Biomass char gasification by H2O, CO2 and their mixture: Evolution of chemical, textural and structural properties of the chars

Chamseddine Guizani, Mejdi Jeguirim, Roger Gadiou, Francisco Javier Escudero Sanz, Sylvain Salvador

To cite this version:

HAL Id: hal-01609108
https://hal.archives-ouvertes.fr/hal-01609108
Submitted on 30 Mar 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Biomass char gasification by H$_2$O, CO$_2$ and their mixture: Evolution of chemical, textural and structural properties of the chars

Chamseddine Guizani a, Mejdi Jeguirim b,*, Roger Gadiou b, Fransisco Javier Escudero Sanz a, Sylvain Salvador a

a RAPSODEE, École des Mines d’Albi, Route de Téillet, 81013 Albi CT Cedex 09, France
b Institut de Sciences des Matériaux de Mulhouse – IS2M CNRS UMR7361, 15 rue Jean Starcky, 68057 Mulhouse, France

Keywords:
Char gasification
Char structure
Char surface functional groups
Char texture
Mineral species behaviour

Abstract

The present study aims to understand the phenomenology of char gasification by monitoring the chemical, structural and textural char characteristics through the gasification reaction. Chars from beech wood were gasified under 20%H$_2$O, 20%CO$_2$ and 20%H$_2$O + 20%CO$_2$ in N$_2$ at 900°C. The gasification reactions were stopped at 20%, 50% and 70% of char conversion. The char properties were analysed by different analytical techniques such as temperature programmed desorption coupled to mass spectrometry, Raman spectroscopy, Scanning Electron Microscopy, N$_2$ manometry and X-ray Fluorescence. These analyses provide valuable information on the unfolding of the gasification reactions with H$_2$O, CO$_2$ and their mixtures. In particular, it is noted that H$_2$O and CO$_2$ gasification reactions follow different pathways. Moreover, during mixed atmosphere, despite that the char reactivity can be fairly expressed by summing the two individual reactivities, this apparent additivity appears to be the result of several competitions and synergies between H$_2$O and CO$_2$ reactions.

1. Introduction

Fossil fuel depletion, climate change as well as environmental and human health problems are urging humanity to reconsider its relationship toward natural resources, change its energy policy and adopt a more sober way of living. Biomass as a renewable energy is undoubtedly part of the solution, at least to cope with fossil fuel depletion and mitigate the CO$_2$ emissions in the atmosphere [1]. The thermochemical conversion routes for biomass conversion include combustion for thermal energy generation, pyrolysis for the production of bio-oil and bio-char, liquefaction (mainly for wet biomasses) and gasification for the production of Syngas.

Several biomass resources can be used in gasification reactors, such as woody biomasses or municipal solid wastes, which can be attractive for wastes reduction and valorisation [2][3]. Biomass gasification allows to convert biomass into Syngas mainly composed of CO and H$_2$ [4]. These two molecules can be used afterwards as starting blocks for bio-fuel synthesis in processes such as Fischer-Tropsch catalytic synthesis [5]. Biomass gasification is a generic term encompassing several reactions occurring during the biomass conversion. The biomass gasification includes the biomass drying, pyrolysis and residual char gasification steps. The char gasification is the rate limiting step in biomass gasification reactors.

Biomass char is a porous, carbonaceous, non-organised material. It contains mainly carbon and in lower proportions, oxygen, hydrogen, nitrogen and mineral species such as potassium, calcium, sodium, silicon and magnesium. In biomass gasifiers, the char gasification reaction may take place with O$_2$, H$_2$O, CO$_2$, and H$_2$ following the reaction of combustion, steam gasification, Boudouard reaction and methanation. The gasification reaction is a heterogeneous reaction involving the reactant gas diffusion inside the char, reaction on the char active sites and diffusion of the gas product out of the particle. The reaction can be also catalysed in the presence of minerals such as potassium [6].

Hence, the char porosity, its structural features, the nature of the surface functional groups as well as the presence of catalytic minerals affect its reactivity toward the reactant gas(es). These different char properties affecting the reactivity can be classified in three categories:

- The char textural properties related to the char porosity and pore size distribution
Several studies showed that the char morphology and texture impact the gas diffusion inside the particle. For instance, Avila et al. found correlations between the reactivity and morphology of 10 biomass chars [7]. They observed that biomasscs giving the thickest walled char had the lowest reactivities, while those having the thinnest walled char had the highest reactivities. The authors related their observations to the different resistances to mass and heat transfer in the two char types. Several studies showed that the initial porosity and Total Surface Area (TSA) of chars depend significantly on the pyrolysis conditions (temperature pressure and heating rate) [8]. Indeed, Mermoud et al. observed that high heating rate chars, exhibiting a higher reactivity, have a higher pore volume consisting mainly of mesopores and macropores, while low heating rate chars exhibit a lower pore volume mainly consisting of micropores [8]. Nevertheless, attempts to correlate the initial reactivity (e.g. at a conversion ratio of 5%) of the different chars with their respective TSA were unsuccessful. The authors found that the mesopore and macropore areas are better indicators of the char reactivity.

The textural properties of chars are also strongly modified during the gasification, a noticible increase of porosity and surface area can be observed during the gasification reactions [9] [10] [11]. Reactivity of biomass char can increase up to 10 folds at the end of the reaction compared to the initial stages [12] [6]. This reactivity increase can not be related exclusively to the increase of the TSA, as evidenced by Fu et al. [13]. The authors investigated the evolution of textural and chemical features of a rice husk char during steam gasification and found that the highest TSA was obtained for a conversion of 49%. TSA decreased beyond this conversion level, probably because of pore coalescence and collapsing, but reactivity did not. Similarly, Laine et al. [14] observed that coal chars with nearly the same TSA, have different reactivity. The authors found that the Active Surface Area (ASA), determined by O2 chemisorption on the char surface at 200–300 °C [14,15], is more representative of the reactive surface. Laine et al. measured the evolution of the TSA and ASA of chars during combustion with oxygen and showed the high difference that exists between TSA and ASA [14].

The ASA was found to represent a small fraction of the TSA. Therefore, not all the char surface participates to the gasification reaction. The char Surface Functional Groups (SFG) constitute the reactive sites in the biomass char. A qualitative and quantitative analysis of the char SFG can be done by Temperature Programmed Desorption and gas analysis by Mass spectrometry (TPD-MS) [16–19]. This technique consists of heating the char sample in a high vacuum at a low heating rate. The decomposition of the SFG leads to the emission of CO2, CO, H2O and H2 in a major part. The nature of the char SFG can be determined by analysing the gas emission profiles. Figueiredo et al. [16] or Zhuang et al. [18] used this technique to follow the evolution of coal char functional groups during oxidation with O2, while Klose and Wolski [19] measured the evolution of the CO surface complexes for CO2 and H2O gasification reactions.

The char structure has also an impact on the char reactivity. Char structural ordering is promoted at high temperatures and long soaking time. The more ordered is the char structure, the lower is its reactivity as showed in Ref. [20]. In fact, Asadullah et al. [20] found that the reactivity to oxygen of chars obtained from a mallee wood decreases with increasing the temperature from 700°C to 900°C. The increase of temperature was accompanied by a loss of oxygen functional groups and an ordering of the char. The high levels of oxygen content in biomass fuels foster cross-linking of the carbon chains and inhibits ordering of the char matrix [21]. The loss of oxygen and hydrogen by elimination of functional groups are clear indicators of subsequent coalescence, ordering and rearrangement of aromatic rings. Tay et al. [22] studied the structural features of partially gasified char in different atmospheres containing H2O, CO2 and O2 gasifying agents using FT-Raman spectroscopy. The authors found that the presence of H2O during gasification at 800°C plays a decisive role in the evolution of char structure, in particular by decreasing the relative ratio of the small to large aromatic ring structures in the char. Keown et al. [23] made similar observations and found that the structure of cane trash chars changes drastically after contact with steam. Li et al. [24] also studied the evolution of the char structure during gasification with CO2, H2O and their mixtures using FT-Raman spectroscopy. The structural changes were different in CO2 and H2O atmospheres, char obtained in mixed atmosphere had a structure close to that obtained in H2O atmosphere. The authors concluded that CO2 and H2O gasification reactions follow different pathways.

Another factor influencing the char reactivity is the type and concentration of minerals in the char. Some minerals highly impact the char reactivity as they can catalyse or inhibit the gasification reaction. For instance, K, Ca and Na were found to be catalytic species while Si and P were shown to inhibit the gasification reaction [12,25–30]. The mineral species can migrate during the reaction and form cluster or stay evenly dispersed throughout the char particle [31]. Henriksen et al. [25] showed that the presence of Si hinders the gas from penetrating into the char particle. Si was found to form clusters and block the pore access to the reacting gas. More recently, Dupont et al. [12] found that the char reactivity towards steam can be expressed as the product of kinetic term accounting for temperature and steam partial pressure dependence, and an empirical correlation bearing the concentration of K and Si. In the continuity of the their researchs on the correlation between certain mineral species concentration and the char reactivity, Hognon et al. [27] as well as Dupont et al. [6] also showed that the evolution of the char reactivity during gasification is related to the K/(Si + P) ratio.

This brief literature overview shows that the char reactivity is highly conditioned by the its textural, structural and chemical properties. These characteristics are also highly coupled which makes the task of understanding the gasification reaction mechanisms even more difficult. Several studies focus on the modeling of the char gasification reaction in order to determine the reaction kinetic parameters [32] [33]. Char gasification models are often semi-empirical ones, as they include a term accounting for the changes in the different char properties along the gasification [34], which reflect the ambiguity of this issue. The present work aim at obtaining new insights on this issue by using a deep characterization of the char surface chemistry, structural and textural properties as well as mineral species behaviour during biomass gasification in CO2, H2O and CO2/H2O mixture.

2. Material and methods

2.1. Char preparation

The raw biomass samples are beech wood spheres with a diameter of 20 mm. Proximate and ultimate analysis of the raw wood are shown in Table 1. Low Heating-rate chars were prepared by pyrolysing the wood spheres under nitrogen in a batch reactor. The wood spheres were placed on a metallic plateau, spaced enough to avoid chemical and thermal interactions. The plateau was introduced in the furnace heated zone which was progressively heated from room temperature to 900°C at 5°C/min. The chars
were kept for 1 h at the final temperature, cooled under nitrogen and stored afterwards in a sealed recipient. The low heating rate ensure a good temperature uniformity in the wood particle and leads to a quite homogeneous wood-char, from the structural and chemical viewpoints [8,25,35]. With high heating rates there can be heterogeneity among the char layers from the surface to the particle centre due to the temperature gradient and heat transfer limitations during the pyrolysis stage. After the pyrolysis reaction, the char particles shrink and get an ovoid form. The mean particle diameter, calculated as the average of the three particle dimensions was estimated at 13 mm.

Some of the char particles were afterwards ground with a mortar and a pillar. Char particle having size of 0.2 mm were retained for gasification experiments at 900° C. To ensure of the chemical and structural homogeneity of the char particle, the char structure and chemical composition were analysed at three location: at the surface, at half the distance from the centre and at the centre. Disparities in the elemental composition and Raman signals from the core to the char surface were negligible and showed that the char sample is homogeneous [36].

Table 1
Proximate and ultimate analysis of the raw beech wood (% dry basis).

<table>
<thead>
<tr>
<th>Proximate analysis</th>
<th>Ultimate analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM</td>
<td>Ash</td>
</tr>
<tr>
<td>88.1</td>
<td>0.4</td>
</tr>
</tbody>
</table>

2.2. Char gasification experiments

The Macro-Thermogravimetry experimental device is described in details in Ref. [37]. The apparatus consists of a 2 m long, 75 mm i.d. alumina reactor which is electrically heated, and a weighing system comprising an electronic scale having an accuracy of ±0.1 mg. A metallic stand holding a 1 m long, 2.4 mm external diameter hollow ceramic tube is placed on the electronic scale. The ceramic tube hold the 5 cm diameter platinum basket in which the biomass particles are placed. The gas flow rates are controlled by means of mass flow-meters/controllers. The gas flow inside the reactor is laminar and its average velocity is 0.20 m/s.

For gasification experiments, a wood-char mass of 130–150 mg is spread-out on the whole surface of the 50 mm diameter platinum basket in the form of a thin layer. The surface of the crucible is large enough to allow spreading this mass in the form of a thin layer. The char is directly exposed to the surrounding atmosphere as the platinum basket is simply a circular plane without any side wall. The crucible is introduced in the furnace under a nitrogen flow. The char is kept 5 min under nitrogen before starting the gasification. During this period, the char loses mass in the form of water vapour and light gases. This mass loss was estimated to be less than 6% of its initial mass. This duration is sufficient for the establishment of a thermal and mechanical equilibrium between the weighing system, the furnace and the surrounding gases. Once a constant mass is displayed on the electronic scale, the gasification medium is introduced and the reaction starts. The gasification reactions were performed at 900° C with 20% H₂O, 20% CO₂ and 20% H₂O + 20% CO₂ in nitrogen.

The char conversion level is given by:

\[X_{(t)} = \frac{m_0 - m_{(t)}}{m_0 - m_{ash}} \] \hspace{1cm} (1)

Where \(m_0 \), \(m_{(t)} \) and \(m_{ash} \) are the initial mass of char, the mass at a time \(t \) and the mass of the residual ash, respectively. The char reactivity was calculated over time following the relation:

\[R_{(t)} = \frac{1}{1 - X_{(t)}} \frac{dX_{(t)}}{dt} \] \hspace{1cm} (2)

To follow the evolution of the char properties during the gasification reaction, partially gasified chars were prepared at 20%, 50% and 70% of conversion. Knowing the initial char mass that was introduced in the crucible, the gasification reaction was stopped after reaching the desired conversion level. The gasifying medium flow was directly switched to pure nitrogen and the platinum basket bearing the sample was quickly pulled out toward the reactor colder zone at a temperature near to 180° C. The reacted char was kept in this zone during 4 min to cool before taking it out directly to the ambient atmosphere. Afterwards, the chars were preserved in sealed recipients under nitrogen to avoid chemical transformations of the surface functional groups in air.

In the following sections, the char sample name will be composed by the sequence: ‘gasifying agent’-level of conversion’. For instance, the ‘CO₂-X50’ char sample refers to the char sample obtained after CO₂ gasification up to 50% of conversion. The pristine char (\(X = 0 \)) is named Ref-char.

2.3. Char surface chemistry analysis

The char surface chemistry was investigated via the TPD-MS technique. The TPD-MS experimental bench comprises a quartz tubular reactor electrically heated in which is introduced a quartz crucible containing nearly 20 mg of char, a pumping system to create vacuum and a mass spectrometer for gas analysis. After introducing the char sample in the reactor, the reactor is sealed and outgassed down to 0.013 Pa of pressure by means of a turbo-molecular pump. The sample is afterwards heated up to 900° C at constant rate of 5° C/min and kept at this final temperature during 1 h. During the analysis, the functional groups are removed from the char surface, which results -depending on the nature of the functional groups-in the emission of H₂O, CO₂, CO and H₂ [16,17]. The gases resulting from the SFG decomposition were continuously quantified by a mass spectrometer, which is calibrated for H₂, CO, CO₂, H₂O and N₂. The total pressure of the gas released during the heat treatment was also measured using a Bayard Alpert gauge. This allows performing a mass balance by comparing the sum of partials pressures obtained from the MS analysis with the pressure recorded by the Bayard Alpert gauge. The total amount of each gas released was computed by time integration of the TPD-MS curves.

2.4. Char structural properties

Raman spectroscopy was used to study the structure of the chars during gasification. This technique can provide information about an ‘average structural composition’ of the chars and thus allows a comparison between the different char sample at the different conversion levels. Raman spectra of the chars were recorded with a BX40 LabRam, Jobin Yvon/Horiba spectrometer. Several char particles were sampled and deposited on a rectangular glass slide for the Raman analysis. Raman spectra were obtained by a backscattered configuration with an excitation laser at 635 nm. The Raman spectra were recorded at 6 locations of the char sample. Mean values as well as relative standard deviations were calculated for the different parameters, taking thus into account the heterogeneity among the char sample. For disordered carbons, the Raman spectrum is thought to be the combination of several bands corresponding to different carbonaceous structures. It is often considered as the results of five signals corresponding to five carbonaceous structures [38–42]:
The G band at 1590 cm$^{-1}$: stretching vibration mode with E2g symmetry in the aromatic layers of the graphite crystalline [39].

The D1 band at 1350 cm$^{-1}$: graphitic lattice vibration mode with A1g symmetry and in-plane imperfections such as defects and hetero-atoms.

The D2 band at 1620 cm$^{-1}$: lattice vibration similar to that of the G band. The D2 band results from graphene layers which are not directly sandwiched between two other graphene layers. Sheng [40] reported that the D2 band is always present when the D1 band is present and that its intensity decreases with the increase of the degree of organization in the char.

The D3 band at 1500 cm$^{-1}$: Related to amorphous carbon structures and appears as a very broad band. It is suggested to originate from the amorphous sp3-bonded forms of carbon (organic molecules, fragments or functional groups, in poorly organised materials).

The D4 band at 1200 cm$^{-1}$: appears only in very poorly organised materials, such as soot and coal chars [39,40]. It is attributed to sp2 - sp3 mixed sites at the periphery of crystallites and to C–C and C=C stretching vibrations of polyene-like structures.

The D3 and D4 bands are suggested to be the major reactive sites in the char and thus related to the char reactivity. The deconvolution procedure was performed with a MATLAB [43] program based on the work of Haver et al. [44]. Spectrum fitting was performed following a least square minimization procedure between the raw signal and the calculated one. The Raman signal was deconvolved into 5 bands. Assuming a Gaussian shape for the different bands, the height and width of the different bands were determined in a way to best fit to the experimental signal.

2.5. Textural properties and surface morphology of the chars

The textural properties of the chars were investigated with a Micromeritics ASAP 2020 instrument using N$_2$ adsorbate at 77 K. Prior to the analysis, the char samples were out-gassed overnight in vacuum at 300°C. The Total Surface Area (TSA) was calculated from the BET equation in the relative pressure range of 0.05–0.15 while the micropore volume V_{micro} was estimated by using the a_{0} method. The mesopore volume V_{meso} was obtained by subtracting the micropore volume from the total pore volume of N$_2$ adsorbed at a relative pressure of 0.95. The pore size distribution was determined using the DFT model for carbon slit pores with a finite depth [45].

Scanning electron microscopy (Philips model FEI model Quanta 400 SEM) and energy dispersive X-ray spectrometry (EDX) were used to observe the morphology and the surface elemental analysis of the prepared chars, which allows determining the elemental mapping of the samples.

2.6. Concentrations and behaviours of minerals in the chars

The concentrations of several minerals in the different chars was measured by X-ray fluorescence spectrophotometry using a PHILIPS PW2540 apparatus equipped with a rhodium target X-ray tube and a 4 kW generator. About 100 mg of char were ground and mixed with 200 mg of boric acid, and then pressed into a pellet under a 9 tons pressure for 45 min. The use of boric acid is required to pelletize the char powder since the char has a hydrophobic character and could not be densified without a binder. The acid boric signal is easily eliminated during the XRF analysis. The behaviour of some major mineral species during gasification was analysed using the elemental mapping obtained during the SEM-EDX analysis.

3. Results

3.1. Evolution of the char reactivity

The char reactivity in 20% CO$_2$, 20% H$_2$O and their mixture at 900°C is shown in Fig. 1. The char reactivity towards H$_2$O is nearly twice faster than its reactivity towards CO$_2$. The char reactivity in 20% CO$_2$ + 20% H$_2$O atmosphere is higher than its reactivity in 20% H$_2$O atmosphere, denoting the non-inhibiting character of CO$_2$ when it is co-reacting with steam in such operating conditions. The char reactivity in mixed atmospheres can be fairly described by adding the reactivities obtained in single atmospheres as shown by the dashed line curve in Fig. 1. The experimental mixed atmosphere reactivity is slightly higher than the one obtained by the additive law. However, the approximation is reasonable as this latter is located in the standard deviation zone of the experimental results.

Previous calculations for single atmosphere gasification experiments (20% CO$_2$ or 20% H$_2$O in N$_2$) showed that in these conditions of temperature and char particle size, external as well as in-bed diffusional limitations can be considered as negligible. However, modelling results based on the Thiele modulus approach showed there are slight internal diffusional limitations in single atmospheres (effectiveness factor = 0.92) which would be accentuated when mixing the two gases [36]. In the present cases, the char reactivity would be slightly affected by internal diffusional limitations, especially in the first stages of the reaction for which the porosity is not well developed.

3.2. Evolution of textural properties

3.2.1. Surface morphology

Despite its limited resolution at the micrometer level, SEM imaging allows a direct visualisation of the char surface morphology during gasification. SEM images bear valuable information on the state of the char surface as well as on the development of macroporosity. For the non-gasiﬁed char (Fig. 2), SEM images at the level of cells show a quite smooth surface with the presence of mineral particles evenly dispersed (proven by the EDX analysis).

Considering CO$_2$ gasiﬁcation, we observed that the gasiﬁcation reaction affected almost all the surface in an equivalent way (Fig. 3). Alteration of the char surface is observed at the cell level as well as on its surroundings. The char surface shows clearly an higher porosity development along the gasiﬁcation process. The char gets a spongelike surface at an advanced gasiﬁcation conversion.

In the case of H$_2$O gasiﬁcation, some differences in the char surface morphology were noticed in comparison with CO$_2$.

![Fig. 1. Char reactivity in 20% CO$_2$, 20% H$_2$O and their mixture at 900°C.](attachment:image.png)
gasification. At 20 and 50% of conversion, the char surface was altered at the level of cells and their near periphery while the rest of the surface was almost as intact and smooth as that of the non-gasified char. It is only at $X = 0.7$ that the char surface was seen to be highly affected by the gasification with H_2O.

This difference between the char surface morphologies observed respectively in CO_2 and in H_2O gasification suggests a limited diffusion for CO_2 molecules inside the char particle and an accentuated surface reaction, while H_2O, which has a better diffusivity and a smaller molecular size, would get inside the char matrix and have a more developed volumetric reaction.

Information on micro and mesopores, which are unobservable using the SEM, are unavailable. Nevertheless, one can suspect a high microporosity at the cell surroundings in which H_2O can diffuse and reacts, while it would be inaccessible to the CO_2 molecules which react mainly at the external surface causing its alteration.

The mix-char show a texture at $X = 0.2$ similar to that obtained under H_2O with a porosity mainly appearing around the cell region. At $X = 0.5$, we observed the alteration of the external surface probably due to CO_2 gasification. As for the two precedent char, at $X = 0.7$, the char surface was quite well damaged with a marked spongy-like morphology.

3.2.2. Surface area and porosity

Fig. 4 shows the N_2 adsorption isotherms (left) and pore size distributions (right) of the ref-char, CO_2-chars, H_2O-chars and Mix-chars along the conversion. The adsorption isotherms are presented in log scale to show the low pressure data which correspond to the N_2 adsorption in micropores.
The N_2 uptake increases with the extent of conversion for all chars indicating the extension of porosity due to the gasification reaction. The isotherms are close to the type I for all the chars obtained in CO$_2$ and H$_2$O, indicating that they are almost microporous and that the TSA resides mainly in the micropores [46,47]. Moreover, the conversion up to 20% leads to the increase of the adsorbed volume over the whole relative pressure range $10^{-7} < P/P_0 < 1$. This corresponds to the development of all pore sizes between 0 and 2 nm. For $X > 20\%$, the development of porosity proceeds mainly through the increase of the larger micropores ($10^{-4} < P/P_0 < 10^{-1}$) while the ultra-micropores are only slightly modified. For an equivalent conversion level, the N_2 volume adsorbed in micropores for H$_2$O-chars is higher than for CO$_2$-chars. This indicates that the gasification with H$_2$O is more volumetric than CO$_2$ gasification which confirms the SEM observations. H$_2$O molecules would diffuse much more easily inside the char matrix than CO$_2$ molecules which react more on the surface. Furthermore, H$_2$O-chars show the presence of mesopores especially at 50% and 70% of conversion where the adsorption and desorption isotherm show hysteresis loops ($P/P_0=0.421$). Beyond 50% of conversion, an enlargement of the porosity is noticed for H$_2$O gasification.

For the three atmospheres, the TSA increases almost linearly with the conversion (Table 2). At equivalent conversion levels, the TSA of CO$_2$-chars is always lower than that of the H$_2$O-chars. At $X = 70\%$, the TSA of the char is higher than 1000 m2/g regardless of the atmosphere composition.

The PSD of all chars are shown in the left had-side of the Fig. 4. It can be noticed that for $X > 20\%$, there is a development of ultra-micropores (size below 8 Å) in the three atmospheres. The development of such a narrow microporosity with the extent of reaction in the three atmospheres demonstrates the presence of internal pores in the chars.

Table 2

<table>
<thead>
<tr>
<th>Conversion level (%)</th>
<th>0</th>
<th>20</th>
<th>50</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSA in H$_2$O gasification (m2/g)</td>
<td>437</td>
<td>866</td>
<td>1225</td>
<td>1334</td>
</tr>
<tr>
<td>TSA in CO$_2$ gasification (m2/g)</td>
<td>437</td>
<td>609</td>
<td>842</td>
<td>1028</td>
</tr>
<tr>
<td>TSA in CO$_2$ + H$_2$O gasification (m2/g)</td>
<td>437</td>
<td>824</td>
<td>1174</td>
<td>1332</td>
</tr>
</tbody>
</table>
diffusional limitations during the gasification reactions even at higher conversion levels.

Beyond 20% of conversion, one can notice the development of 11 Å micropores in the case of H2O gasified chars, while one can observe the formation of larger micro pores of and small mesopores for the CO2 gasified chars in the pore size range of 10–40 Å. Also, it can be observed that large mesopores (76–220 Å) are developed in the case of H2O gasification, but not visible in the case of CO2 gasification.

Mix-chars are also highly microporous. The increase of the micropores widths with conversion can also be noticed. The isotherms show also a hysteresis loop denoting the presence of mesopores which are due most probably to steam gasification. The Mix-chars exhibit a higher pore volume than the single atmosphere chars for equivalent conversion levels. This underlies that the gasification reaction occurs in a more volumetric way in mixed atmospheres than in single atmospheres. Similar observations were made by Roman et al. [48] during the physical activation of olive stone chars with CO2, H2O and their mixture. The authors found that the porosity developed in steam gasification was higher than that obtained in CO2 gasification. They also observed that simultaneous use of CO2 and H2O resulted in a high volumes of pores, suggesting a synergistic effect when mixing the two gases.

A worthy fact is that the Mix-chars show a pore size distribution similar to that of the CO2 chars (bimodal distribution), however the pore volume is much more developed in mixed atmosphere gasification. What is also curious in the PSD of Mix-chars is the absence of the 11 Å micropores developed in the case of steam gasification, and the development of larger micropores and small mesopores respectively in the wider ranges of 10–20 Å and 30 to 50 Å. It can be also observed that the larger mesopores are more developed in mixed atmosphere gasification.

Keeping in mind that this bimodal pore size distribution was observed for CO2 gasification, a plausible explanation to these observations may be formulated: in mixed atmosphere gasification, H2O molecules would facilitate the CO2 molecules diffusion to the 11 Å pores. CO2 molecules can then react on and induce their widening. In a similar way, for the 10 to 20 Å and 30 to 50 Å pores, it would be an enhanced CO2 diffusivity inside this porosity in the presence of H2O, which induce their much pronounced development by CO2 gasification.

Fig. 5. Example of Raman fitted spectrum.

Owing to these results, there can be a synergy between the two molecules for the access to the internal surface area of the char. On one hand, CO2 and H2O can compete for the same active sites, which tends to lower the reaction rate, while in the other hand, H2O can facilitate the CO2 diffusion to other active sites, which tends to increase the reaction rate. These results indicate that the situation of mixed atmospheres is likely more complicated than the simple case of an additive law denoting the reaction on separate active sites.

3.3. Evolution of char structure

Raman spectra of the char samples were well represented by the five gaussian bands deconvolution procedure. An example is given in Fig. 5. Over the 60 fitted spectra, the highest relative mean error obtained following this fitting procedure was 3%. The ratios between some major band intensities were used to investigate the char structure evolution during the gasification with CO2, H2O and mixture of the gases. The different peak intensity ratios are plotted in Fig. 6.

For instance, when considering the ratio between the D3 band intensity and D1 band intensity I(D3/I(D1), one can observe that this ratio is almost constant along the gasification reaction with CO2. On the contrary, in a H2O containing atmosphere this ratio decreases markedly denoting the preferential reaction of H2O with the D3 type carbonaceous structures (organic molecules, fragments of functional groups and amorphous sp2 carbon forms), and/or the growth of small rings to bigger ones of D1 type due to H radicals generated by H2O gasification. These H radicals can penetrate into the char matrix and induce the ring condensation. Both phenomena can induce the observed decrease in the I(D3/I(D1) ratio.

The ratio I(D3/I(D1) is constant along the conversion for the CO2 gasification while it decreases in a H2O containing atmosphere. Similar results are reported in the literature on the drastic change of the char structure upon contact with steam [23,24]. The Mix-char structure evolution is similar to that of H2O-char. This similarity can be due to the preponderance of steam gasification reaction in the global carbon gasification process. I(D3/I(D1) increases during the CO2 gasification denoting the reaction of CO2 with G type carbons and/or the condensation of small rings into bigger ones of D1 type. However, the trend was in the opposite way for the H2O gasification, showing the different reaction pathways for the CO2 and H2O gasification reactions.

I(D3/I(D1) shows a decreasing trend for X<50% in the case of H2O gasification, while it increased a bit at X>70% compared to the value obtained for the raw char, in the case of CO2 gasification. At equivalent conversion levels, I(D3/I(D1) was at higher values in the case of CO2 gasification compared to H2O gasification. For the mix-char, the trend was to a slight decrease and the values were located between those obtained in the single atmosphere cases. The D4 band is thought to represent sp2-sp3 sites at the periphery of crystallites and/or C==C, C==C polyene-like structures. These structures seem more reactive in the presence of H2O than in the presence of CO2. I(D4/I(D1) evolution was similar for the three chars. This ratio increased along the gasification denoting the increase of the proportion of graphene layers which are not sandwiched between two other ones.

Altogether, these data shows that CO2 and H2O reactions would follow different pathways. Also, the results obtained for Mix-chars indicate that steam greatly influence the char structure, which tends towards that of H2O chars. This would be related to the predominance of the steam gasification reaction over the CO2 gasification reaction in the case of mixed atmosphere gasification.

3.4. Mineral species

3.4.1. Concentration and behaviour of minerals

The molar concentrations of the main minerals found in the
chars are shown in Fig. 7. The mineral phase of the char after pyrolysis is mainly constituted by Alkali and Alkaline Earth Metals (AAEM) which represent near to 60 mol.% of the minerals. These species are, in order of decreasing concentration: K, Ca and Mg. The Ref-char contains also transition metals such as Zn, Mn and Fe and non-metals such as Si and P.

K, Ca, Mg and P concentrations globally increase along the gasification with CO$_2$, while that of Al and Zn decrease since the early stages of gasification. Besides, for Fe and Si, their concentrations is relatively constant along the reaction. An increasing concentration along the reaction indicates a higher retention in the char while a constant one or a decreasing one indicates that the specie is being rather volatilized. Similarly as for the CO$_2$ gasification, the concentrations of AAEM as well as that of P increase during H$_2$O gasification. One can observe that K, Ca and Mg retention is higher in H$_2$O atmosphere than in CO$_2$ atmosphere which would impact the char reactivity due to the catalytic activity of these species. Zn concentration decreases drastically since the very beginning of the reaction as for CO$_2$ gasification. Al and Fe concentrations increase, which is different from the case of CO$_2$ gasification. One can also notice that Si is more retained in the char than in the case of CO$_2$ gasification. Silicon would volatilize in the presence of CO$_2$ while it remains in the char matrix in the case of steam gasification. This is an important observation since Si is

![Graph](image)

Fig. 6. Peak intensity ratios evolution during the char gasification in CO$_2$, H$_2$O and their mixture.

![Graph](image)

Fig. 7. Molar concentration of minerals in the char (mol.% along the gasification with H$_2$O, CO$_2$ their mixtures.
known to be an inhibitor of gasification.

In mixed atmosphere gasification, one can observe a kind of “intermediate results” lying between those obtained in single atmospheres, denoting the action of H\(_2\)O and CO\(_2\). Si and Al are less retained when CO\(_2\) is injected with H\(_2\)O. Also, Zn concentration decreases less drastically in the presence of CO\(_2\) along with steam.

SEM observations coupled to EDX analysis revealed interesting information about the behaviour of major minerals contained in the chars (data not shown). K and Mg were found to be present in a very diffuse state in the char matrix while Ca was found in the form of big clusters located at the char surface. Similarly, Si was found in the form of big clusters located at the entry of pores. The clusters were seen to contain a mixture of metals, and high concentrations of oxygen are present, indicating that the minerals are in the oxide or carbonate forms. These results are in accordance with the findings of [49]. Dispersion of minerals as well as their nature and concentration play a crucial role in the heterogeneous gasification reactions [28].

3.4.2. Relationship between minerals and char reactivity

The abundance of mineral species in the char is of high importance as some of them (mainly AEH species) play a well-admitted catalytic role in H\(_2\)O and CO\(_2\) gasification [12,27,50]. K, Ca, Mg constitutes active sites on which gasification occurs via several steps including carbonation, de-carbonation and formation of metal oxides among others [28]. While catalytic active species concentrates into the char, the number of active sites increases consequently which may explain the increasing char reactivity along conversion. Other species inhibit the gasification reaction such as Si and P [6,12,27]. Recently, some authors found a correlation between the K/Si ratio and the char reactivity with CO\(_2\) at conversion levels higher than 0.6 [30]. The char reactivity would be thus correlated with some mineral species concentrations. We analysed the possible correlations and found that there were effectively ones for some minerals.

Fig. 8 shows the evolution of the char reactivity with the concentrations of K, Ca and Mg for the different gasification atmospheres. Near linear correlations were found between the char reactivity and the molar concentrations of these species for the different atmospheres.

Similar results were obtained by Ref. [51]. The authors gasified chars from 14 different biomass samples including sawdust, bark and some agricultural wastes under 50 kPa steam at 850°C. The authors found linear correlations between the reactivity at X=0.5 and the sum of K, Na and Ca. They observed that the alkali metals are more effective than Ca. For biomasses with high Si content (rice husks and bagasse), the authors observed much lower reactivities. They assumed that the formation of alkali silicates at low temperatures curtailed the catalytic action of K.

Mermoud et al. [8] found also linear correlation between the initial gasification rate of beech wood char and its ash content. In a more recent study, Hognon et al. [27] reported two typical behaviour of biomass char, those which reactivity decrease along the conversion having a K/Si ratio below one, and those having a K/Si ratio above one exhibiting a constant reactivity or slight decrease followed by reactivity increase beyond 70% of conversion. Si is an inhibitor of the gasification and thought to encapsulate catalytic active species such as K reducing consequently its activity.

The present results show quite interesting potential synergy between CO\(_2\) and H\(_2\)O during gasification as the presence of CO\(_2\) would induce the departure of Si from the char which is an inhibitor in steam gasification.

3.5. Evolution of surface chemistry during gasification

TPD-MS experiments provide interesting information on the surface chemistry of the chars (Fig. 9). The pristine char exhibits a surface chemistry which is typical of an hydrophobic material obtained by pyrolysis of a carbon precursor. The low stability surface groups are mainly carboxyles, which lead to the desorption of CO\(_2\) at low temperature (150–300°C). These functional groups are in relatively low quantities. The main surface chemistry is composed of ether and semi-quinones which decompose to CO at high temperature [16,17]. This low CO\(_2\)/CO ratio is often observed e.g. for activated carbons [52]. The emission of water during the TPD-MS experiments is low. At moderate temperatures (below 500°C), it would related to dehydration reactions between surface groups which form lactones and anhydrides. At a higher temperature, H\(_2\)O can be emitted by the dehydration of a phenol and a carboxylic acid, leading to the formation of lactones. It can also result from the dehydration of two phenol groups forming thus an ether [16,17]. The decomposition of these groups explains in a part the emission of CO and CO\(_2\) between 300 and 600°C. H\(_2\) emission begins at 750°C, it is due mainly to thermal decomposition of C–H bonds.

![Fig. 8. Relationship between the char reactivity and molar concentration of K, Ca and Mg in the char (mol.%) along the gasification with H\(_2\)O, CO\(_2\) and their mixtures.](image-url)
In the temperature range of 150–350 °C corresponding to carboxylic acid decomposition, an increase of CO2 emission is observed for CO2-chars while a decrease is observed for H2O-chars. At higher temperature, corresponding to anhydrides and lactones decomposition [16,17,49,53], the CO2 emission rate increased regardless of the reacting gas composition. This results denotes an increase of acidic functions on the char surface. The increase of the intensity of this peak can be explained by the conversion of some carboxylic groups to anhydrides and lactones [53].

For the different CO2 chars, the CO signal is nearly the same in the temperature range of 20–600 °C. The variation with the conversion level are noticed beyond 600 °C where the peak intensity increases with the conversion level. For all the char samples, the CO signal exhibits a single peak with a maximum at 900 °C, its intensity increases with the conversion level.

It is worth-noting that the CO signal for the CO2 chars fits well with that of the Ref-char in the temperature range of 20–600 °C, while less CO is emitted between 200 °C and 600 °C for the H2O-chars and Mix-chars. The functional groups emitting CO at moderate temperatures are thought to be ethers, anhydrides and phenols, while at high temperatures, quinones decomposition would be responsible of the CO emissions [17]. Thus, anhydrides and phenols may have reacted in the early stages of gasification (X < 20%) in the presence of steam, explaining the observed differences concerning the CO signal. This observation can be correlated with the decrease of I_D3/I_D1 and I_D4/I_D1 ratios for chars gasified in the presence of steam. The D3 and D4 bands results, at least in a part, from anhydrides, ethers and phenols.

H2 peak intensity decreased with the conversion for the CO2 chars. Even the starting of the peak was at higher temperatures for the CO2-X50-char and CO2-X70-char. However, for the H2O-chars and Mix-chars, the H2 signal increases with the conversion. The starting of the peak was at lower temperatures (680–700 °C) than for the CO2-chars. The hydrogen on the chars gasified in presence of steam is likely less severally bonded on the surface than in the case of CO2 gasification. Also, the peak intensity was greater for H2O-chars and Mix-chars than for the CO2-chars. A clear difference is thus noticed on the H2 emissions when CO2 is the gasifying medium. It is likely that CO2 reacts on H sites and reduces consequently the H concentration in the char while the increasing

Fig. 9. Desorption profiles during TPD experiments over the char samples.
quantity of H\(_2\) emitted from H\(_2\)O-chars and mix-chars is related to the continuous hydrogenation of the char surface by the steam gasification reaction.

Fig. 10 shows the evolution of the total emitted amount of H\(_2\)O, CO\(_2\), CO and H\(_2\) from the different char samples. H\(_2\)O emitted quantity increased a bit for the three chars at 20% of conversion and remained almost constant along the conversion except for the Mix-char where it decreased beyond 50% of conversion. The H\(_2\)O-char and Mix-char show a decrease in the emitted CO\(_2\) quantities at 20% of conversion compared to the Ref-char. This can be related to the preferential reaction of H\(_2\)O with phenols, ethers and anhydride functional groups in the first stages of the reaction contributing in the CO\(_2\) emission from the char surface as explained above.

Afterwards, the CO\(_2\) quantity increased steadily with conversion. CO\(_2\) and H\(_2\)O were the minor desorbed species while H\(_2\) and CO emissions were greater by almost 1 order of magnitude. The H\(_2\) emissions decreased with the conversion for the CO\(_2\)-char, from 1.4 \(\mu\)mol/g for the Ref-char to 0.83 \(\mu\)mol/g at 70% of conversion. On the contrary, it increased for the H\(_2\)O-char and Mix-char along the conversion up to 1.9 \(\mu\)mol/g at 70% of conversion. The CO emitted quantity was always higher for the CO\(_2\)-char than in the 2 other chars. It increased a bit from 0.8 \(\mu\)mol/g to nearly 1 \(\mu\)mol/g at 20% of conversion and remained almost constant afterwards. On the contrary, it decreased from 0.8 \(\mu\)mol/g to 0.6 \(\mu\)mol/g for the H\(_2\)O-char and Mix-char at 20% of conversion and then showed an increase trend up to 70% of conversion. These two trends concerning H\(_2\) and CO constitute the main difference between the H\(_2\)O and CO\(_2\) gasification reactions.

What can be noticed when having a global view on the different trends is that the gas evolution for the Mix-char followed always that of the H\(_2\)O-char. In mixed atmosphere gasification, if we consider that H\(_2\)O and CO\(_2\) react independently, near to 70% of the char is converted by the steam gasification reaction as this latter is twice as fast as the Boudouard reaction. This may explain the fact that the mix-char TPD profiles look like that of the H\(_2\)O-char. The fact that the H\(_2\)O-chars and Mix-chars contained more H may be explained by the steam gasification reaction. Water dissociation over the char surface is at the origin of the continuous hydrogenation of the surface [54]:

\[
2\text{C}() + \text{H}_2\text{O} \rightarrow \text{C}(\text{H}) + \text{C}(\text{OH}) \quad (3)
\]

\[
\text{C}(\text{OH}) + \text{C}(\text{H}) \rightarrow \text{C}(\text{H}) + \text{C}(\text{O}) \quad (4)
\]

These reactions explain the formation of semi-quinones which decomposes to CO at high temperature. The emission of H\(_2\) during TPD-MS analysis is then due to the dehydrogenation of two neighbouring C(H) or C(OH) sites following the possible reactions of:

\[
\text{C}(\text{H}) + \text{C}(\text{H}) \rightarrow 2\text{C}() + \text{H}_2 \quad (5)
\]

\[
\text{C}(\text{OH}) + \text{C}(\text{H}) \rightarrow \text{C}(\text{O}) + \text{C}() + \text{H}_2 \quad (6)
\]

\[
\text{C}(\text{OH}) + \text{C}(\text{O}) \rightarrow 2\text{C}(\text{O}) + \text{H}_2 \quad (7)
\]

The decrease of in the H\(_2\) quantities in the CO\(_2\)-chars has likely to do with the absence of hydrogenation reaction and/or reaction of CO\(_2\) on the H sites. The fact that the CO\(_2\)-chars contain more CO emitting groups may be explained by the Boudouard reaction which is constantly providing CO intermediate species on the char surface:

\[
\text{C}() + \text{CO}_2 \rightarrow \text{C}(\text{O}) + \text{CO} \quad (8)
\]

\[
\text{C}() + \text{CO}_2 \rightarrow \text{C}(\text{O}) + \text{C}(\text{CO}) \quad (9)
\]

In H\(_2\)O gasification, intermediate surface groups are more various: C(O), C(CO), C(H) and C(OH). This is why the CO emissions are greater for the CO\(_2\)-chars than the H\(_2\)O-chars at equivalent conversion levels. The same reasoning can be held for the H\(_2\)

![Fig. 10. Cumulated gas quantities emitted during TPD-MS experiments.](image-url)
The work presented aimed at shedding light on the unfolding of the char gasification reaction under H₂O and CO₂ and their mixtures, leaning on a deep characterization of partially gasified chars obtained respectively at 0%, 20%, 50% and 70% of conversion. The char structure, texture, surface chemistry as well as the mineral contents were investigated along the three gasification reactions.

The results showed that H₂O and CO₂ gasification reactions have likely different pathways. The principal characteristics and marked differences between CO₂ and H₂O gasification reactions are summarized in Table 3:

Table 3

<table>
<thead>
<tr>
<th>Minerals</th>
<th>CO₂ gasification</th>
<th>H₂O gasification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Better retention of AAEM species</td>
<td>More CO emitting FG</td>
<td>Less ethers, anhydrides and phenols since the early gasification stages</td>
</tr>
<tr>
<td>Higher retention of Si and Al</td>
<td>Much less hydrogenated char</td>
<td>Differences in peak positions compared to CO₂ gasification</td>
</tr>
<tr>
<td>Texture</td>
<td>Preferential removal of amorphous carbon forms</td>
<td>Lower selectivity towards the carbon forms</td>
</tr>
<tr>
<td>Higher TSA at equivalent X and less damaged surface</td>
<td>Lower TSA and more damaged char surface</td>
<td>Development of mesoporosity besides microporosity</td>
</tr>
<tr>
<td>Preferential development of 1 nm micropores</td>
<td>More laid micropores size</td>
<td>Small micropore size distribution</td>
</tr>
</tbody>
</table>

As the bimodal pore size distribution was observed only for CO₂ chars exhibiting a bimodal distribution, the microporosity and small mesoporosity in the range of 20–50 Å is better developed in mixed atmosphere gasification than in single atmospheres.

There may be consequently a competition between CO₂ and H₂O for the reaction on a part of the active surface, and simultaneously a synergy by an enhancement of the CO₂ internal diffusivity. Also, CO₂ was seen to enhance the departure of Si from the char matrix steam compared to the case of steam gasification. There may be also be synergistic effects in mixed atmosphere gasification due to the action of CO₂ on Si which is known to be an inhibitor of the steam gasification reaction.

As a general conclusion, CO₂ and H₂O reactions would follow different pathways. In mixed atmosphere gasification, these two molecules do not react independently since there are likely several competition and synergy interactions that lead to an apparent additive law of reactivity. Which can thought to be a separate active sites reactions mechanism, is rather a sum of a more complicated competition and synergy interactions that lead to an apparent additive law of reactivity. The additive law observed in the mixed atmosphere gasification Much less hydrogenated char of both reactions. In addition, it was found that the micropore size distributions of Mix-chars tend towards those of CO₂ chars exhibiting a bimodal distribution. The microporosity and small mesoporosity in the range of 20–50 Å is better developed in mixed atmosphere gasification than in single atmospheres.

As a general conclusion, CO₂ and H₂O reactions would follow different pathways. In mixed atmosphere gasification, these two molecules do not react independently since there are likely several competition and synergy interactions that lead to an apparent additive law of reactivity. Which can thought to be a separate active sites reactions mechanism, is rather a sum of a more complicated competition and synergy interactions that lead to an apparent additive law of reactivity. The additive law observed in the mixed atmosphere gasification Much less hydrogenated char of both reactions. In addition, it was found that the micropore size distributions of Mix-chars tend towards those of CO₂ chars exhibiting a bimodal distribution. The microporosity and small mesoporosity in the range of 20–50 Å is better developed in mixed atmosphere gasification than in single atmospheres.

As a general conclusion, CO₂ and H₂O reactions would follow different pathways. In mixed atmosphere gasification, these two molecules do not react independently since there are likely several competition and synergy interactions that lead to an apparent additive law of reactivity. Which can thought to be a separate active sites reactions mechanism, is rather a sum of a more complicated competition and synergy interactions that lead to an apparent additive law of reactivity. The additive law observed in the mixed atmosphere gasification Much less hydrogenated char of both reactions. In addition, it was found that the micropore size distributions of Mix-chars tend towards those of CO₂ chars exhibiting a bimodal distribution. The microporosity and small mesoporosity in the range of 20–50 Å is better developed in mixed atmosphere gasification than in single atmospheres.

The authors want to thanks gratefully for their help: Joseph Dentzer for TPD-MS experiments, Habiba Nouali for textural analysis, Laure Michelin and Ludovic Josien for SEM and X-Ray fluorescence analysis. The authors also acknowledge the French National Research Agency for its financial support in the RECO₂ project. They also wish to express their appreciation to Bernard Auduc for his technical support.

References

Haver Tom O. An introduction to signal processing in chemical analysis. 2009.

Jaggiel Jacek, Olivier James P. 2-DLIDFT adsorption models for carbon slit-shaped pores with surfaceenergical heterogeneity and geometrical corruga-

