J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers et al., Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012, Int. J. Cancer, vol.136, pp.359-386, 2015.

J. Terzi?, S. Grivennikov, E. Karin, and M. Karin, Inflammation and colon cancer, Gastroenterology, vol.138, pp.2101-2114, 2010.

H. Brenner, M. Kloor, and C. Pox, P. Colorectal cancer, vol.383, pp.1490-1502, 2014.

H. Tjalsma, A. Boleij, J. R. Marchesi, and B. E. Dutilh, A bacterial driver-passenger model for colorectal cancer: Beyond the usual suspects, Nat. Rev. Microbiol, vol.10, pp.575-582, 2012.

W. Chen, F. Liu, Z. Ling, X. Tong, and C. Xiang, Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer, PLoS ONE, vol.7, p.39743, 2012.

Y. Lu, J. Chen, J. Zheng, G. Hu, J. Wang et al., Mucosal adherent bacterial dysbiosis in patients with colorectal adenomas, Sci. Rep, 2016.

Z. Gao, B. Guo, R. Gao, Q. Zhu, and H. Qin, Microbiota disbiosis is associated with colorectal cancer. Front. Microbiol, 2015.

R. F. Schwabe and C. Jobin, The microbiome and cancer, Nat. Rev. Cancer, vol.13, pp.800-812, 2013.

C. M. Van-der-beek, C. H. Dejong, F. J. Troost, A. A. Masclee, and K. Lenaerts, Role of short-chain fatty acids in colonic inflammation, carcinogenesis, and mucosal protection and healing, Nutr. Rev, vol.75, pp.286-305, 2017.

A. Cougnoux, J. Delmas, L. Gibold, T. Faïs, C. Romagnoli et al., Small-molecule inhibitors prevent the genotoxic and protumoural effects induced by colibactin-producing bacteria, Gut, vol.65, pp.278-285, 2016.

T. R. Qamar, F. Syed, M. Nasir, H. Rehman, M. N. Zahid et al., Novel Combination of Prebiotics Galacto-Oligosaccharides and Inulin-Inhibited Aberrant Crypt Foci Formation and Biomarkers of Colon Cancer in Wistar Rats, Nutrients, vol.8, p.465, 2016.

M. Zsivkovits, K. Fekadu, G. Sontag, U. Nabinger, W. W. Huber et al., Prevention of heterocyclic amine-induced DNA damage in colon and liver of rats by different lactobacillus strains, Carcinogenesis, vol.24, pp.1913-1918, 2003.

A. Sivan, L. Corrales, N. Hubert, J. B. Williams, K. Aquino-michaels et al., Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy, Science, vol.350, pp.1084-1089, 2015.

M. Vétizou, J. M. Pitt, R. Daillère, P. Lepage, N. Waldschmitt et al., Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota, Science, vol.350, pp.1079-1084, 2015.

L. E. Johns and R. S. Houlston, A systematic review and meta-analysis of familial colorectal cancer risk, Am. J. Gastroenterol, vol.96, pp.2992-3003, 2001.

K. W. Jasperson, T. M. Tuohy, D. W. Neklason, and R. W. Burt, Hereditary and familial colon cancer, Gastroenterology, vol.138, pp.2044-2058, 2010.

C. A. Doubeni, A. O. Laiyemo, J. M. Major, M. Schootman, M. Lian et al., Socioeconomic status and the risk of colorectal cancer: An analysis of over one-half million adults in the NIH-AARP Diet and Health Study, Cancer, vol.118, pp.3636-3644, 2012.

M. Ryan-harshman and W. Aldoori, Diet and colorectal cancer, Can. Fam. Physician, vol.53, 1913.

P. Boffetta and M. Hashibe, Alcohol and cancer. Lancet Oncol, vol.7, pp.149-156, 2006.

E. Cho, S. A. Smith-warner, J. Ritz, . Van-den, P. A. Brandt et al., Alcohol intake and colorectal cancer: A pooled analysis of 8 cohort studies, Ann. Intern. Med, vol.140, pp.603-613, 2004.

E. Botteri, S. Iodice, V. Bagnardi, S. Raimondi, A. B. Lowenfels et al., Smoking and colorectal cancer: A meta-analysis, JAMA, vol.300, pp.2765-2778, 2008.

N. A. Berger, Obesity and cancer pathogenesis, Ann. N. Y. Acad. Sci, pp.57-76, 1311.

Y. Ma, Y. Yang, F. Wang, P. Zhang, C. Shi et al., Obesity and Risk of Colorectal Cancer: A Systematic Review of Prospective Studies, PLoS ONE, vol.8, 2013.

J. E. Lin, F. Colon-gonzalez, E. Blomain, G. W. Kim, A. Aing et al., Obesity-induced colorectal cancer is driven by caloric silencing of the guanylin-GUCY2C paracrine signaling axis, Cancer Res, vol.76, pp.339-346, 2016.

M. Koda, M. Sulkowska, L. Kanczuga-koda, E. Surmacz, and S. Sulkowski, Overexpression of the obesity hormone leptin in human colorectal cancer, J. Clin. Pathol, vol.60, pp.902-906, 2007.

D. Wang, J. Chen, H. Chen, Z. Duan, Q. Xu et al., Leptin regulates proliferation and apoptosis of colorectal carcinoma through PI3K/Akt/mTOR signalling pathway, J. Biosci, vol.37, pp.91-101, 2012.

V. Walter, L. Jansen, P. Knebel, J. Chang-claude, M. Hoffmeister et al., Physical activity and survival of colorectal cancer patients: Population-based study from Germany, Int. J. Cancer, vol.140, 1985.

P. Golshiri, S. Rasooli, M. Emami, and A. Najimi, Effects of Physical Activity on Risk of Colorectal Cancer: A Case-control Study, Int. J. Prev. Med, vol.7, p.32, 2016.

M. Ghafari, M. Mohammadian, A. A. Valipour, and A. Mohammadian-hafshejani, Physical Activity and Colorectal Cancer, Iran. J. Public Health, vol.45, pp.1673-1674, 2016.

J. Kruk and U. Czerniak, Physical activity and its relation to cancer risk: Updating the evidence. Asian Pac, J. Cancer Prev, vol.14, pp.3993-4003, 2013.

T. Jess, C. Rungoe, and L. Peyrin-biroulet, Risk of colorectal cancer in patients with ulcerative colitis: A meta-analysis of population-based cohort studies, Clin. Gastroenterol. Hepatol, vol.10, pp.639-645, 2012.

F. A. Farraye, R. D. Odze, J. Eaden, and S. H. Itzkowitz, AGA Medical Position Statement on the Diagnosis and Management of Colorectal Neoplasia in Inflammatory Bowel Disease, Gastroenterology, vol.138, pp.738-745, 2010.

A. Haslam, S. W. Robb, J. R. Hébert, H. Huang, M. D. Wirth et al., The association between Dietary Inflammatory Index scores and the prevalence of colorectal adenoma. Public Health Nutr, 2017.

R. A. Gupta and R. N. Dubois, Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2, Nat. Rev. Cancer, vol.1, pp.11-21, 2001.

T. Tanaka, H. Kohno, R. Suzuki, K. Hata, S. Sugie et al., Dextran sodium sulfate strongly promotes colorectal carcinogenesis in Apc Min/+ mice: Inflammatory stimuli by dextran sodium sulfate results in development of multiple colonic neoplasms, Int. J. Cancer, vol.118, pp.25-34, 2006.

C. Neufert, C. Becker, and M. F. Neurath, An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression, Nat. Protoc, vol.2, 1998.

D. Bayarsaihan, Epigenetic Mechanisms in Inflammation, J. Dent. Res, vol.90, pp.9-17, 2011.

L. B. Meira, J. M. Bugni, S. L. Green, C. Lee, B. Pang et al., DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice, J. Clin. Investig, vol.118, pp.2516-2525, 2008.

R. Francescone, V. Hou, S. I. Grivennikov, and . Cytokines, IBD and colitis-associated cancer, Inflamm. Bowel Dis, vol.21, pp.409-418, 2015.

U. Basavaraju, F. M. Shebl, A. J. Palmer, S. Berry, G. L. Hold et al., Cytokine gene polymorphisms, cytokine levels and the risk of colorectal neoplasia in a screened population of Northeast Scotland, Eur. J. Cancer Prev, vol.24, pp.296-304, 2015.

S. Kim, T. O. Keku, C. Martin, J. Galanko, J. T. Woosley et al., Circulating levels of inflammatory cytokines and risk of colorectal adenomas, Cancer Res, vol.68, pp.323-328, 2008.

M. Song, R. S. Mehta, K. Wu, C. S. Fuchs, S. Ogino et al., Plasma Inflammatory Markers and Risk of Advanced Colorectal Adenoma in Women, Cancer Prev. Res, vol.9, pp.27-34, 2016.

H. Knüpfer and R. Preiss, Serum interleukin-6 levels in colorectal cancer patients-A summary of published results, Int. J. Colorectal Dis, vol.25, pp.135-140, 2010.

C. Hsu and Y. Chung, Influence of interleukin-6 on the invasiveness of human colorectal carcinoma, Anticancer Res, vol.26, pp.4607-4614, 2006.

S. Grivennikov, E. Karin, J. Terzic, D. Mucida, G. Yu et al., IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer, Cancer Cell, vol.15, pp.103-113, 2009.

R. Kühn, J. Löhler, D. Rennick, K. Rajewsky, and W. Müller, Interleukin-10-deficient mice develop chronic enterocolitis, Cell, vol.75, pp.263-274, 1993.

J. M. Uronis, M. Mühlbauer, H. H. Herfarth, T. C. Rubinas, G. S. Jones et al., Modulation of the Intestinal Microbiota Alters Colitis-Associated Colorectal Cancer Susceptibility, PLoS ONE, 2009.

S. Tomkovich, Y. Yang, K. Winglee, J. Gauthier, M. Mühlbauer et al., Locoregional Effects of Microbiota in a Preclinical Model of Colon Carcinogenesis, Cancer Res, vol.77, pp.2620-2632, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01607272

J. C. Arthur, E. Perez-chanona, M. Mühlbauer, S. Tomkovich, J. M. Uronis et al., Intestinal inflammation targets cancer-inducing activity of the microbiota, Science, vol.338, pp.120-123, 2012.

A. E. Medvedev, Toll-like receptor polymorphisms, inflammatory and infectious diseases, allergies, and cancer, J. Interferon Cytokine Res, vol.33, pp.467-484, 2013.

A. N. Weber and A. Försti, Toll-like receptor genetic variants and colorectal cancer

A. Semlali, N. R. Parine, A. Amri, A. Azzi, M. Arafah et al., Association between TLR-9 polymorphisms and colon cancer susceptibility in Saudi Arabian female patients, OncoTargets Ther, vol.10, pp.1-11, 2016.

F. Sipos, I. F?ri, M. Constantinovits, Z. Tulassay, and G. M?zes, Contribution of TLR signaling to the pathogenesis of colitis-associated cancer in inflammatory bowel disease, World J. Gastroenterol, vol.20, pp.12713-12721, 2014.

G. Peng, Z. Guo, Y. Kiniwa, K. S. Voo, W. Peng et al., Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function, Science, vol.309, pp.1380-1384, 2005.

S. Hoon-rhee, E. Im, and C. Pothoulakis, Toll-like receptor 5 engagement modulates tumor development and growth in a mouse xenograft model of human colon cancer, Gastroenterology, vol.135, pp.518-528, 2008.

K. Heckelsmiller, S. Beck, K. Rall, B. Sipos, A. Schlamp et al., Combined dendritic cell-and CpG oligonucleotide-based immune therapy cures large murine tumors that resist chemotherapy, Eur. J. Immunol, vol.32, pp.3235-3245, 2002.

E. L. Lowe, T. R. Crother, S. Rabizadeh, B. Hu, H. Wang et al., Toll-Like Receptor 2 Signaling Protects Mice from Tumor Development in a Mouse Model of Colitis-Induced Cancer, PLoS ONE, vol.5, 2010.

B. Huang, J. Zhao, H. Li, K. He, Y. Chen et al., Toll-Like Receptors on Tumor Cells Facilitate Evasion of Immune Surveillance, Cancer Res, vol.65, pp.5009-5014, 2005.

M. Fukata, Y. Hernandez, D. Conduah, J. Cohen, A. Chen et al., Innate immune signaling by Toll-like receptor-4 (TLR4) shapes the inflammatory microenvironment in colitis-associated tumors, Inflamm. Bowel Dis, vol.15, pp.997-1006, 2009.

S. Rakoff-nahoum and R. Medzhitov, Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88, Science, vol.317, pp.124-127, 2007.

G. Kurzawski, J. Suchy, J. K?adny, E. Grabowska, M. Mierzejewski et al., The NOD2 3020insC mutation and the risk of colorectal cancer, Cancer Res, vol.64, pp.1604-1606, 2004.

D. J. Philpott, M. T. Sorbara, S. J. Robertson, K. Croitoru, and S. E. Girardin, NOD proteins: Regulators of inflammation in health and disease, Nat. Rev. Immunol, vol.14, pp.9-23, 2014.

Y. Zhan, S. S. Seregin, J. Chen, and G. Y. Chen, Nod1 Limits Colitis-Associated Tumorigenesis by Regulating IFN-? Production, J. Immunol, vol.196, pp.5121-5129, 2016.

J. Qin, R. Li, J. Raes, M. Arumugam, K. S. Burgdorf et al., A human gut microbial gene catalogue established by metagenomic sequencing, Nature, vol.464, pp.59-65, 2010.
URL : https://hal.archives-ouvertes.fr/cea-00908974

M. G. Dominguez-bello, M. J. Blaser, R. E. Ley, and R. Knight, Development of the human gastrointestinal microbiota and insights from high-throughput sequencing, Gastroenterology, vol.140, pp.1713-1719, 2011.

S. M. Jandhyala, R. Talukdar, C. Subramanyam, H. Vuyyuru, M. Sasikala et al., Role of the normal gut microbiota, World J. Gastroenterol, vol.21, pp.8787-8803, 2015.

Y. Sun and M. X. O'riordan, Regulation of Bacterial Pathogenesis by Intestinal Short-Chain Fatty Acids, Adv. Appl. Microbiol, vol.85, pp.93-118, 2013.

I. Rowland, G. Gibson, A. Heinken, K. Scott, J. Swann et al., Gut microbiota functions: Metabolism of nutrients and other food components, Eur. J. Nutr, 2017.

A. Woting and M. Blaut, The Intestinal Microbiota in Metabolic Disease, Nutrients, vol.8, p.202, 2016.

P. Vernocchi, F. Del-chierico, and L. Putignani, Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health, Front. Microbiol, 2016.

S. Fukiya, M. Arata, H. Kawashima, D. Yoshida, M. Kaneko et al., Conversion of cholic acid and chenodeoxycholic acid into their 7-oxo derivatives by Bacteroides intestinalis AM-1 isolated from human feces, FEMS Microbiol. Lett, vol.293, pp.263-270, 2009.

H. Ajouz, D. Mukherji, and A. Shamseddine, Secondary bile acids: An underrecognized cause of colon cancer, World J. Surg. Oncol, vol.12, 2014.

E. P. Neis, C. H. Dejong, and S. S. Rensen, The Role of Microbial Amino Acid Metabolism in Host Metabolism, Nutrients, vol.7, pp.2930-2946, 2015.

M. J. Hill, Intestinal flora and endogenous vitamin synthesis, Eur. J. Cancer Prev, vol.6, pp.43-45, 1997.

P. G. Frick, G. Riedler, and H. Brögli, Dose response and minimal daily requirement for vitamin K in man, J. Appl. Physiol, vol.23, pp.387-389, 1967.

B. E. Gustafsson, F. S. Daft, E. G. Mcdaniel, J. C. Smith, and R. J. Fitzgerald, Effects of vitamin K-active compounds and intestinal microorganisms in vitamin K-deficient germfree rats, J. Nutr, vol.78, pp.461-468, 1962.

M. E. Johansson, M. Phillipson, J. Petersson, A. Velcich, L. Holm et al., The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria, Proc. Natl. Acad. Sci, vol.105, pp.15064-15069, 2008.

H. Wang, P. Wang, X. Wang, Y. Wan, and Y. Liu, Butyrate Enhances Intestinal Epithelial Barrier Function via Up-Regulation of Tight Junction Protein Claudin-1 Transcription, Dig. Dis. Sci, vol.57, pp.3126-3135, 2012.

E. Gaudier, A. Jarry, H. M. Blottière, P. De-coppet, M. P. Buisine et al., Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose, Am. J. Physiol. Gastrointest. Liver Physiol, vol.287, pp.1168-1174, 2004.

C. Hernández-chirlaque, C. J. Aranda, B. Ocón, F. Capitán-cañadas, M. Ortega-gonzález et al., Martínez-Augustin, O. Germ-free and Antibiotic-treated Mice are Highly Susceptible to Epithelial Injury in DSS Colitis, J. Crohns. Colitis, vol.10, pp.1324-1335, 2016.

C. C. Bain and A. M. Mowat, Macrophages in intestinal homeostasis and inflammation, Immunol. Rev, vol.260, pp.102-117, 2014.

C. L. Zindl, J. Lai, Y. K. Lee, C. L. Maynard, S. N. Harbour et al., IL-22-producing neutrophils contribute to antimicrobial defense and restitution of colonic epithelial integrity during colitis, Proc. Natl. Acad. Sci, vol.110, pp.12768-12773, 2013.

V. T. Chu, A. Beller, S. Rausch, J. Strandmark, M. Zänker et al., Eosinophils promote generation and maintenance of immunoglobulin-A-expressing plasma cells and contribute to gut immune homeostasis, Immunity, vol.40, pp.582-593, 2014.

G. F. Sonnenberg and D. Artis, Innate lymphoid cells in the initiation, regulation and resolution of inflammation, Nat. Med, vol.21, pp.698-708, 2015.

A. Mortha, A. Chudnovskiy, D. Hashimoto, M. Bogunovic, S. P. Spencer et al., Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis, Science, vol.343, 2014.

M. R. Hepworth, L. A. Monticelli, T. C. Fung, C. G. Ziegler, S. Grunberg et al., Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria, Nature, vol.498, pp.113-117, 2013.

V. Bekiaris, E. K. Persson, and W. W. Agace, Intestinal dendritic cells in the regulation of mucosal immunity, Immunol. Rev, vol.260, pp.86-101, 2014.

E. Slack, M. L. Balmer, and A. J. Macpherson, B cells as a critical node in the microbiota-host immune system network, Immunol. Rev, vol.260, pp.50-66, 2014.

T. Yamanaka, L. Helgeland, I. N. Farstad, H. Fukushima, T. Midtvedt et al., Microbial colonization drives lymphocyte accumulation and differentiation in the follicle-associated epithelium of Peyer's patches, J. Immunol, vol.170, pp.816-822, 2003.

A. J. Macpherson and N. L. Harris, Interactions between commensal intestinal bacteria and the immune system, Nat. Rev. Immunol, vol.4, pp.478-485, 2004.

I. I. Ivanov, K. Atarashi, N. Manel, E. L. Brodie, T. Shima et al., Induction of intestinal Th17 cells by segmented filamentous bacteria, Cell, vol.139, pp.485-498, 2009.

A. T. Cao, S. Yao, B. Gong, C. O. Elson, and Y. Cong, Th17 cells upregulate polymeric Ig receptor and intestinal IgA and contribute to intestinal homeostasis, J. Immunol, vol.189, pp.4666-4673, 2012.

N. Cerf-bensussan and V. Gaboriau-routhiau, The immune system and the gut microbiota: Friends or foes?, Nat. Rev. Immunol, vol.10, pp.735-744, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01204303

P. Schnupf, V. Gaboriau-routhiau, M. Gros, R. Friedman, M. Moya-nilges et al., Growth and host interaction of mouse segmented filamentous bacteria in vitro, Nature, vol.520, pp.99-103, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01535236

V. Gaboriau-routhiau, S. Rakotobe, E. Lécuyer, I. Mulder, A. Lan et al., The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses, Immunity, vol.31, pp.677-689, 2009.

A. J. Macpherson and K. Smith, Mesenteric lymph nodes at the center of immune anatomy, J. Exp. Med, vol.203, pp.497-500, 2006.

N. Arpaia, C. Campbell, X. Fan, S. Dikiy, J. Van-der-veeken et al., Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation, Nature, vol.504, pp.451-455, 2013.

S. L. Burgess, E. Buonomo, M. Carey, C. Cowardin, C. Naylor et al., Bone marrow dendritic cells from mice with an altered microbiota provide interleukin 17A-dependent protection against Entamoeba histolytica colitis, MBio, 2014.

L. L. Bammann, W. B. Clark, and R. J. Gibbons, Impaired colonization of gnotobiotic and conventional rats by streptomycin-resistant strains of Streptococcus mutans, Infect. Immun, vol.22, pp.721-726, 1978.

M. Rupnik, M. H. Wilcox, and D. N. Gerding, Clostridium difficile infection: New developments in epidemiology and pathogenesis, Nat. Rev. Microbiol, vol.7, pp.526-536, 2009.

A. Boleij and H. Tjalsma, Gut bacteria in health and disease: A survey on the interface between intestinal microbiology and colorectal cancer, Biol. Rev. Camb. Philos. Soc, vol.87, pp.701-730, 2012.

G. P. Schamberger and F. Diez-gonzalez, Selection of recently isolated colicinogenic Escherichia coli strains inhibitory to Escherichia coli O157:H7, J. Food Prot, vol.65, pp.1381-1387, 2002.

S. Fukuda, H. Toh, K. Hase, K. Oshima, Y. Nakanishi et al., Bifidobacteria can protect from enteropathogenic infection through production of acetate, Nature, vol.469, pp.543-547, 2011.

I. Gantois, R. Ducatelle, F. Pasmans, F. Haesebrouck, I. Hautefort et al., Butyrate Specifically Down-Regulates Salmonella Pathogenicity Island 1 Gene Expression, Appl. Environ. Microbiol, vol.72, pp.946-949, 2006.

Y. Momose, K. Hirayama, and K. Itoh, Competition for proline between indigenous Escherichia coli and E. coli O157:H7 in gnotobiotic mice associated with infant intestinal microbiota and its contribution to the colonization resistance against E. coli O157:H7, Antonie Van Leeuwenhoek, vol.94, pp.165-171, 2008.

B. Marteyn, N. West, D. Browning, J. Cole, J. Shaw et al., Modulation of Shigella virulence in response to available oxygen in vivo, Nature, vol.465, pp.355-358, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00493767

O. Takeuchi and S. Akira, Pattern recognition receptors and inflammation, Cell, vol.140, pp.805-820, 2010.

N. H. Salzman, M. A. Underwood, and C. L. Bevins, Paneth cells, defensins, and the commensal microbiota: A hypothesis on intimate interplay at the intestinal mucosa, Semin. Immunol, vol.19, pp.70-83, 2007.

S. Vaishnava, C. L. Behrendt, A. S. Ismail, L. Eckmann, and L. V. Hooper, Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface, Proc. Natl. Acad. Sci, vol.105, pp.20858-20863, 2008.

K. S. Kobayashi, M. Chamaillard, Y. Ogura, O. Henegariu, N. Inohara et al., Nod2-Dependent Regulation of Innate and Adaptive Immunity in the Intestinal Tract, Science, vol.307, pp.731-734, 2005.

A. L. Frantz, E. W. Rogier, C. R. Weber, L. Shen, D. A. Cohen et al., Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with downregulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides, Mucosal Immunol, vol.5, pp.501-512, 2012.

H. L. Cash, C. V. Whitham, C. L. Behrendt, and L. V. Hooper, Symbiotic Bacteria Direct Expression of an Intestinal Bactericidal Lectin, Science, vol.313, pp.1126-1130, 2006.

J. L. Giel, J. A. Sorg, A. L. Sonenshein, and J. Zhu, Metabolism of Bile Salts in Mice Influences Spore Germination in Clostridium difficile, PLoS ONE, 2010.

M. Plummer, C. De-martel, J. Vignat, J. Ferlay, F. Bray et al., Global burden of cancers attributable to infections in 2012: A synthetic analysis, Lancet Glob. Health, vol.4, 2016.

D. Schottenfeld and J. Beebe-dimmer, The cancer burden attributable to biologic agents, Ann. Epidemiol, vol.25, pp.183-187, 2015.

W. E. Moore and L. H. Moore, Intestinal floras of populations that have a high risk of colon cancer, Appl. Environ. Microbiol, vol.61, pp.3202-3207, 1995.

T. Wang, G. Cai, Y. Qiu, N. Fei, M. Zhang et al., Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers, ISME J, vol.6, pp.320-329, 2012.

I. Sobhani, J. Tap, F. Roudot-thoraval, J. P. Roperch, S. Letulle et al., Microbial dysbiosis in colorectal cancer (CRC) patients, PLoS ONE, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01190486

X. J. Shen, J. F. Rawls, T. Randall, L. Burcal, C. N. Mpande et al., Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas, Gut Microbes, vol.1, pp.138-147, 2010.

A. N. Mccoy, F. Araújo-pérez, A. Azcárate-peril, J. J. Yeh, R. S. Sandler et al., Fusobacterium Is Associated with Colorectal Adenomas, PLoS ONE, 2013.

N. Wu, X. Yang, R. Zhang, J. Li, X. Xiao et al., Dysbiosis signature of fecal microbiota in colorectal cancer patients, Microb. Ecol, vol.66, pp.462-470, 2013.

K. S. Viljoen, A. Dakshinamurthy, P. Goldberg, and J. M. Blackburn, Quantitative profiling of colorectal cancer-associated bacteria reveals associations between fusobacterium spp., enterotoxigenic Bacteroides fragilis (ETBF) and clinicopathological features of colorectal cancer, PLoS ONE, 2015.

J. P. Zackular, N. T. Baxter, K. D. Iverson, W. D. Sadler, J. F. Petrosino et al., The gut microbiome modulates colon tumorigenesis, MBio, 2013.

X. C. Morgan, T. L. Tickle, H. Sokol, D. Gevers, K. L. Devaney et al., Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment, Genome Biol, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00736429

Q. Zhu, Z. Jin, W. Wu, R. Gao, B. Guo et al., Analysis of the Intestinal Lumen Microbiota in an Animal Model of Colorectal Cancer, PLoS ONE, 2014.

A. Strofilas, E. E. Lagoudianakis, C. Seretis, A. Pappas, N. Koronakis et al., Chrysikos, I.; Manouras, I.; Manouras, A. Association of Helicobacter Pylori Infection and Colon Cancer, J. Clin. Med. Res, vol.4, pp.172-176, 2012.

R. Balamurugan, E. Rajendiran, S. George, G. V. Samuel, and B. S. Ramakrishna, Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer, J. Gastroenterol. Hepatol, vol.23, pp.1298-1303, 2008.

Y. Zhou, H. He, H. Xu, Y. Li, Z. Li et al., Association of oncogenic bacteria with colorectal cancer in South China, Oncotarget, vol.7, pp.80794-80802, 2016.

R. Amarnani and A. Rapose, Colon cancer and enterococcus bacteremia co-affection: A dangerous alliance, J. Infect. Public Health, 2017.

E. Balish and T. Warner, Enterococcus faecalis induces inflammatory bowel disease in interleukin-10 knockout mice, Am. J. Pathol, vol.160, pp.2253-2257, 2002.

P. A. Ruiz, A. Shkoda, S. C. Kim, R. B. Sartor, and D. Haller, IL-10 gene-deficient mice lack TGF-beta/Smad signaling and fail to inhibit proinflammatory gene expression in intestinal epithelial cells after the colonization with colitogenic Enterococcus faecalis, J. Immunol, vol.174, pp.2990-2999, 2005.

M. M. Huycke, W. Joyce, and M. F. Wack, Augmented production of extracellular superoxide by blood isolates of Enterococcus faecalis, J. Infect. Dis, vol.173, pp.743-746, 1996.

M. M. Huycke, V. Abrams, and D. R. Moore, Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA, Carcinogenesis, vol.23, pp.529-536, 2002.

C. L. Limoli and E. Giedzinski, Induction of Chromosomal Instability by Chronic Oxidative Stress, Neoplasia, vol.5, pp.339-346, 2003.

X. Wang and M. M. Huycke, Extracellular superoxide production by Enterococcus faecalis promotes chromosomal instability in mammalian cells, Gastroenterology, vol.132, pp.551-561, 2007.

X. Wang, Y. Yang, and M. M. Huycke, Commensal bacteria drive endogenous transformation and tumour stem cell marker expression through a bystander effect, Gut, vol.64, pp.459-468, 2015.

G. Zhang, B. Svenungsson, A. Kärnell, and A. Weintraub, Prevalence of enterotoxigenic Bacteroides fragilis in adult patients with diarrhea and healthy controls, Clin. Infect. Dis, vol.29, pp.590-594, 1999.

C. L. Sears, The toxins of Bacteroides fragilis, Toxicon, vol.39, pp.1737-1746, 2001.

N. U. Toprak, A. Yagci, B. M. Gulluoglu, M. L. Akin, P. Demirkalem et al., A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer, Clin. Microbiol. Infect, vol.12, pp.782-786, 2006.

A. Boleij, E. M. Hechenbleikner, A. C. Goodwin, R. Badani, E. M. Stein et al., The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients, Clin. Infect. Dis, vol.60, pp.208-215, 2015.

R. V. Purcell, J. Pearson, A. Aitchison, L. Dixon, F. A. Frizelle et al., Colonization with enterotoxigenic Bacteroides fragilis is associated with early-stage colorectal neoplasia, PLoS ONE, 2017.

R. J. Obiso, A. O. Azghani, and T. D. Wilkins, The Bacteroides fragilis toxin fragilysin disrupts the paracellular barrier of epithelial cells, Infect. Immun, vol.65, pp.1431-1439, 1997.

C. Wells, E. Van-de-westerlo, R. Jechorek, B. Feltis, T. Wilkins et al., Bacteroides fragilis enterotoxin modulates epithelial permeability and bacterial internalization by HT-29 enterocytes, Gastroenterology, vol.110, pp.1429-1437, 1996.

M. Riegler, M. Lotz, C. Sears, C. Pothoulakis, I. Castagliuolo et al., Bacteroides fragilis toxin 2 damages human colonic mucosa in vitro, Gut, vol.44, pp.504-510, 1999.

S. Wu, P. J. Morin, D. Maouyo, and C. L. Sears, Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation, Gastroenterology, vol.124, pp.392-400, 2003.

S. Wu, K. Rhee, E. Albesiano, S. Rabizadeh, X. Wu et al., A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses, Nat. Med, vol.15, pp.1016-1022, 2009.

Y. W. Han, Fusobacterium nucleatum: A commensal-turned pathogen, Curr. Opin. Microbiol, vol.23, pp.141-147, 2015.

M. Castellarin, R. L. Warren, J. D. Freeman, L. Dreolini, M. Krzywinski et al., Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma, Genome Res, vol.22, pp.299-306, 2012.

Y. Li, Q. Ge, J. Cao, Y. Zhou, Y. Du et al., Association of Fusobacterium nucleatum infection with colorectal cancer in Chinese patients, World J. Gastroenterol, vol.22, pp.3227-3233, 2016.

Y. Yang, W. Weng, J. Peng, L. Hong, L. Yang et al., Fusobacterium nucleatum Increases Proliferation of Colorectal Cancer Cells and Tumor Development in Mice by Activating Toll-Like Receptor 4 Signaling to Nuclear Factor-?B, and Up-regulating Expression of MicroRNA-21, Gastroenterology, vol.152, pp.851-866, 2017.

P. P. Medina, M. Nolde, and F. J. Slack, OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma, Nature, vol.467, pp.86-90, 2010.

A. D. Kostic, E. Chun, L. Robertson, J. N. Glickman, C. A. Gallini et al., Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor immune microenvironment, Cell Host Microbe, vol.14, pp.207-215, 2013.

M. R. Rubinstein, X. Wang, W. Liu, Y. Hao, G. Cai et al., Fusobacterium nucleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/?-Catenin Signaling via its FadA Adhesin, Cell Host Microbe, vol.14, pp.195-206, 2013.

W. C. Mccoy and J. M. Mason, Enterococcal endocarditis associated with carcinoma of the sigmoid; report of a case, J. Med. Assoc. State Ala, vol.21, pp.162-166, 1951.

R. S. Klein, R. A. Recco, M. T. Catalano, S. C. Edberg, J. I. Casey et al., Association of Streptococcus bovis with carcinoma of the colon, N. Engl. J. Med, vol.297, pp.800-802, 1977.

A. Boleij, M. M. Van-gelder, D. W. Swinkels, and H. Tjalsma, Clinical Importance of Streptococcus gallolyticus infection among colorectal cancer patients: Systematic review and meta-analysis, Clin. Infect. Dis, vol.53, pp.870-878, 2011.

J. Corredoira-sánchez, F. García-garrote, R. Rabuñal, L. López-roses, M. J. García-país et al., Association Between Bacteremia Due to Streptococcus gallolyticus subsp. gallolyticus (Streptococcus bovis I) and Colorectal Neoplasia: A Case-Control Study, Clin. Infect. Dis, vol.55, pp.491-496, 2012.

J. Biarc, I. S. Nguyen, A. Pini, F. Gossé, S. Richert et al., Carcinogenic properties of proteins with pro-inflammatory activity from Streptococcus infantarius (formerly S.bovis), Carcinogenesis, vol.25, pp.1477-1484, 2004.

S. Ellmerich, M. Schöller, B. Duranton, F. Gossé, M. Galluser et al., Promotion of intestinal carcinogenesis by Streptococcus bovis, Carcinogenesis, vol.21, pp.753-756, 2000.

A. S. Abdulamir, R. R. Hafidh, and F. A. Bakar, Molecular detection, quantification, and isolation of Streptococcus gallolyticus bacteria colonizing colorectal tumors: Inflammation-driven potential of carcinogenesis via IL-1, COX-2, and IL-8, Mol. Cancer, vol.9, p.249, 2010.

J. Ballard, A. Bryant, D. Stevens, and R. K. Tweten, Purification and characterization of the lethal toxin (alpha-toxin) of Clostridium septicum, Infect. Immun, vol.60, pp.784-790, 1992.

C. L. Kennedy, E. O. Krejany, L. F. Young, J. R. O'connor, M. M. Awad et al., The alpha-toxin of Clostridium septicum is essential for virulence, Mol. Microbiol, vol.57, pp.1357-1366, 2005.

S. S. Chew and D. Z. Lubowski, Clostridium septicum and malignancy, ANZ J. Surg, vol.71, pp.647-649, 2001.

J. Corredoira, I. Grau, J. F. Garcia-rodriguez, M. J. García-país, R. Rabuñal et al., Colorectal neoplasm in cases of Clostridium septicum and Streptococcus gallolyticus subsp. gallolyticus bacteraemia, Eur. J. Intern. Med, vol.41, pp.68-73, 2017.

N. N. Mirza, J. M. Mccloud, and M. J. Cheetham, Clostridium septicum sepsis and colorectal cancer-A reminder, World J. Surg. Oncol, vol.7, p.73, 2009.

A. Chakravorty, M. M. Awad, J. K. Cheung, T. J. Hiscox, D. Lyras et al., The Pore-Forming ?-Toxin from Clostridium septicum Activates the MAPK Pathway in a Ras-c-Raf-Dependent and Independent Manner, Toxins, vol.7, pp.516-534, 2015.

S. Suerbaum and P. Michetti, Helicobacter pylori infection, N. Engl. J. Med, vol.347, pp.1175-1186, 2002.
URL : https://hal.archives-ouvertes.fr/pasteur-02195957

T. L. Testerman and J. Morris, Beyond the stomach: An updated view of Helicobacter pylori pathogenesis, diagnosis, and treatment, World J. Gastroenterol, vol.20, pp.12781-12808, 2014.

G. Meucci, M. Tatarella, M. Vecchi, M. L. Ranzi, E. Biguzzi et al., High prevalence of Helicobacter pylori infection in patients with colonic adenomas and carcinomas, J. Clin. Gastroenterol, vol.25, pp.605-607, 1997.

S. Fujimori, T. Kishida, T. Kobayashi, Y. Sekita, T. Seo et al., Helicobacter pylori infection increases the risk of colorectal adenoma and adenocarcinoma, especially in women, J. Gastroenterol, vol.40, pp.887-893, 2005.

S. N. Hong, S. M. Lee, J. H. Kim, T. Y. Lee, J. H. Kim et al., Helicobacter pylori infection increases the risk of colorectal adenomas: Cross-sectional study and meta-analysis, Dig. Dis. Sci, vol.57, pp.2184-2194, 2012.

I. Inoue, C. Mukoubayashi, N. Yoshimura, T. Niwa, H. Deguchi et al., Elevated risk of colorectal adenoma with Helicobacter pylori-related chronic gastritis: A population-based case-control study, Int. J. Cancer, vol.129, pp.2704-2711, 2011.

R. K. Siddheshwar, K. B. Muhammad, J. C. Gray, and S. B. Kelly, Seroprevalence of helicobacter pylori in patients with colorectal polyps and colorectal carcinoma, Am. J. Gastroenterol, vol.96, pp.84-88, 2001.

R. C. Bae, S. W. Jeon, H. J. Cho, M. K. Jung, Y. O. Kweon et al., Gastric dysplasia may be an independent risk factor of an advanced colorectal neoplasm, World J. Gastroenterol, vol.15, pp.5722-5726, 2009.

S. F. Moss, A. I. Neugut, G. C. Garbowski, S. Wang, M. R. Treat et al., Helicobacter pylori seroprevalence and colorectal neoplasia: Evidence against an association, J. Natl. Cancer Inst, vol.87, pp.762-763, 1995.

T. J. Kim, E. R. Kim, D. K. Chang, Y. Kim, S. Baek et al., Helicobacter pylori infection is an independent risk factor of early and advanced colorectal neoplasm, 2017.

J. H. Nam, C. W. Hong, B. C. Kim, A. Shin, K. H. Ryu et al., Helicobacter pylori infection is an independent risk factor for colonic adenomatous neoplasms. Cancer Causes Control, vol.28, pp.107-115, 2017.

Y. Yan, Y. Chen, Q. Zhao, C. Chen, C. Lin et al., Helicobacter pylori infection with intestinal metaplasia: An independent risk factor for colorectal adenomas, World J. Gastroenterol, vol.23, pp.1443-1449, 2017.

A. Hartwich, S. Konturek, P. Pierzchalski, M. Zuchowicz, H. Labza et al., Helicobacter pylori infection, gastrin, cyclooxygenase-2, and apoptosis in colorectal cancer, Int. J. Colorectal Dis, vol.16, pp.202-210, 2001.

T. J. Koh, G. J. Dockray, A. Varro, R. J. Cahill, C. A. Dangler et al., Overexpression of glycine-extended gastrin in transgenic mice results in increased colonic proliferation, J. Clin. Investig, vol.103, pp.1119-1126, 1999.

S. F. Tatishchev, C. Vanbeek, and H. L. Wang, Helicobacter pylori infection and colorectal carcinoma: Is there a causal association?, J. Gastrointest. Oncol, vol.3, pp.380-385, 2012.

O. Handa, Y. Naito, and T. Yoshikawa, Helicobacter pylori: A ROS-inducing bacterial species in the stomach, Inflamm. Res, vol.59, pp.997-1003, 2010.

H. Shmuely, D. Passaro, A. Figer, Y. Niv, S. Pitlik et al., Relationship between Helicobacter pylori CagA status and colorectal cancer, Am. J. Gastroenterol, vol.96, pp.3406-3410, 2001.

T. L. Cover and S. R. Blanke, Helicobacter pylori VacA, a paradigm for toxin multifunctionality, Nat. Rev. Microbiol, vol.3, pp.320-332, 2005.

D. J. Evans, D. G. Evans, T. Takemura, H. Nakano, H. C. Lampert et al., Characterization of a Helicobacter pylori neutrophil-activating protein, Infect. Immun, vol.63, pp.2213-2220, 1995.

S. Wessler, L. M. Krisch, D. P. Elmer, and F. Aberger, From inflammation to gastric cancer-The importance of Hedgehog/GLI signaling in Helicobacte r pylori-induced chronic inflammatory and neoplastic diseases, Cell Commun. Signal, 2017.

C. P. Sousa, The versatile strategies of Escherichia coli pathotypes: A mini review, J. Venom. Anim. Toxins Trop. Dis, vol.12, pp.363-373, 2006.

P. Escobar-páramo, K. Grenet, A. Le-menac'h, L. Rode, E. Salgado et al., Large-scale population structure of human commensal Escherichia coli isolates, Appl. Environ. Microbiol, vol.70, pp.5698-5700, 2004.

A. Darfeuille-michaud, C. Neut, N. Barnich, E. Lederman, P. Di-martino et al., Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn's disease, Gastroenterology, vol.115, pp.1405-1413, 1998.

A. Darfeuille-michaud, J. Boudeau, P. Bulois, C. Neut, A. Glasser et al., High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease, Gastroenterology, vol.127, pp.412-421, 2004.

A. Swidsinski, M. Khilkin, D. Kerjaschki, S. Schreiber, M. Ortner et al., Association between intraepithelial Escherichia coli and colorectal cancer, Gastroenterology, vol.115, pp.281-286, 1998.

H. M. Martin, B. J. Campbell, C. A. Hart, C. Mpofu, M. Nayar et al., Enhanced Escherichia coli adherence and invasion in Crohn's disease and colon cancer, Gastroenterology, vol.127, pp.80-93, 2004.

O. D. Maddocks, A. J. Short, M. S. Donnenberg, S. Bader, and D. J. Harrison, Attaching and effacing Escherichia coli downregulate DNA mismatch repair protein in vitro and are associated with colorectal adenocarcinomas in humans, PLoS ONE, 2009.

E. Buc, D. Dubois, P. Sauvanet, J. Raisch, J. Delmas et al., High Prevalence of Mucosa-Associated E. coli Producing Cyclomodulin and Genotoxin in Colon Cancer, PLoS ONE, 2013.

M. Prorok-hamon, M. K. Friswell, A. Alswied, C. L. Roberts, F. Song et al., Colonic mucosa-associated diffusely adherent afaC+ Escherichia coli expressing lpfA and pks are increased in inflammatory bowel disease and colon cancer, Gut, vol.63, pp.761-770, 2014.

M. Bonnet, E. Buc, P. Sauvanet, C. Darcha, D. Dubois et al., Colonization of the human gut by E. coli and colorectal cancer risk, Clin. Cancer Res, vol.20, pp.859-867, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02010933

J. Raisch, E. Buc, M. Bonnet, P. Sauvanet, E. Vazeille et al., Colon cancer-associated B2 Escherichia coli colonize gut mucosa and promote cell proliferation, World J. Gastroenterol, vol.20, pp.6560-6572, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01211998

O. Marchès, T. N. Ledger, M. Boury, M. Ohara, X. Tu et al., Enteropathogenic and enterohaemorrhagic Escherichia coli deliver a novel effector called Cif, which blocks cell cycle G2/M transition, Mol. Microbiol, vol.50, pp.1553-1567, 2003.

G. Flatau, E. Lemichez, M. Gauthier, P. Chardin, S. Paris et al., Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine, Nature, vol.387, pp.729-733, 1997.

F. Taieb, C. Petit, J. Nougayrède, and E. Oswald, The Enterobacterial Genotoxins: Cytolethal Distending Toxin and Colibactin. EcoSal Plus, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01603282

J. Nougayrède, S. Homburg, F. Taieb, M. Boury, E. Brzuszkiewicz et al., Escherichia coli induces DNA double-strand breaks in eukaryotic cells, Science, vol.313, pp.848-851, 2006.

G. Cuevas-ramos, C. R. Petit, I. Marcq, M. Boury, E. Oswald et al., Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells, Proc. Natl. Acad. Sci, vol.107, pp.11537-11542, 2010.

M. I. Vizcaino and J. M. Crawford, The colibactin warhead crosslinks DNA, Nat. Chem, vol.7, pp.411-417, 2015.

T. Secher, A. Samba-louaka, E. Oswald, and J. Nougayrède, Escherichia coli producing colibactin triggers premature and transmissible senescence in mammalian cells, PLoS ONE, 2013.

A. Cougnoux, G. Dalmasso, R. Martinez, E. Buc, J. Delmas et al., Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype, Gut, vol.63, pp.1932-1942, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01101227

J. Raisch, N. Rolhion, A. Dubois, A. Darfeuille-michaud, and M. Bringer, Intracellular colon cancer-associated Escherichia coli promote protumoral activities of human macrophages by inducing sustained COX-2 expression, Lab. Investig, vol.95, pp.296-307, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01222408

J. Gagnière, V. Bonnin, A. Jarrousse, E. Cardamone, A. Agus et al., Interactions between microsatellite instability and human gut colonization by Escherichia coli in colorectal cancer, Clin. Sci, vol.131, pp.471-485, 1979.

Y. Tian, K. Wang, and G. Ji, P112 Short-chain fatty acids administration is protective in colitis-associated colorectal cancer development, J. Crohns Colitis, 2017.

A. C. Goodwin, C. E. Shields, S. Wu, D. L. Huso, X. Wu et al., Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis, Proc. Natl. Acad. Sci, vol.108, pp.15354-15359, 2011.

M. O. Mauro, M. T. Monreal, M. T. Silva, J. R. Pesarini, M. S. Mantovani et al., Evaluation of the antimutagenic and anticarcinogenic effects of inulin in vivo, Genet. Mol. Res, vol.12, pp.2281-2293, 2013.

Z. Chen, Y. Hsieh, C. Huang, and C. Tsai, Inhibitory Effects of Probiotic Lactobacillus on the Growth of Human Colonic Carcinoma Cell Line HT-29, vol.22, 2017.

S. Del-carmen, A. De-moreno-de-leblanc, R. Levit, V. Azevedo, P. Langella et al., Anti-cancer effect of lactic acid bacteria expressing antioxidant enzymes or IL-10 in a colorectal cancer mouse model, Int. Immunopharmacol, vol.42, pp.122-129, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01530830

N. Iida, A. Dzutsev, C. A. Stewart, L. Smith, N. Bouladoux et al., Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment, Science, vol.342, pp.967-970, 2013.

N. R. West and F. Powrie, Immunotherapy Not Working? Check Your Microbiota, Cancer Cell, vol.28, pp.687-689, 2015.

T. Li, S. Ogino, and Z. R. Qian, Toll-like receptor signaling in colorectal cancer: Carcinogenesis to cancer therapy, World J. Gastroenterol, vol.20, pp.17699-17708, 2014.

M. Fukata, L. Shang, R. Santaolalla, J. Sotolongo, C. Pastorini et al., Constitutive activation of epithelial TLR4 augments inflammatory responses to mucosal injury and drives colitis-associated tumorigenesis, Inflamm. Bowel Dis, vol.17, pp.1464-1473, 2011.