Beta-carotene preferentially regulates chicken myoblast proliferation withdrawal and differentiation commitment via BCO1 activity and retinoic acid production. - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Experimental Cell Research Année : 2017

Beta-carotene preferentially regulates chicken myoblast proliferation withdrawal and differentiation commitment via BCO1 activity and retinoic acid production.

Christophe Praud
Emilien Voldoire
  • Fonction : Auteur
  • PersonId : 761831
  • IdRef : 176157549
Yves Le Vern
Estelle Godet
  • Fonction : Auteur
  • PersonId : 1204472
Nathalie Couroussé
  • Fonction : Auteur
  • PersonId : 969508
Elisabeth Duval
Cécile Berri
Michel Jacques M.J. Duclos

Résumé

The enzyme β-carotene oxygenase 1 (BCO1) catalyzes the breakdown of provitamin A, including beta-carotene (BC), into retinal, prior to its oxidation into retinoic acid (RA). Allelic variation at the BCO1 locus results in differential expression of its mRNA and affects carotenoid metabolism specifically in chicken Pectoralis major muscle. In this context, the aim of this study was to evaluate the potential myogenic effect of BC and the underlying mechanisms in chicken myoblasts. BCO1 mRNA was detected in myoblasts derived from chicken satellite cells. Treating these myoblasts with BC led to a significant decrease in BrdU incorporation. This anti-proliferative effect was confirmed by a cell cycle study using flow cytometry. BC also significantly increased the differentiation index, suggesting a positive effect on the commitment of avian myoblasts to myogenic differentiation. Addition of DEAB, a specific inhibitor of RALDH activity, significantly reduced BC anti-proliferative and pro-differentiating effects, suggesting that BC exerted its biological effect on chicken myoblasts through activation of the RA pathway. We also observed that in myoblast showing decreased BCO1 expression consecutive to a natural mutation or to a siRNA treatment, the response to BC was inhibited. Nevertheless, BCO1 siRNA transfection increased expression of BCO2 which inhibited cell proliferation in control and BC treated cells.

Dates et versions

hal-01607342 , version 1 (02-10-2017)

Identifiants

Citer

Christophe Praud, Sultan Al Ahmadieh, Emilien Voldoire, Yves Le Vern, Estelle Godet, et al.. Beta-carotene preferentially regulates chicken myoblast proliferation withdrawal and differentiation commitment via BCO1 activity and retinoic acid production.. Experimental Cell Research, 2017, 358 (2), pp.140-146. ⟨10.1016/j.yexcr.2017.06.011⟩. ⟨hal-01607342⟩
58 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More