B. E. Logan, B. Hamelers, R. A. Rozendal, U. Schrorder, J. Keller et al., Microbial fuel cells: methodology and technology, Environ. Sci. Technol, vol.40, pp.5181-5192, 2006.

D. Pant, G. Van-bogaert, L. Diels, and K. Vanbroekhoven, A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production, Bioresour. Technol, vol.101, pp.1533-1543, 2010.

B. E. Logan and J. M. Regan, Electricity-producing bacterial communities in microbial fuel cells, Trends Microbiol, vol.14, pp.512-518, 2006.

T. Shimoyama, S. Komukai, A. Yamazawa, Y. Ueno, B. E. Logan et al., Electricity generation from model organic wastewater in a cassette-electrode microbial fuel cell, Appl. Microbiol. Biotechnol, vol.80, pp.325-330, 2008.

H. Liu, R. Ramnarayanan, and B. E. Logan, Production of electricity during wastewater treatment using a single chamber microbial fuel cell, Environ. Sci. Technol, vol.38, pp.2281-2285, 2004.

O. Lefebvre, Z. Tan, Y. J. Shen, and H. Y. Ng, Optimization of a microbial fuel cell for wastewater treatment using recycled scrap metals as a cost-effective cathode material, Bioresour. Technol, vol.127, pp.158-164, 2013.

S. V. Mohan, R. Saravanan, S. V. Raghavulu, G. Mohanakrishna, and P. N. Sarma, Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microlora: effect of catholyte, Bioresour. Technol, vol.99, pp.596-603, 2008.

Z. He, S. D. Minteer, and L. T. Angenent, Electricity generation from artificial wastewater using an upflow microbial fuel cell, Environ. Sci. Technol, vol.39, pp.5262-5267, 2005.

P. Kaewkannetra, W. Chiwes, and T. Y. Chiu, Treatment of cassava mill wastewater and production of electricity through microbial fuel cell technology, Fuel, vol.90, pp.2746-2750, 2011.

F. Kargi and S. Eker, Electricity generation with simultaneous wastewater treatment by a microbial fuel cell (MFC) with Cu and Cu-Au electrodes, J. Chem. Technol. Biotechnol, vol.82, pp.658-662, 2007.

V. R. Nimje, C. Y. Chen, H. R. Chen, C. C. Chen, Y. M. Huang et al., Comparative bioelectricity production from various wastewaters in microbial fuel cells using mixed cultures and a pure strain of Shewanella oneidensis, Bioresour. Technol, vol.104, pp.315-323, 2012.

D. Suor, J. X. Ma, Z. W. Wang, Y. L. Li, J. X. Tang et al., Enhanced power production from waste activated sludge in rotating-cathode microbial fuel cells: the effects of aquatic worm predation, Chem. Eng. J, vol.248, pp.415-421, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01685413

Z. W. Wang, X. J. Mei, J. X. Ma, and Z. C. Wu, Recent advances in microbial fuel cells integrated with sludge treatment, Chem. Eng. Technol, vol.35, pp.1733-1743, 2012.

Z. Ge, F. Zhang, J. Grimaud, J. Hurst, and Z. He, Long-term investigation of microbial fuel cells treating primary sludge or digested sludge, Bioresour. Technol, vol.136, pp.509-514, 2013.

J. Jiang, Q. Zhao, J. Zhang, G. Zhang, and D. J. Lee, Electricity generation from biotreatment of sewage sludge with microbial fuel cell, Bioresour. Technol, vol.100, pp.5808-5812, 2009.

Z. W. Wang, J. X. Ma, Y. L. Xu, H. G. Yu, and Z. C. Wu, Power production from different types of sewage sludge using microbial fuel cells: a comparative study with energetic and microbiological perspectives, J. Power Sources, vol.235, pp.280-288, 2013.

, Directive_2008/98/EC, Directive_2008/98/EC of the European Parliament and of the council on waste and repealing certain directives, p.312, 2008.

R. Ademe, trier et valoriser les biodéchets des gros producteurs, Ademe Report 2013, pp.1-132

C. S. Lin, L. A. Pfaltzgraff, L. Herrero-davila, E. B. Mubofu, S. Abderrahim et al.,

R. Mohamed, R. Brocklesby, and . Luque, Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective, Energy Environ. Sci, vol.6, pp.426-464, 2013.

J. Parfitt, M. Barthel, and S. Macnaughton, Food waste within food supply chains: quantification and potential for change to 2050, Phil. Trans. R. Soc. B, vol.365, pp.3065-3081, 2010.
DOI : 10.1098/rstb.2010.0126

URL : http://rstb.royalsocietypublishing.org/content/365/1554/3065.full.pdf

S. Jung and J. M. Regan, Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors, Appl. Microbiol. Biotechnol, vol.77, pp.393-402, 2007.

S. B. Velasquez-orta, E. Yu, K. P. Katuri, I. M. Head, T. P. Curtis et al., Evaluation of hydrolysis and fermentation rates in microbial fuel cells, Appl. Microbiol. Biotechnol, vol.90, pp.789-798, 2011.

T. H. Yang, M. V. Coppi, D. R. Lovley, and J. Sun, Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation, Microb. Cell Factories, vol.9, 2010.

S. Freguia, K. Rabaey, Z. G. Yuan, and J. Keller, Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes, Environ. Sci. Technol, vol.42, pp.7937-7943, 2008.

P. K. Barua and D. Deka, Electricity generation from biowaste based microbial fuel cells, International Journal of Energy, Information and Communications, vol.1, pp.77-92, 2010.

M. Rimboud, D. Pocaznoi, B. Erable, and A. Bergel, Electroanalysis of microbial anodes for bioelectrochemical systems: basics, progress and perspectives, Phys. Chem. Chem. Phys, vol.16, pp.16349-16366, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01250378

Y. Liu, F. Harnisch, K. Fricke, R. Sietmann, and U. Schroder, Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure, Biosens. Bioelectron, vol.24, pp.1006-1011, 2008.

J. G. Caporaso, C. L. Lauber, W. A. Walters, D. Berg-lyons, C. A. Lozupone et al., Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.4516-4522, 2011.

J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman et al., QIIME allows analysis of high-throughput community sequencing data, Nat. Methods, vol.7, pp.335-336, 2010.

J. G. Caporaso, K. Bittinger, F. D. Bushman, T. Z. Desantis, G. L. Andersen et al., PyNAST: a flexible tool for aligning sequences to a template alignment, Bioinformatics, vol.26, pp.266-267, 2010.

C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer et al., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucleic Acids Res, vol.41, pp.590-596, 2013.
DOI : 10.1093/nar/gks1219

URL : https://academic.oup.com/nar/article-pdf/41/D1/D590/3690367/gks1219.pdf

B. J. Haas, D. Gevers, A. M. Earl, M. Feldgarden, D. V. Ward et al., Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons, Genome Res, vol.21, pp.494-504, 2011.
DOI : 10.1101/gr.112730.110

URL : http://genome.cshlp.org/content/21/3/494.full.pdf

R. C. Edgar, Search and clustering orders of magnitude faster than BLAST, Bioinformatics, vol.26, pp.2460-2461, 2010.

Q. Wang, G. M. Garrity, J. M. Tiedje, and J. R. Cole, Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy, Appl. Environ. Microbiol, vol.73, pp.5261-5267, 2007.

J. R. Cole, Q. Wang, E. Cardenas, J. Fish, B. Chai et al., The Ribosomal Database Project: improved alignments and new tools for rRNA analysis, Nucleic Acids Res, vol.37, pp.141-145, 2009.

W. Ludwig, O. Strunk, R. Westram, L. Richter, H. Meier et al., ARB: a software environment for sequence data, Nucleic Acids Res, vol.32, pp.1363-1371, 2004.
DOI : 10.1093/nar/gkh293

URL : https://academic.oup.com/nar/article-pdf/32/4/1363/6258500/gkh293.pdf

B. Cercado-quezada, M. L. Delia, and A. Bergel, Treatment of dairy wastes with a microbial anode formed from garden compost, J. Appl. Electrochem, vol.40, pp.225-232, 2010.

B. Cercado-quezada, M. L. Delia, and A. Bergel, Electrochemical micro-structuring of graphite felt electrodes for accelerated formation of electroactive biofilms on microbial anodes, Electrochem. Commun, vol.13, pp.440-443, 2011.

S. F. Ketep, E. Fourest, and A. Bergel, Experimental and theoretical characterization of microbial bioanodes formed in pulp and paper mill effluent in electrochemically controlled conditions, Bioresour. Technol, vol.149, pp.117-125, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00877725

L. Zhuang, Q. Chen, S. G. Zhou, Y. Yuan, and H. R. Yuan, Methanogenesis control using 2-bromoethanesulfonate for enhanced power recovery from sewage sludge in aircathode microbial fuel cells, Int. J. Electrochem. Sci, vol.7, pp.6512-6523, 2012.

K. J. Chae, M. J. Choi, K. Y. Kim, F. F. Ajayi, W. Park et al., Methanogenesis control by employing various environmental stress conditions in two-chambered microbial fuel cells, Bioresour. Technol, vol.101, pp.5350-5357, 2010.

K. J. Chae, M. J. Choi, J. W. Lee, K. Y. Kim, and I. S. Kim, Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells, Bioresour. Technol, vol.100, pp.3518-3525, 2009.

R. S. Renslow, J. T. Babauta, A. C. Dohnalkova, M. I. Boyanov, K. M. Kemner et al., Metabolic spatial variability in electrode-respiring Geobacter sulfurreducens biofilms, Energy Environ. Sci, vol.6, pp.1827-1836, 2013.

B. Virdis, D. Millo, B. C. Donose, and D. J. Batstone, Real-time measurements of the redox states of c-type cytochromes in electroactive biofilms: a confocal resonance raman microscopy study, PLoS One, vol.9, 2014.

E. Blanchet, B. Erable, A. Bergel, E. Desmond, A. Bridier et al., Improvement of Microbial Anode Performances for Treatment and Valorization of Organic Wastes, 2014.

A. Baudler, S. Riedl, and U. Schröder, Long-term performance of primary and secondary electroactive biofilms using layered corrugated carbon electrodes, Front. Energy Res, vol.2, pp.1-6, 2014.

A. Janicek, Y. Fan, and H. Liu, Design of microbial fuel cells for practical application: a review and analysis of scale-up studies, Biofuels, vol.5, pp.79-92, 2014.

. Degrémont, , 2005.

S. X. Teng, Z. H. Tong, W. W. Li, S. G. Wang, G. P. Sheng et al., Electricity generation from mixed volatile fatty acids using microbial fuel cells, Appl. Microbiol. Biotechnol, vol.87, pp.2365-2372, 2010.

J. W. Zhang, E. R. Zhang, K. Scott, and J. G. Burgess, Enhanced electricity production by use of reconstituted artificial consortia of estuarine bacteria grown as biofilms, Environ. Sci. Technol, vol.46, pp.2984-2992, 2012.

P. G. Dennis, K. Guo, M. Imelfort, P. Jensen, G. W. Tyson et al., Spatial uniformity of microbial diversity in a continuous bioelectrochemical system, Bioresour. Technol, vol.129, pp.599-605, 2013.

S. Freguia, E. H. Teh, N. Boon, K. M. Leung, J. Keller et al., Microbial fuel cells operating on mixed fatty acids, vol.101, pp.1233-1238, 2010.

A. M. Speers and G. Reguera, Electron donors supporting growth and electroactivity of Geobacter sulfurreducens anode biofilms, Appl. Environ. Microbiol, vol.78, pp.437-444, 2012.

S. Y. Chen and X. Z. Dong, Proteiniphilum acetatigenes gen. nov., sp nov., from a UASB reactor treating brewery wastewater, Int. J. Syst. Evol. Microbiol, vol.55, pp.2257-2261, 2005.

A. Grabowski, B. J. Tindall, V. Bardin, D. Blanchet, and C. Jeanthon, Petrimonas sulfuriphila gen. nov., sp nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir, Int. J. Syst. Evol. Microbiol, vol.55, pp.1113-1121, 2005.

A. E. Rotaru, R. Schauer, C. Probian, M. Mussmann, and J. Harder, Visualization of candidate division OP3 cocci in limonene-degrading methanogenic cultures, J. Microbiol. Biotechnol, vol.22, pp.457-461, 2012.

Z. Kimura and S. Okabe, Acetate oxidation by syntrophic association between Geobacter sulfurreducens and a hydrogen-utilizing exoelectrogen, ISME J, vol.7, pp.1472-1482, 2013.

K. Rabaey, G. Lissens, S. D. Siciliano, and W. Verstraete, A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency, Biotechnol. Lett, vol.25, pp.1531-1535, 2003.

J. R. Kim, B. Min, and B. E. Logan, Evaluation of procedures to acclimate a microbial fuel cell for electricity production, Appl. Microbiol. Biotechnol, vol.68, pp.23-30, 2005.