M. Arumugam, Enterotypes of the human gut microbiome, Nature, vol.473, pp.174-180, 2011.
URL : https://hal.archives-ouvertes.fr/cea-00903625

H. J. Flint, K. P. Scott, S. H. Duncan, P. Louis, and E. Forano, Microbial degradation of complex carbohydrates in the gut, Gut Microbes, vol.3, pp.289-306, 2012.

V. Lombard, G. Ramulu, H. Drula, E. Coutinho, P. M. Henrissat et al., The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res, vol.42, pp.490-495, 2014.

D. L. Zechel and S. G. Withers, Glycosidase mechanisms: Anatomy of a finely tuned catalyst, Acc Chem Res, vol.33, pp.11-18, 2000.

M. Nagae, Structural basis of the catalytic reaction mechanism of novel 1,2-alpha-L-fucosidase from Bifidobacterium bifidum, J Biol Chem, vol.282, pp.18497-18509, 2007.

D. J. Vocadlo and G. J. Davies, Mechanistic insights into glycosidase chemistry, Curr Opin Chem Biol, vol.12, pp.539-555, 2008.

T. Ito, Crystal structure of glycoside hydrolase family 127 ?-l-arabinofuranosidase from Bifidobacterium longum, Biochem Biophys Res Commun, vol.447, pp.32-37, 2014.

S. P. Nie, The core carbohydrate structure of Acacia seyal var. seyal (gum arabic), Food Hydrocoll, vol.32, pp.221-227, 2013.

G. Speciale, A. J. Thompson, G. J. Davies, and S. J. Williams, Dissecting conformational contributions to glycosidase catalysis and inhibition, Curr Opin Struct Biol, vol.28, pp.1-13, 2014.

Z. Fujimoto, The structure of a Streptomyces avermitilis ?-L-rhamnosidase reveals a novel carbohydrate-binding module CBM67 within the six-domain arrangement, J Biol Chem, vol.288, pp.12376-12385, 2013.

D. Ndeh, Complex pectin metabolism by gut bacteria reveals novel catalytic functions, Nature, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595600

E. C. Martens, N. M. Koropatkin, T. J. Smith, and J. I. Gordon, Complex glycan catabolism by the human gut microbiota: The Bacteroidetes Sus-like paradigm, J Biol Chem, vol.284, pp.24673-24677, 2009.

E. C. Martens, Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts, PLoS Biol, vol.9, p.1001221, 2011.

A. De-bruyn and M. Anteunis, 1H-N.m.r. study of L-rhamnose, methyl alpha-Lrhamnopyranoside, and 4-o-beta-D-galactopranosyl-L-rhamnose in deuterium oxide, Carbohydr Res, vol.47, pp.158-163, 1976.

S. M. Pitson, M. Mutter, L. A. Van-den-broek, A. G. Voragen, and G. Beldman, Stereochemical course of hydrolysis catalysed by alpha-L-rhamnosyl and alpha-D-galacturonosyl hydrolases from Aspergillus aculeatus, Biochem Biophys Res Commun, vol.242, pp.552-559, 1998.

S. Steinbacher, Crystal structure of phage P22 tailspike protein complexed with Salmonella sp. O-antigen receptors, Proc Natl Acad Sci, vol.93, pp.10584-10588, 1996.

E. J. Neer and T. F. Smith, G protein heterodimers: New structures propel new questions, vol.84, pp.175-178, 1996.

R. Wintjens, Crystal structure of papaya glutaminyl cyclase, an archetype for plant and bacterial glutaminyl cyclases, J Mol Biol, vol.357, pp.457-470, 2006.

C. Artola-recolons, Structure and cell wall cleavage by modular lytic transglycosylase MltC of Escherichia coli, ACS Chem Biol, vol.9, pp.2058-2066, 2014.

M. G. Botti, M. G. Taylor, and N. P. Botting, Studies on the mechanism of myrosinase. Investigation of the effect of glycosyl acceptors on enzyme activity, J Biol Chem, vol.270, pp.20530-20535, 1995.

D. Jiang, Crystal structure of 1,3Gal43A, an exo-?-1,3-galactanase from Clostridium thermocellum, J Struct Biol, vol.180, pp.447-457, 2012.

T. M. Gloster, J. P. Turkenburg, J. R. Potts, B. Henrissat, and G. J. Davies, Divergence of catalytic mechanism within a glycosidase family provides insight into evolution of carbohydrate metabolism by human gut flora, Chem Biol, vol.15, pp.1058-1067, 2008.

J. H. Hehemann, L. Smyth, A. Yadav, D. J. Vocadlo, and A. B. Boraston, Analysis of keystone enzyme in Agar hydrolysis provides insight into the degradation (of a polysaccharide from) red seaweeds, J Biol Chem, vol.287, pp.13985-13995, 2012.

S. S. Macdonald, M. Blaukopf, and S. G. Withers, N-acetylglucosaminidases from CAZy family GH3 are really glycoside phosphorylases, thereby explaining their use of histidine as an acid/base catalyst in place of glutamic acid, J Biol Chem, vol.290, pp.4887-4895, 2015.

S. Litzinger, Structural and kinetic analysis of Bacillus subtilis N-acetylglucosaminidase reveals a unique Asp-His dyad mechanism, J Biol Chem, vol.285, pp.35675-35684, 2010.

D. R. Ducatti, M. A. Carroll, and D. L. Jakeman, On the phosphorylase activity of GH3 enzymes: A ?-N-acetylglucosaminidase from Herbaspirillum seropedicae SmR1 and a glucosidase from Saccharopolyspora erythraea, Carbohydr Res, vol.435, pp.106-112, 2016.

A. J. Thompson, Structural and mechanistic insight into N-glycan processing by endo-?-mannosidase, Proc Natl Acad Sci, vol.109, pp.781-786, 2012.

B. C. Knott, The mechanism of cellulose hydrolysis by a two-step, retaining cellobiohydrolase elucidated by structural and transition path sampling studies, J Am Chem Soc, vol.136, pp.321-329, 2014.

A. Rogowski, Evidence that GH115 ?-glucuronidase activity, which is required to degrade plant biomass, is dependent on conformational flexibility, J Biol Chem, vol.289, pp.53-64, 2014.

W. Kabsch, XDS. Acta Crystallogr D Biol Crystallogr, vol.66, pp.125-132, 2010.

. Anonymous, The CCP4 suite: Programs for protein crystallography, Acta Crystallogr D Biol Crystallogr, vol.50, issue.4, pp.760-763, 1994.

A. J. Mccoy, Phaser crystallographic software, J Appl Cryst, vol.40, pp.658-674, 2007.

P. Emsley and K. Cowtan, Coot: Model-building tools for molecular graphics, Acta Crystallogr D Biol Crystallogr, vol.60, pp.2126-2132, 2004.

G. N. Murshudov, REFMAC5 for the refinement of macromolecular crystal structures, Acta Crystallogr D Biol Crystallogr, vol.67, pp.355-367, 2011.

G. N. Murshudov, A. A. Vagin, and E. J. Dodson, Refinement of macromolecular structures by the maximum-likelihood method, Acta Crystallogr D Biol Crystallogr, vol.53, pp.240-255, 1997.

V. B. Chen, MolProbity: All-atom structure validation for macromolecular crystallography, Acta Crystallogr D Biol Crystallogr, vol.66, pp.12-21, 2010.

T. Ulaganathan, New ulvan-degrading polysaccharide lyase family: structure and catalytic mechanism suggests convergent evolution of active site architecture, ACS Chem Biol, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02108415