and Freckleton (2012). Color
shading reflects the strength of the signal for change in trends in body size, with increasing values from
blue (weak) to red (strong).
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Eusthenopteron foordi (5.1)
Panderichthys rhombolepis (5.4)

Acanthostega gunnari (4.4)
Ichthyostega sp. (5.0)

Crassigyrinus scoticus (5.4)
Loxomma acutirhinus (5.5)
Baphetes kirkbyi (5.6)
Megalocephalus pachycephalus (5.7)

×
33

×
39

Greererpeton burkemorani (5.1)
Colosteus scutellatus (4.5)×

36
Edops craigi (6.3)

Adamanterpeton ohioensis (4.8)
Chenoprosopus lewisi (4.5)

Cochleosaurus florensis (4.8)

Edopoidea

Capetus palustris (5.3)
Balanerpeton woodi (3.8)

Dendrerpeton rugosum (4.6)
Dendrerpeton acadianum (4.4)

Cheliderpeton latirostre (4.9)
Sclerocephalus haeuseri jeckenbachensis (5.3)

Isodectes obtusus (3.6)
Trimerorachis insignis (5.0)
Neldasaurus wrightae (5.1)

Eryops megacephalus (5.9)
Zatrachys serratus (4.5)×

14
Acheloma cumminsi (5.0)

Dissorophus angustus (4.9)
Tersomius texensis (4.0)

Amphibamus lyelli (4.0)+35

Doleserpeton annectens (2.5)×
28
+29×

20

Temnospondyli

Gephyrostegus bohemicus (4.0)
Proterogyrinus scheelei (4.8)

Archeria crassidisca (5.5)
Anthracosaurus russelli (5.7)

Pholiderpeton scutigerum (5.6)
Eogyrinus attheyi (5.8)×

25
+
27×

10
+11×

7

Kotlassia prima (4.7)
Seymouria baylorensis (4.7)

Seymouria sanjuanensis (4.5)
Westlothiana (2.9)

Phlegethontia cf. longissima (3.0)
Lethiscus stocki (3.3)
Adelogyrinus simorhynchus (3.8)
Palaeomolgophis scoticus (3.3)

Sauropleura scalaris (3.8)
Urocordylus wandesfordii (3.4)

Ptyonius marshii (2.8)
Scincosaurus crassus (1.9)

Keraterpeton galvani (3.2)
Batrachiderpeton reticulatum (3.5)
Diceratosaurus brevirostris (2.8)

Diploceraspis burkei (4.0)
Diplocaulus magnicornis (4.7)×

19
Asaphestera intermedia (3.6)
Tuditanus punctulatus (2.9)

Pantylus (4.2)
Saxonerpeton geinitzi (2.4)

Llistrophus pricei (3.1)×
26

Leiocephalikon problematicum (3.0)
Pariotichus brachyops (3.2)

Euryodus primus (3.5)
Cardiocephalus peabodyi (2.9)
Rhynchonkos stovalli (2.6)
Brachydectes elongatus (2.6)

Brachystelechus fritschi (2.0)
Batropetes truncatus (2.2)×

16
+32×

12
+
17×

9

×
8

Amphibia×
21

Solenodonsaurus janenschi (4.8)
Limnoscelis paludis (5.4)
Tseajaia campi (4.7)

Diadectes sideropelicus (5.2)
Diadectomorpha

Mesosaurus tenuidens (4.6)
Acleistorhinus pterioticus (3.3)Parareptilia

Hylonomus lyelli (3.6)
Paleothyris acadiana (3.1)

Petrolacosaurus kansensis (4.0)
Araeoscelis gracilis (3.7)×

42
Romeria primus (3.9)

Protocaptorhinus pricei (3.9)
Rhiodenticulatus heatoni (3.6)

Labidosaurus hamatus (5.0)
Captorhinus laticeps (4.1)×

6

Captorhinidae

Sauropsida

Eothyris parkeyi (3.9)
Casea broilii (4.2)
Cotylorhynchus romeri (5.0)Caseidae

Caseamorpha

Mycterosaurus longiceps (4.2)
Aerosaurus wellesi (4.4)

Varanops brevirostris (4.7)
Varanodon agilis (4.7)×

34

Varanopseidae

Archaeothyris florensis (4.4)
Varanosaurus acutirostris (4.9)

Ophiacodon uniformis (5.5)
Ophiacodon mirus (5.6)×

23
+38×

13

Ophiacodontidae

Ianthasaurus hardestii (4.3)
Glaucosaurus megalops (3.8)

Edaphosasurus novomexicanus (4.9)
Edaphosaurus boanerges (4.9)

Edaphosaurus cruciger (4.9)
Edaphosaurus pogonias (4.9)×

41

Edaphosaurus×
24
+
40×

22

Edaphosauridae

Haptodus garnettensis (4.6)
Pantelosaurus saxonicus (5.0)
Cutleria wilmarthi (4.7)

Tetraceratops insignis (4.5)
Sphenacodon ferox (5.5)
Sphenacodon ferocior (5.8)

Secodontosaurus obtusidens (5.5)
Dimetrodon grandis (5.9)

Dimetrodon limbatus (5.8)+30
Dimetrodon

×
15

×
37

Sphenacodontidae×
1
+3

Sphenacodontoidea
×

2

×
5
+31
×

4
Sphenacodontia

×
18

Eupelycosauria

Synapsida

Amniota

Cotylosauria

Reptiliomorpha

Tetrapoda

Stegocephali

Figure 5: Changes in skull length (ln of skull length, measured in mm, is shown here) evolutionary trends
detected by our new method. There are both parsimonious A- and B-splits (A-splits are presented with
‘×’ at the corresponding nodes and B-splits with ‘+’ inside the corresponding branches and their ranks
in italic). The test is illustrated here using the first (main) tree, for cranial length. Note that none of
the parsimonious changes are located on the amniote stem, which extends between the nodes Tetrapoda
and Amniota, under our preferred hypothesis. However, even placing the origin of that stem basal to
Temnospondyly does not alter our conclusions: no parsimonious shifts are detected on the amniote stem.
Color shading reflects the strength of the signal for change in trends in the natural logarithm of skull
length, in mm, with increasing values from blue (weak) to red (strong).
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Figure 6: Left: Schematic of the representation of all the possible parsimonious reconstructions for a
given node with asymmetry parameter α going from 0 to 1 (Didier 2017). Each part of the quarter pie is
colored according to the most parsimonious reconstruction (also displayed in front of it) obtained from
the asymmetry parameters corresponding to the slopes delineating it. Right: Nodal estimates of the
natural logarithm of cranial length (in mm) for the node Cotylosauria under tree 1 (see Figure 5) for
all asymmetry parameter 0 ≤ α ≤ 1. The curve with a slope 1 (green line) represents the assumption
of no trend in the evolution of this character. Values below that axis assume a positive trend and are
indicated by a “+” and an arc with arrows at both ends and are shaded yellow to orange; the similar
arc above the green axis, associated with a “−” delimits the values coherent with a trend towards size
decrease and these are colored orange to red. Values below that curve are consistent with the assumption
that there is a positive trend, whereas those above the curve are congruent with the assumption that the
character value decreases through time. Thus, under Carroll’s (1970, 1991) scenario, size should increase
around that node, so the most plausible estimates range from 3.09 to 3.98 (values below the curve);
transforming these back to lengths through exponential transformation yields values of 22.0 to 53.5 mm.
Carroll’s (1970, 1991) scenario implies that at least some stem-amniotes measured less than 100 mm in
snout-vent length, and this translates into a maximal ln-transformed value of 3.22, if we assume that
the skull represented about a quarter of the snout-vent length. Hence, only the smallest of the inferred
nodal values (3.09) is compatible with Carroll’s (1970, 1991) scenario.
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1 Left: (resp. Right:) A- and B-split costs for all nodes of the tree with character values of
Figure 2-a (resp. of Figure 2-b). The first line of the tables displays the A-split cost of
the root ‘r’, i.e., the no-split cost computed as presented in Section 2.4.1. . . . . . . . . . 44

2 Shifts in evolutionary trends detected by our new asymmetric parsimony-based method.
The columns give, from left to right, the tree number and name (from the Mesquite Nexus
file available as on-line supplement), whether or not one of the detected shifts supports
Carroll’s (1970, 1991) scenario, the number of changes found, and the location of the shift
closest to where Carroll’s (1970, 1991) scenario predicts changes should be detected. For
the latter, the name of the corresponding taxon is given; when no such name is available,
the names of two taxa representing both daughter-branches are given. Note that out of
517 changes, not a single one unambiguously supports Carroll’s (1970, 1991) scenario,
though one could possibly be interpreted as such. Legend of tree names: a, amphibians;
p, presacral length; r, reptiliomorphs; s, skull; w, Westlothiana; Tree 1 is for skull; Tree
2 is for presacral length; Tree 5 is for skull but has Westlothiana among reptiliomorphs.
Some trees differ only by minimal internal branch length, a simple tree scaling method
that was used in Laurin (2004) to account for the fact that many internal branches had a
minimal length of 0 but were presumably not really of 0 length. . . . . . . . . . . . . . . . 45

3 Estimates of cranial length (mm) of selected hypothetical ancestors according to the full
possible range of asymmetry coefficients. For a legend of the meaning of tree names, see
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and nodes just below or above, given the detected increase in size, only the lower half of
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4 Estimates of presacral length (mm) of selected hypothetical ancestors according to the full
possible range of asymmetry coefficients. For a legend of the meaning of tree names, see
Table 2. Given that the presacral length of Solenodonsaurus is unknown, Reptiliomorpha
and Cotylosauria correspond to the same node for this analysis. . . . . . . . . . . . . . . . 47

5 Estimates of snout-vent length (mm) of selected hypothetical ancestors according to the
full possible range of asymmetry coefficients. This length is obtained by adding the length
of the skull from Table 3 and the presacral length from Table 4; this has been done only
for nodes for which both lengths could be inferred. Only values in bold type are congruent
with Carroll’s (1970, 1991) ideas. For a legend of the meaning of tree names, see Table 2. 48
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n 0.54 0.59

a - 0.62

b - 0.62

c - 0.57

p 0.54 0.59

d - 0.53

e - 0.53

Table 1: Left: (resp. Right:) A- and B-split costs for all nodes of the tree with character values of Figure
2-a (resp. of Figure 2-b). The first line of the tables displays the A-split cost of the root ‘r’, i.e., the
no-split cost computed as presented in Section 2.4.1.
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1 T1s, 107 cranial internal 3 (main analysis) No 42 21, Amphibia
2 T1p, Postcranial ln length 63 internal 3 No 17 1, Nectridea, microsaurs
3 T2s, 107 cranial internal 5 (variant 1, longer internal branches ) No 40 15, Synapsida
4 T2p, Postcranial ln internal 5 (variant 1, longer internal branches ) No 21 7, Synapsida; 4, Nectridea, microsaurs
5 T1swr, 107 cranial internal 3 Westlo reptiliomorph, all taxa Possibly 43 7, Tetrapoda
6 T1pwr, Postcranial ln length 63 internal 3 Westlo reptiliomorph, all taxa No 20 1, Nectridea, microsaurs
7 T2swr, 107 cranial internal 5 Westlo reptiliomorph, all taxa No 40 26, Amphibia
8 T2pwr, Postcranial ln internal 5 Westlo reptiliomorph, all taxa No 24 3, Synapsida
9 T1swa, 107 cranial internal 3 Westlo amphibian, all taxa No 44 5, Amphibia

10 T1pwa, Postcranial ln length 63, internal 3 Westlo amphibian, all taxa No 17 1, Nectridea, microsaurs
11 T2swa, 107 cranial internal 5 Westlo amphibian, all taxa No 41 13, Amphibia; 30, Synapsida
12 T2pwa, Postcranial ln internal 5 Westlo amphibian, all taxa No 22 15, Synapsida
13 T3s, 107 internal 5 (Smithson) No 40 2, Archeria, Eogyrinus
14 T3p, Internal 5 (Smithson) presacral No 22 8, Protorothyrididae
15 T1swa, Solenodonsaurus stem-tetrapod, 107 cranial internal 3 No 43 6, Amphibia
16 T1swa, Solenodonsaurus amphibian 107 cranial internal 3 No 41 12, Amphibia

Average number of shifts 32.3
Average number of shifts for skull 41.5

Average number of shifts for presacral length 20.4

Total 517

Table 2: Shifts in evolutionary trends detected by our new asymmetric parsimony-based method. The
columns give, from left to right, the tree number and name (from the Mesquite Nexus file available as
on-line supplement), whether or not one of the detected shifts supports Carroll’s (1970, 1991) scenario,
the number of changes found, and the location of the shift closest to where Carroll’s (1970, 1991) scenario
predicts changes should be detected. For the latter, the name of the corresponding taxon is given; when
no such name is available, the names of two taxa representing both daughter-branches are given. Note
that out of 517 changes, not a single one unambiguously supports Carroll’s (1970, 1991) scenario, though
one could possibly be interpreted as such. Legend of tree names: a, amphibians; p, presacral length; r,
reptiliomorphs; s, skull; w, Westlothiana; Tree 1 is for skull; Tree 2 is for presacral length; Tree 5 is for
skull but has Westlothiana among reptiliomorphs. Some trees differ only by minimal internal branch
length, a simple tree scaling method that was used in Laurin (2004) to account for the fact that many
internal branches had a minimal length of 0 but were presumably not really of 0 length.

45



Te
tr
ap
od
a

R
ep
til
io
m
or
ph
a

C
ot
yl
os
au
ria

A
m
ni
ot
a

Sa
ur
op
sid
a

Sy
na
ps
id
a

1, T1s
Minimum 6.7 22.0 22.0 22.0 22.0 44.7
Maximum 368.7 368.7 368.7 368.7 151.4 368.7
Maximal plausible 368.7 368.7 53.5 53.5 53.5 67.4

3, T2s
Minimum 6.7 22.0 22.0 22.0 83.1 223.6
Maximum 368.7 368.7 368.7 368.7 290.0 1274.1
Maximal plausible 368.7 368.7 53.5 53.5 223.6 223.6

5, T1swr
Minimum 6.7 18.9 22.0 22.0 22.0 44.7
Maximum 368.7 368.7 368.7 368.7 162.4 368.7
Maximal plausible 368.7 368.7 36.6 36.6 36.6 67.4

6, T2swr
Minimum 6.7 18.9 22.0 22.0 22.0 44.7
Maximum 368.7 368.7 368.7 368.7 151.4 368.7
Maximal plausible 368.7 368.7 53.5 53.5 53.5 79.0

9, T1swa
Minimum 6.7 22.0 22.0 22.0 22.0 44.7
Maximum 368.7 368.7 368.7 368.7 151.4 368.7
Maximal plausible 368.7 368.7 67.4 67.4 67.4 67.4

11, T2swa
Minimum 6.7 22.0 22.0 22.0 22.0 44.7
Maximum 368.7 368.7 368.7 368.7 151.4 368.7
Maximal plausible 368.7 368.7 53.5 53.5 53.5 79.0

13, T3s
Minimum 6.7 18.9 22.0 22.0 22.0 44.7
Maximum 539.2 368.7 368.7 368.7 151.4 368.7
Maximal plausible 539.2 368.7 83.1 83.1 53.5 83.1

T1swa
Solenodonsaurus stem-tetrapod
107 cranial internal 3

Minimum 6.7 6.7 6.7 22.0 22.0 44.7
Maximum 368.7 539.2 539.2 368.7 151.4 368.7
Maximal plausible 368.7 83.1 83.1 53.5 53.5 67.4

T1swa
Solenodonsaurus amphibian
107 cranial internal 3

Minimum 6.7 6.7 22.0 22.0 22.0 44.7
Maximum 368.7 539.2 368.7 368.7 151.4 368.7
Maximal plausible 368.7 539.2 53.5 53.5 53.5 67.4

Table 3: Estimates of cranial length (mm) of selected hypothetical ancestors according to the full possible
range of asymmetry coefficients. For a legend of the meaning of tree names, see Table 2. Maximal
plausible values reflect assumptions on trends. Thus, for Tetrapoda, given that Laurin found no evidence
for trends, all values can be considered. For Amniota and nodes just below or above, given the detected
increase in size, only the lower half of the values need to be considered.
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2, T1p
Minimum 27.7 83.1 83.1 83.1 223.6
Maximum 1274.1 1274.1 1274.1 244.7 1274.1
Maximal plausible 1274.1 1274.1 223.6 223.6 223.6

4, T2p
Minimum 27.7 27.7 83.1 83.1 223.6
Maximum 1274.1 1571.8 1274.1 290.0 1274.1
Maximal plausible 1274.1 1571.8 219.2 244.7 314.2

7, T1pwr
Minimum 27.7 27.7 83.1 83.1 223.6
Maximum 1274.1 1571.8 1274.1 290.0 1274.1
Maximal plausible 1274.1 1571.8 223.6 223.6 223.6

8, T2pwr
Minimum 27.7 27.7 83.1 83.1 223.6
Maximum 1274.1 1571.8 1274.1 290.0 1274.1
Maximal plausible 1274.1 1571.8 184.9 184.9 223.6

10, T1pwa
Minimum 27.7 27.7 83.1 83.1 223.6
Maximum 1274.1 1571.8 1274.1 290.0 1274.1
Maximal plausible 1274.1 1571.8 223.6 223.6 223.6

12, T2pwa
Minimum 27.7 27.7 83.1 83.1 223.6
Maximum 1274.1 1571.8 1274.1 290.0 1274.1
Maximal plausible 1274.1 1571.8 219.2 219.2 223.6

14, T3p
Minimum 27.7 27.7 83.1 83.1 223.6
Maximum 1571.8 1571.8 1274.1 290.0 1274.1
Maximal plausible 1571.8 1571.8 254.7 244.7 314.2

Table 4: Estimates of presacral length (mm) of selected hypothetical ancestors according to the full
possible range of asymmetry coefficients. For a legend of the meaning of tree names, see Table 2. Given
that the presacral length of Solenodonsaurus is unknown, Reptiliomorpha and Cotylosauria correspond
to the same node for this analysis.
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1, T1s
Minimum 34.3 105.1 105.1 105.1 268.3
Maximum 1642.8 1642.8 1642.8 396.1 1642.8
Maximal plausible 1642.8 1327.6 277.1 277.1 291.0

3, T2s
Minimum 34.3 49.6 105.1 166.2 447.3
Maximum 1642.8 1940.5 1642.8 580.1 2548.2
Maximal plausible 1642.8 1625.4 272.7 468.3 537.8

5, T1swr
Minimum 34.3 49.6 105.1 105.1 268.3
Maximum 1642.8 1940.5 1642.8 452.4 1642.8
Maximal plausible 1642.8 1608.4 260.2 260.2 291

6, T2swr
Minimum 34.3 49.6 105.1 105.1 268.3
Maximum 1642.8 1940.5 1642.8 441.4 1642.8
Maximal plausible 1642.8 1625.4 238.5 238.5 302.7

9, T1swa
Minimum 34.3 49.6 105.1 105.1 268.3
Maximum 1642.8 1940.5 1642.8 441.4 1642.8
Maximal plausible 1642.8 1639.2 291.0 291.0 291.0

11, T2swa
Minimum 34.3 49.6 105.1 105.1 268.3
Maximum 1642.8 1940.5 1642.8 441.4 1642.8
Maximal plausible 1642.8 1625.4 272.7 272.7 302.7

13, T3s
Minimum 34.3 49.6 105.1 105.1 268.3
Maximum 2111.0 1940.5 1642.8 441.4 1642.8
Maximal plausible 2111.0 1654.9 337.8 298.2 397.3

Table 5: Estimates of snout-vent length (mm) of selected hypothetical ancestors according to the full
possible range of asymmetry coefficients. This length is obtained by adding the length of the skull from
Table 3 and the presacral length from Table 4; this has been done only for nodes for which both lengths
could be inferred. Only values in bold type are congruent with Carroll’s (1970, 1991) ideas. For a legend
of the meaning of tree names, see Table 2.
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