A. Van-vliet, Next generation sequencing of microbial transcriptomes: challenges and opportunities, FEMS Microbiol Lett, vol.302, pp.1-7, 2010.

J. P. Creecy and T. Conway, Quantitative bacterial transcriptomics with RNA-seq, Curr Opin Microbiol, vol.0, pp.133-140, 2015.

J. Frias-lopez, Y. Shi, G. W. Tyson, M. L. Coleman, S. C. Schuster et al., Microbial community gene expression in ocean surface waters, Proc Natl Acad Sci, vol.105, pp.3805-3815, 2008.

J. A. Gilbert, D. Field, Y. Huang, R. Edwards, W. Li et al., Detection of large numbers of novel sequences in the Metatranscriptomes of complex marine microbial communities, PLoS One, vol.3, p.3042, 2008.

F. E. Rey, J. J. Faith, J. Bain, M. J. Muehlbauer, R. D. Stevens et al., Dissecting the in vivo metabolic potential of two human gut Acetogens, J Biol Chem, vol.285, pp.22082-90, 2010.

P. J. Turnbaugh, C. Quince, J. J. Faith, A. C. Mchardy, T. Yatsunenko et al., Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins, Proc Natl Acad Sci U S A, vol.107, pp.7503-7511, 2010.

P. C. Rowe, E. Orrbine, H. Lior, G. A. Wells, E. Yetisir et al., Risk of hemolytic uremic syndrome after sporadic Escherichia Coli O157:H7 infection: results of a Canadian collaborative study, J Pediatr, vol.132, pp.777-82, 1998.

B. Tserenpuntsag, H. Chang, P. F. Smith, and D. L. Morse, Hemolytic uremic syndrome risk and Escherichia Coli O157:H7, Emerg Infect Dis, vol.11, pp.1955-1962, 2005.

B. Sarimehmetoglu, M. H. Aksoy, N. D. Ayaz, Y. Ayaz, O. Kuplulu et al., Detection of Escherichia Coli O157:H7 in ground beef using immunomagnetic separation and multiplex PCR, Food Control, vol.20, pp.357-61, 2009.

D. G. Renter, J. M. Sargeant, R. D. Oberst, and M. Samadpour, Diversity, frequency, and persistence of Escherichia Coli O157 strains from range cattle environments, Appl Environ Microbiol, vol.69, pp.542-549, 2003.

G. A. Barkocy-gallagher, T. M. Arthur, M. Rivera-betancourt, X. Nou, S. D. Shackelford et al., Seasonal prevalence of Shiga toxin-producing Escherichia Coli, including O157:H7 and non-O157 serotypes, and salmonella in commercial beef processing plants, J Food Prot, vol.66, pp.1978-86, 2003.

, The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in, European Food Safety Authority, 2014.

J. Efsa, , vol.13, 2015.

L. A. King, E. Loukiadis, P. Mariani-kurkdjian, S. Haeghebaert, F. Weill et al., Foodborne transmission of sorbitol-fermenting Escherichia Coli O157: [H7] via ground beef: an outbreak in northern France, Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis, vol.20, pp.1136-1180, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-02025475

M. Kostrzynska and A. Bachand, Use of microbial antagonism to reduce pathogen levels on produce and meat products: a review, Can J Microbiol, vol.52, pp.1017-1043, 2006.

H. A. Hartmann, T. Wilke, and R. Erdmann, Efficacy of bacteriocin-containing cellfree culture supernatants from lactic acid bacteria to control listeria monocytogenes in food, Int J Food Microbiol, vol.146, pp.192-201, 2011.

W. Galia, P. Mariani-kurkdjian, E. Loukiadis, S. Blanquet-diot, F. Leriche et al., Genome sequence and annotation of a human infection isolate of Escherichia Coli O26:H11 involved in a raw milk cheese outbreak, Genome Announc, vol.3, 2015.

L. W. Riley, R. S. Remis, S. D. Helgerson, H. B. Mcgee, J. G. Wells et al., Hemorrhagic colitis associated with a rare Escherichia Coli serotype, N Engl J Med, vol.308, pp.681-686, 1983.

S. Perelle, F. Dilasser, J. Grout, and P. Fach, Detection by 5?-nuclease PCR of Shigatoxin producing Escherichia Coli O26, O55, O91, O103, O111, O113, O145 and O157:H7, associated with the world's most frequent clinical cases, Mol Cell Probes, vol.18, pp.185-92, 2004.

E. D. Berry and M. Koohmaraie, Effect of different levels of beef bacterial microflora on the growth and survival of Escherichia Coli O157:H7 on beef carcass tissue, J Food Prot, vol.64, pp.1138-1182, 2001.

R. Andreotti, P. De-león, A. A. Dowd, S. E. Guerrero, F. D. Bendele et al., Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplusthrough tag-encoded pyrosequencing, BMC Microbiol, vol.11, issue.6, 2011.

P. D. Schloss, S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann et al., Introducing mothur: open-source, platform-independent, communitysupported software for describing and comparing microbial communities, Appl Environ Microbiol, vol.75, pp.7537-7578, 2009.

E. Pruesse, C. Quast, K. Knittel, B. M. Fuchs, W. Ludwig et al., SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB, Nucleic Acids Res, vol.35, pp.7188-96, 2007.

G. Bacci, A. Bani, M. Bazzicalupo, M. T. Ceccherini, M. Galardini et al., Evaluation of the performances of ribosomal database project (RDP) classifier for taxonomic assignment of 16S rRNA Metabarcoding sequences generated from Illumina-Solexa NGS, J Genomics, vol.3, pp.36-45, 2015.

Q. Wang, G. M. Garrity, J. M. Tiedje, and J. R. Cole, Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy, Appl Environ Microbiol, vol.73, pp.5261-5268, 2007.

E. M. Nielsen and M. T. Andersen, Detection and characterization of verocytotoxinproducing Escherichia Coli by automated 5? nuclease PCR assay, J Clin Microbiol, vol.41, pp.2884-93, 2003.

A. Schroeder, O. Mueller, S. Stocker, R. Salowsky, M. Leiber et al., The RIN: an RNA integrity number for assigning integrity values to RNA measurements, BMC Mol Biol, vol.7, p.3, 2006.

J. Z. Levin, M. Yassour, X. Adiconis, C. Nusbaum, D. A. Thompson et al., Comprehensive comparative analysis of strand-specific RNA sequencing methods, Nat Methods, vol.7, pp.709-724, 2010.

D. Parkhomchuk, T. Borodina, V. Amstislavskiy, M. Banaru, L. Hallen et al., Transcriptome analysis by strand-specific sequencing of complementary DNA, Nucleic Acids Res, vol.37, p.123, 2009.

D. Blankenberg, V. Kuster, G. Coraor, N. Ananda, G. Lazarus et al., Galaxy: a web-based genome analysis tool for experimentalists, Curr. Protoc. Mol. Biol

B. Giardine, C. Riemer, R. C. Hardison, R. Burhans, L. Elnitski et al., Galaxy: a platform for interactive large-scale genome analysis, Genome Res, vol.15, pp.1451-1456, 2005.

J. Goecks, A. Nekrutenko, J. Taylor, and . Galaxy, Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences, Genome Biol, vol.11, p.86, 2010.

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnetjournal, vol.17, pp.10-12, 2011.

A. M. Bolger, M. Lohse, and B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinforma Oxf Engl, vol.30, pp.2114-2134, 2014.

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biol, vol.10, p.25, 2009.

S. Anders, P. T. Pyl, and W. Huber, HTSeq-a python framework to work with highthroughput sequencing data, Bioinformatics, vol.31, pp.166-175, 2015.

N. T. Perna, G. Plunkett, V. Burland, B. Mau, J. D. Glasner et al., Genome sequence of enterohaemorrhagic Escherichia Coli O157:H7, Nature, vol.409, pp.529-562, 2001.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. bioRxiv, p.2832, 2014.

S. Anders and W. Huber, Differential expression analysis for sequence count data, Genome Biol, vol.11, p.106, 2010.

Y. H. Yh-benjamini, Controlling the false discovery rate -a practical and powerful approach to multiple testing, J R Stat Soc Ser B, vol.57, pp.289-300, 1995.

D. Vallenet, E. Belda, A. Calteau, S. Cruveiller, S. Engelen et al., MicroScopean integrated microbial resource for the curation and comparative analysis of genomic and metabolic data, Nucleic Acids Res, vol.41, pp.636-683, 2013.

J. J. Leisner, B. G. Laursen, H. Prévost, D. Drider, and P. Dalgaard, Carnobacterium: positive and negative effects in the environment and in foods, FEMS Microbiol Rev, vol.31, pp.592-613, 2007.

B. J. Haas, M. Chin, C. Nusbaum, B. W. Birren, and J. Livny, How deep is deep enough for RNA-Seq profiling of bacterial transcriptomes?, BMC Genomics, vol.13, p.734, 2012.

H. Tao, C. Bausch, C. Richmond, F. R. Blattner, and T. Conway, Functional genomics: expression analysis of Escherichia Coli growing on minimal and Rich Media, J Bacteriol, vol.181, pp.6425-6465, 1999.

C. F. Chen, J. Lan, M. Korovine, Z. Q. Shao, L. Tao et al., Metabolic regulation of Irp gene expression in Escherichia Coli K-12, Microbiology, vol.143, pp.2079-84, 1997.

J. M. Dong, J. S. Taylor, D. J. Latour, S. Iuchi, and E. C. Lin, Three overlapping lct genes involved in L-lactate utilization by Escherichia Coli, J Bacteriol, vol.175, pp.6671-6679, 1993.

S. T. Cole, K. Eiglmeier, S. Ahmed, N. Honore, L. Elmes et al., Nucleotide sequence and gene-polypeptide relationships of the glpABC operon encoding the anaerobic sn-glycerol-3-phosphate dehydrogenase of Escherichia Coli K-12, J Bacteriol, vol.170, pp.2448-56, 1988.

Y. Bertin, C. Deval, A. De-la-foye, L. Masson, V. Gannon et al., The gluconeogenesis pathway is involved in maintenance of Enterohaemorrhagic Escherichia Coli O157:H7 in bovine intestinal content, PLoS One, vol.9, p.98367, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01190039

E. Z. Baum, S. M. Crespo-carbone, D. Abbanat, B. Foleno, A. Maden et al., Utility of muropeptide ligase for identification of inhibitors of the cell wall biosynthesis enzyme MurF, Antimicrob Agents Chemother, vol.50, pp.230-236, 2006.

E. Z. Baum, S. M. Crespo-carbone, A. Klinger, B. D. Foleno, I. Turchi et al., A MurF inhibitor that disrupts cell wall biosynthesis in Escherichia Coli, Antimicrob Agents Chemother, vol.51, pp.4420-4426, 2007.

E. Z. Baum, S. M. Crespo-carbone, B. D. Foleno, L. D. Simon, J. Guillemont et al., MurF inhibitors with antibacterial activity: effect on muropeptide levels, Antimicrob Agents Chemother, vol.53, pp.3240-3247, 2009.

C. Paradis-bleau, A. Lloyd, F. Sanschagrin, T. Clarke, A. Blewett et al., Phage display-derived inhibitor of the essential cell wall biosynthesis enzyme MurF, BMC Biochem, vol.9, p.33, 2008.

M. D. Gonzalez, E. A. Akbay, D. Boyd, and J. Beckwith, Multiple interaction domains in FtsL, a protein component of the widely conserved bacterial FtsLBQ cell division complex, J Bacteriol, vol.192, pp.2757-68, 2010.

B. Liu, L. Persons, L. Lee, and P. De-boer, Roles for both FtsA and the FtsBLQ subcomplex in FtsN-stimulated cell constriction in E scherichia coli: cell fission regulation by FtsN, FtsA and FtsBLQ Mol Microbiol, vol.95, pp.945-70, 2015.

M. Tsang and T. G. Bernhardt, A role for the FtsQLB complex in cytokinetic ring activation revealed by an ftsL allele that accelerates division, Mol Microbiol, vol.95, pp.925-969, 2015.

S. A. Palumbo, A. Pickard, and J. E. Call, Population changes and Verotoxin production of Enterohemorrhagic Escherichia Coli strains inoculated in milk and ground beef held at low temperatures, J Food Prot, vol.60, pp.746-50, 1997.

L. Vold, A. Holck, Y. Wasteson, and H. Nissen, High levels of background flora inhibits growth of Escherichia Coli O157:H7 in ground beef, Int J Food Microbiol, vol.56, pp.219-244, 2000.

J. Hsu, J. Arcot, and A. Ln, Nitrate and nitrite quantification from cured meat and vegetables and their estimated dietary intake in Australians, Food Chem, vol.115, pp.334-343, 2009.

K. Honikel, The use and control of nitrate and nitrite for the processing of meat products, Meat Sci, vol.78, pp.68-76, 2008.

W. P. Hammes, Metabolism of nitrate in fermented meats: the characteristic feature of a specific group of fermented foods, Food Microbiol, vol.29, pp.151-157, 2012.

R. Gaupp, N. Ledala, and G. A. Somerville, Staphylococcal response to oxidative stress, Front Cell Infect Microbiol, vol.2, p.33, 2012.

N. A. Filenko, D. F. Browning, and J. A. Cole, Transcriptional regulation of a hybrid cluster (prismane) protein, Biochem Soc Trans, vol.33, pp.195-202, 2005.

J. Flatley, J. Barrett, S. T. Pullan, M. N. Hughes, J. Green et al., Transcriptional responses of Escherichia Coli to S-nitrosoglutathione under defined chemostat conditions reveal major changes in methionine biosynthesis, J Biol Chem, vol.280, pp.10065-72, 2005.

A. M. Gardner, R. A. Helmick, and P. R. Gardner, Flavorubredoxin, an inducible catalyst for nitric oxide reduction and detoxification in Escherichia Coli, J Biol Chem, vol.277, pp.8172-8179, 2002.

M. I. Hutchings, N. Mandhana, and S. Spiro, The NorR protein of Escherichia Coli activates expression of the Flavorubredoxin gene norV in response to reactive nitrogen species, J Bacteriol, vol.184, pp.4640-4643, 2002.

M. C. Justino, J. B. Vicente, M. Teixeira, and L. M. Saraiva, New genes implicated in the protection of anaerobically grown Escherichia Coli against nitric oxide, J Biol Chem, vol.280, pp.2636-2679, 2005.

V. Roos and P. Klemm, Global gene expression profiling of the asymptomatic bacteriuria Escherichia Coli strain 83972 in the human urinary tract, Infect Immun, vol.74, pp.3565-75, 2006.

F. T. Gates, L. S. Endonuclease-v-of-escherichia, and . Coli, J Biol Chem, vol.252, pp.1647-53, 1977.

G. Guo, Y. Ding, and B. Weiss, Nfi, the gene for endonuclease V in Escherichia Coli K-12, J. Bacteriol, vol.179, pp.310-316, 1997.

B. Weiss, Endonuclease V of Escherichia coli prevents mutations from nitrosative deamination during nitrate/nitrite respiration, Mutat Res Repair, vol.461, pp.301-310, 2001.

S. S. Bilge, J. C. Vary, S. F. Dowell, and P. I. Tarr, Role of the Escherichia Coli O157:H7 O side chain in adherence and analysis of an rfb locus, Infect Immun, vol.64, pp.4795-801, 1996.

A. Ravichandran, N. Sugiyama, M. Tomita, S. Swarup, and Y. Ishihama, Ser/Thr/Tyr phosphoproteome analysis of pathogenic and non-pathogenic pseudomonas species, Proteomics, vol.9, pp.2764-75, 2009.

R. Ge and W. S. , Bacterial Phosphoproteomic analysis reveals the correlation between protein phosphorylation and bacterial pathogenicity, Genomics Proteomics Amp Bioinforma, vol.9, pp.119-146, 2011.

C. Jers, B. Soufi, C. Grangeasse, J. Deutscher, and I. Mijakovic, Phosphoproteomics in bacteria: towards a systemic understanding of bacterial phosphorylation networks, Expert Rev Proteomics, vol.5, pp.619-646, 2008.

B. Kenny, R. Devinney, M. Stein, D. J. Reinscheid, E. A. Frey et al., Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells, Cell, vol.91, pp.511-520, 1997.

B. Soufi, C. Jers, M. E. Hansen, D. Petranovic, and I. Mijakovic, Insights from site-specific phosphoproteomics in bacteria, Biochim Biophys Acta, pp.186-92, 1784.

J. A. Snyder, B. J. Haugen, E. L. Buckles, C. V. Lockatell, D. E. Johnson et al., Transcriptome of Uropathogenic Escherichia Coli during urinary tract infection, Infect Immun, vol.72, pp.6373-81, 2004.

P. T. Chivers and R. T. Sauer, Regulation of high affinity nickel uptake in bacteria Ni2+ ?DEPENDENT INTERACTION OF NikR WITH WILD-TYPE AND MUTANT OPERATOR SITES, J Biol Chem, vol.275, pp.19735-19776, 2000.

K. D. Pina, V. Desjardin, M. Mandrand-berthelot, G. Giordano, and L. Wu, Isolation and characterization of thenikR gene encoding a nickel-responsive regulator inEscherichia coli, J Bacteriol, vol.181, pp.670-674, 1999.

A. Rodrigue, G. Effantin, and M. Mandrand-berthelot, Identification of rcnA (yohM), a nickel and cobalt resistance gene in Escherichia Coli, J Bacteriol, vol.187, pp.2912-2918, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01760902

T. C. Marlovits, W. Haase, C. Herrmann, S. G. Aller, and V. M. Unger, The membrane protein FeoB contains an intramolecular G protein essential for Fe(II) uptake in bacteria, Proc Natl Acad Sci, vol.99, pp.16243-16251, 2002.

L. Zhao, X. Chen, X. Zhu, W. Yang, L. Dong et al., Prevalence of virulence factors and antimicrobial resistance of uropathogenic Escherichia Coli in Jiangsu province (China), Urology, vol.74, pp.702-709, 2009.

B. Van-hove, H. Staudenmaier, and V. Braun, Novel two-component transmembrane transcription control: regulation of iron dicitrate transport in Escherichia Coli K-12, J Bacteriol, vol.172, pp.6749-58, 1990.

S. B. Levy, Active efflux, a common mechanism for biocide and antibiotic resistance, Symp Ser Soc Appl Microbiol, pp.65-71, 2002.

W. L. Parker, M. L. Rathnum, J. S. Wells, W. H. Trejo, P. A. Principe et al., SQ 27,860, a simple carbapenem produced by species of Serratia and Erwinia, J. Antibiot. (Tokyo), vol.35, pp.653-60, 1982.

R. Van-houdt, P. Moons, A. Aertsen, A. Jansen, K. Vanoirbeek et al., Characterization of a luxI/luxR-type quorum sensing system and N-acylhomoserine lactone-dependent regulation of exo-enzyme and antibacterial component production in Serratia plymuthica RVH1, Res Microbiol, vol.158, pp.150-158, 2007.

S. J. Coulthurst, N. R. Williamson, A. Harris, D. R. Spring, and G. Salmond, Metabolic and regulatory engineering of Serratia Marcescens: mimicking phage-mediated horizontal acquisition of antibiotic biosynthesis and quorum-sensing capacities, Microbiol Read Engl, vol.152, pp.1899-911, 2006.

L. Gambino, S. J. Gracheck, and P. F. Miller, Overexpression of the MarA positive regulator is sufficient to confer multiple antibiotic resistance in Escherichia Coli, J Bacteriol, vol.175, pp.2888-94, 1993.

G. Jovanovic, L. J. Lloyd, M. Stumpf, A. J. Mayhew, and M. Buck, Induction and function of the phage shock protein extracytoplasmic stress response in Escherichia Coli, J Biol Chem, vol.281, pp.21147-61, 2006.

R. Landstorfer, S. Simon, S. Schober, D. Keim, S. Scherer et al., Comparison of strand-specific transcriptomes of enterohemorrhagic Escherichia Coli O157:H7 EDL933 (EHEC) under eleven different environmental conditions including radish sprouts and cattle feces, BMC Genomics, vol.15, p.353, 2014.

D. Ercolini, I. Ferrocino, A. Nasi, M. Ndagijimana, P. Vernocchi et al., Monitoring of microbial metabolites and bacterial diversity in beef stored under different packaging conditions, Appl Environ Microbiol, vol.77, pp.7372-81, 2011.

X. Yang, Microbial ecology of beef carcasses and beef products

U. K. Chichester, , pp.442-62, 2009.