Aridity drove the evolution of extreme embolism resistance and the radiation of conifer genus Callitris
Maximilian Larter, Sebastian Pfautsch, Jean-Christophe Domec, Santiago Trueba, Nathalie Nagalingum, Sylvain Delzon

To cite this version:

HAL Id: hal-01606790
https://hal.archives-ouvertes.fr/hal-01606790
Submitted on 19 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Aridity drove the evolution of extreme embolism resistance and the radiation of conifer genus Callitris

Maximilian Larter1, Sebastian Pfautsch2, Jean-Christophe Domec3,4, Santiago Trueba5,6, Nathalie Nagalingum7 and Sylvain Delzon1

1BIOGECO, INRA, Univ. Bordeaux, Pessac 33610, France; 2Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; 3Bordeaux Sciences AGRO, UMR 1391 ISPA INRA, 1 Cours du Général de Gaulle, Gradignan Cedex 33175, France; 4Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; 5Department of Ecology and Evolutionary Biology, University of California, Los Angeles, UCLA, 621 Charles E. Young Dr. South, Los Angeles, CA 90095, USA; 6IRD, UMR AMAP, BPA5, Noumea 98800, New Caledonia; 7National Herbarium of New South Wales, Royal Botanic Gardens & Domain Trust, Mrs Macquaries Rd, Sydney, NSW 2000, Australia

Author for correspondence:
Maximilian Larter
Tel: +33 6 79 70 92 75
Email: maximilien.larter@gmail.com

Received: 30 December 2016
Accepted: 26 February 2017

doi: 10.1111/nph.14545

Key words: climate change, diversification, drought, ecophysiology, embolism resistance, evolution, gymnosperms, xylem.

Summary

- Xylem vulnerability to embolism is emerging as a major factor in drought-induced tree mortality events across the globe. However, we lack understanding of how and to what extent climate has shaped vascular properties or functions. We investigated the evolution of xylem hydraulic function and diversification patterns in Australia’s most successful gymnosperm clade, Callitris, the world’s most drought-resistant conifers.
- For all 23 species in this group, we measured embolism resistance (P_{50}), xylem specific hydraulic conductivity (K_s), wood density, and tracheary element size from natural populations. We investigated whether hydraulic traits variation linked with climate and the diversification of this clade using a time-calibrated phylogeny.
- Embolism resistance varied widely across the Callitris clade (P_{50}: −3.8 to −18.8 MPa), and was significantly related to water scarcity, as was tracheid diameter. We found no evidence of a safety-efficiency tradeoff; K_s and wood density were not related to rainfall. Callitris diversification coincides with the onset of aridity in Australia since the early Oligocene.
- Our results highlight the evolutionary lability of xylem traits with climate, and the leading role of aridity in the diversification of conifers. The uncoupling of safety from other xylem functions allowed Callitris to evolve extreme embolism resistance and diversify into xeric environments.

Introduction

In the light of current climate change, the role of environmental fluctuation in driving biodiversity and its distribution is of particular interest (Thuiller et al., 2005, 2011). It is now clear that rapid and pronounced changes in environmental conditions can: reduce climatic niche availability, potentially driving populations or species to extinction (Mittelbach et al., 2007; Eiserhardt et al., 2015); open up new suitable niche space allowing range expansion; drive adaptation; and even lead to the emergence of new species (Pennington et al., 2004; Hua & Wiens, 2013; Koenen et al., 2015; Qvarnström et al., 2016). For example, the transition to a colder and drier climate in the mid-to-late Miocene (c. 13.8–5.3 million yr ago (Ma)) is associated with vegetation changes in the Cape Flora of South Africa, leading to a major increase in diversification in Aizoaceae (Dupont et al., 2011). Over the same period, the South American orchid genus Hoffmannseggella radiated into more open habitats with the cooling climate in eastern Brazil (Antonelli et al., 2010). The emergence of the sclerophyll biomes in Australia 25 Ma has also been associated with adaptive radiations, with evidence from the fossil record (Carpenter et al., 1994; Hill, 2004) and using phylogenetics, for example, in Banksia and eucalypts (Crisp et al., 2004). Although we do not fully understand the rise of the angiosperms (Augusto et al., 2014), climate shifts at the end of the Eocene c. 34 Ma could also explain the decline of some gymnosperm lineages (Crisp & Cook, 2011).

Although some species have shown great capacity for adaptation (Meyers & Bull, 2002) and shifts in distribution (Davis & Shaw, 2001), reports of potential habitat contraction and increasing extinction risk of tree species as a consequence of today’s rapid climate change are increasing (e.g. Eiserhardt et al., 2015; Corlett & Westcott, 2013; Sax et al., 2013). It thus becomes apparent that in order to better predict climate change-induced effects on diversity and habitat range of trees, it is necessary to identify adaptive traits that could offer resistance to extinction and have the potential to respond to natural selection during rapid climate change.

For vascular plants, and tall trees in particular, providing a continuous stream of water to their photosynthetic aerial shoots...
is one of their most vital needs and greatest challenges, especially as climate change will increase frequency and severity of droughts and heat waves (Stocker et al., 2013; Pfautsch, 2016). Water transport in plants is driven by the process of transpiration at the leaf–atmosphere interface, which generates a water-potential gradient throughout the plant. Formalized by the cohesion-tension theory (Dixon, 1914; Tyree & Zimmermann, 2002), water transport is possible thanks to the strong hydrogen bonds between water molecules that allow liquid water to remain in a metastable state while at negative pressure, i.e. under tension. The main drawback of this remarkable function is the risk of xylem embolism, or breakage of the water column because of cavitation, which becomes ever more likely as evaporative demand increases, and as soil water potential declines during drought. After embolism, the air-filled conduits restrict water transport, and high amounts of xylem embolism can lead to plant death (Brodrrib & Cochard, 2009; Urrl et al., 2013). The breakdown of the vascular system through embolism is thought to be involved in multiple mass mortality events during and after droughts in forests across the globe in recent decades (Anderegg et al., 2012, 2016). Various adaptive mechanisms protect plants from these potentially catastrophic events, such as limiting water loss through transpiration and the drop in xylem pressure by closing stomata early during drought (Delzon & Cochard, 2014), or xylem adaptations that limit the formation of air bubbles and the irreversible spread of embolism (Schuldt et al., 2015; Lübbe et al., 2016). Recent advances have revealed that cavitation events occur at air–sap interfaces within pores between functional and embolized conduits (Choat et al., 2008; Lens et al., 2013). In conifers, bordered pits contain a valve-like structure called the torus which is deflected to block the pit aperture, protecting functional tracheids from air entry (Bailey, 1916). While this provides conifers with increased protection from embolism compared with angiosperms (Maherali et al., 2004; Pittermann et al., 2005; Choat et al., 2012), embolism still occurs as a result of imperfect sealing of the pit aperture by the torus (Bouche et al., 2014).

Plants need to balance embolism resistance (xylem safety) with optimizing rates of water transport (xylem efficiency) to their photosynthetic organs (Tyree & Zimmermann, 2002; Hacket al., 2006). The advantages of xylem safety are evident (i.e. increased survival during drought), whereas xylem efficiency allows increased carbon allocation to leaves relative to sapwood area, for example, allowing rapid growth and optimizing photosynthesis in competitive settings (Santiago et al., 2004; Pootor et al., 2010). The link between safety and efficiency is indirect, as wider conductive elements transport water efficiently but are weaker under the mechanical stress imposed by negative xylem pressure in drought-tolerant species (Sperry et al., 2008). Thicker cell walls could influence pit morphology, notably the pit membrane, thereby increasing xylem embolism resistance (Tyree & Sperry, 1989; Li et al., 2016). The final compromise reached between safety and efficiency is strongly determined by species ecology and phylogeny. For example, species growing in competitive wet environments are more likely to maximize efficiency over safety (Sperry et al., 2006; Choat et al., 2012). In any case, there is little evidence of a universal and strong relationship between safety and efficiency at a higher ecological and taxonomic scale. This tradeoff is only suggested by the absence of species with a xylem that combines both embolism resistance and transport efficiency (Gleason et al., 2016). However, there are many ‘incompetent’ species, i.e. with vasculature that is both vulnerable to embolism and inefficient for water transport. The impact of water availability on water transport efficiency seems, however, to be noticeable at more restricted evolutionary scales. For instance, xeric *Eucalyptus* species evolved narrower vessels and denser wood than species in more mesic environments, reflecting a tradeoff of hydraulic traits in response to climate across Australia (Pfautsch et al., 2016). Similarly, tracheid lumen diameter tracks rainfall across *Callitris columellaris* populations (Bowman et al., 2011).

At broad evolutionary scales there is substantial variation in the xylem pressure inducing 50% loss of hydraulic conductance, termed P_{50} (Maherali et al., 2004; Pittermann et al., 2012; Bouche et al., 2014). On the other hand, at finer infrageneric and intraspecific scales there is generally low variability (Delzon et al., 2010) and little genetic differentiation for xylem embolism resistance (Lamy et al., 2011; Sáenz-Romero et al., 2013; but see David-Schwartz et al., 2016; Hajek et al., 2016). However, no studies have examined embolism resistance among closely related species over a wide climatic gradient. *Callitris* is a conifer genus of shrubs and trees that underwent an ecological radiation with the emergence of dry environments in Australia over the last 30 million yr (Pittermann et al., 2012). It is the largest genus of Cupressaceae in the southern hemisphere, with 15–20 species recognized by different authors (Hill & Brodribb, 1999; Farjon, 2005; Eckenwalder, 2009; Piggin & Bruhl, 2010). This clade displays a marked xeric affinity, despite spanning a huge rainfall gradient across Australia and New Caledonia, i.e. from c. 200 to over 2000 mm yr$^{-1}$. With some of the most drought-tolerant species currently known (Brodribb et al., 2010; Larter et al., 2015), this clade presents an ideal group of species to investigate plant ecophysiology and the development of drought tolerance from an evolutionary perspective.

Our main objective was to investigate the evolution of the vascular system of all members of the *Callitris* clade. First, we constructed an extensive physiological dataset of xylem embolism resistance, xylem specific hydraulic conductivity and xylem anatomical traits. We then obtained species occurrence data and tested whether variation in hydraulic traits was linked to species climatic preferences and the diversification of this clade, established with a time-calibrated phylogeny based on DNA sequence data from multiple loci. We hypothesized that, owing to the large aridity gradient occupied by this clade, resistance to embolism should vary widely and track climatic conditions. Given the genus-level phylogenetic scale and extensive climatic gradient, our second hypothesis was that a tradeoff existed between safety and hydraulic efficiency, as a result of large selective pressures from competition and climatic stress driving hydraulic traits. Specifically, we expected the most xeric species to have a resistant, less efficient xylem with many narrow tracheids, while species from more mesic regions would have wider tracheids, favoring
xylem efficiency but reducing safety from embolism. Our third hypothesis was that if hydraulic traits in this group evolved rapidly in response to climate, then phylogeny would have little impact on traits and tradeoffs. In relation to this hypothesis, we expected that the distribution of members of the Callitris clade reflected an ecological radiation in response to increasing aridity in the Australian region since the end of the Eocene c. 34 Ma.

Materials and Methods

Collection of plant materials

For the purpose of this study, we collected samples from wild populations for Actinostrobus acuminatus, Actinostrobus arenarius, Actinostrobus pyramidalis, Callitris canescens, Callitris drummondii, Callitris endlicheri, Callitris glaucofylla, Callitris gracilis, Callitris muelleri, Callitris neocaledonica, Callitris roei, Callitris sulcata, Callitris verrucosa, and Neocalitropsis pantheri and from botanical gardens for Callitris baileyi, Callitris endlicheri, Callitris macelignana, and Callitris monticola (Table 1; Fig. 1). We also included data from previous studies for Callitris tuberculata, C. columnaellaris, C. gracilis, Callitris preissii, Callitris rhomboidea and A. pyramidalis (Brodribb et al., 2010; Delzon et al., 2010; Larter et al., 2015), and pooled data from all sources for analysis. The close relationship between the genera Callitris s.s., Neocalitropsis and Actinostrobus (Pye et al., 2003; Piggin & Bruhl, 2010) led us to treat them as a single Callitris clade (or Callitris s.l.). We collected straight branches c. 40 cm long and 1 cm in diameter, using hand-held secateurs or telescopic branch-cutters from sun-exposed parts of the crown, although we expect little variation in xylem embolism resistance across organs in conifers (Bouche et al., 2016). We sampled three to 10 individuals depending on the availability of healthy adult trees. We immediately removed all leaves on the branches, and carefully wrapped the samples (in wet paper towels, plastic bags and packing tape), to avoid any water loss during courier transport to analytical facilities in Bordeaux, France. They were then shipped as quickly as possible, refrigerated and maintained in a humid environment until hydraulic measurements were conducted.

Species climate

The climate experienced by Callitris species varies widely from hot, semiarid Mediterranean climate in southwestern and central Australia to wet tropical or monsoonal climates in Northern Australia, Queensland and New Caledonia (Fig. 1). In order to describe each species’ climate, we downloaded species occurrence points from the Global Biodiversity Information Facility (GBIF; Booth, 2014). After excluding data with possible species misidentification or GPS coordinate errors, we extracted climate information for each point using climate data from the WorldClim database (Hijmans et al., 2005) using QGIS software (Quantum, 2011). We also obtained potential evapotranspiration (P-ET) and aridity index (AI) from the CGIAR-CSI database (Trabucco & Zomer, 2009). We then extracted the mean and median values of the distributions of each climatic variable for each species.

Physiological and anatomical traits

All hydraulic measurements were done with the standard protocol developed at the University of Bordeaux using the ‘Cavitron’ technique (Cochard et al., 2005), which uses centrifugal force to induce a negative pressure in a spinning sample. The loss of hydraulic conductance as a result of embolism is monitored while incrementally decreasing the negative pressure experienced in the xylem. We used a thicker, reinforced rotor specifically designed to safely reach high speeds (26 000 g or 13 000 rpm with a standard 27.5 cm rotor), inducing xylem pressure below −16 MPa. This technique allowed us to construct vulnerability curves and simultaneously estimate xylem specific hydraulic conductivity K_s (kg m$^{-1}$ MPa$^{-1}$ s$^{-1}$), derived from the maximum conductance measured at high xylem pressure divided by sample length and sapwood area. A sigmoid model was fitted to each individual vulnerability curve (207 in total) from which we obtained the P_{50} parameter (MPa), which is the xylem pressure inducing 50% loss of conductance (Pammenter & Vander Willigen, 1998). Values were then averaged across all samples for each species.

Following xylem embolism resistance measurements, a 1–2 cm segment was excised from the basal part of the samples in order to conduct xylem anatomy measurements. Several transverse sections per individual were cut using a sliding microtome, stained using safranine at 1%, and examined using a light microscope (DM2500M; Leica Microsystems, Wetzlar, Germany). We selected three individuals per species and took five digital images per individual, which were then analyzed using ImageJ (NIH, Bethesda, MD, USA). Magnification was ×400 for all samples except for N. pantheri, C. sulcata and C. neocaledonica, for which we used ×200 magnification to increase the total number of tracheids visible on each image. Sample preparation and photography were conducted at either the University of Bordeaux or Western Sydney University (Hawkesbury Institute for the Environment), using the same protocol. Images were manually edited to remove imperfections before automatic image analysis. Tracheids with an incomplete lumen (i.e. placed on the edge of the images) were excluded from the analysis. Overall, 80 individual samples (three to five per species) and a total of 400 images were analyzed, resulting in a total of 33 652 tracheids measured. We extracted from each image the area of each tracheid lumen, total image area and number of analyzed tracheids, and pooled the data by individual for analysis. From the total analyzed area, total tracheid number, and area of each tracheid, we derived for each individual mean, minimum and maximum tracheid diameter, the average number of tracheid per unit area (TF; n mm$^{-2}$) and the ratio of tracheid lumen area divided by total image area (void to wood ratio; %).

According to the Hagen–Poiseuille law, hydraulic conductivity of a conduit varies according to the fourth power of its diameter, which means that larger tracheids contribute disproportionately more to the overall hydraulic conductance (Tyree & Zimmermann, 2002). To use a hydraulically meaningful measure of tracheid diameter, we calculated the hydraulically weighted hydraulic diameter (D_h; Tyree & Zimmermann, 2002), defined as:

\[D_h = \frac{4}{\pi} \frac{A}{P} \]

where A is the area of the conduit and P is the perimeter of the conduit. This equation shows that D_h is linearly related to the diameter of the conduit, as required for hydraulic meaningfulness.
Table 1 Sampling details for all species in this study (natural populations and botanic gardens locations) and median values for aridity index (AI), mean annual temperature (MAT) and mean annual precipitation (MAP) of each species’ distribution

<table>
<thead>
<tr>
<th>Species Authority</th>
<th>Species Authority</th>
<th>N</th>
<th>Natural population location</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Elevation (m)</th>
<th>Species Authority</th>
<th>Botanic garden location</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Elevation (m)</th>
<th>Al</th>
<th>MAT</th>
<th>MAP</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actinostrobus acuminatus Parl.</td>
<td>10</td>
<td>Western Australia</td>
<td>−30.49428</td>
<td>115.42253</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>Actinostrobus arenarius C.A.Gardner</td>
<td>11</td>
<td>Western Australia</td>
<td>−30.86139</td>
<td>116.72167</td>
<td>338</td>
<td>Mt Annan BG, NSW, Aus.</td>
<td>−34.06984</td>
<td>150.76494</td>
<td>155</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actinostrobus pyramidalis Miq.</td>
<td>12</td>
<td>Western Australia</td>
<td>−30.62731</td>
<td>115.94136</td>
<td>204</td>
<td>Mt Annan BG, NSW, Aus.</td>
<td>−34.06984</td>
<td>150.76494</td>
<td>155</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callitris baileyi C.T.White</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Callitris canescens</td>
<td>(Parl.) S.T.Blake</td>
<td>10</td>
<td>Western Australia</td>
<td>−33.11078</td>
<td>118.35428</td>
<td>305</td>
<td>Mt Annan BG, NSW, Aus.</td>
<td>−34.06984</td>
<td>150.76494</td>
<td>155</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callitris canescens</td>
<td>S.T.Blake</td>
<td>10</td>
<td>South Australia</td>
<td>−34.99925</td>
<td>139.55533</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callitris columellaris F.Muell.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Callitris drummondii (Parl.) Benth. & Hook.f. ex F.Muell.</td>
<td>13</td>
<td>Western Australia</td>
<td>−33.67881</td>
<td>120.18561</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>Callitris endlicheri F.M.Bailey</td>
<td>9</td>
<td>New South Wales</td>
<td>−33.13700</td>
<td>150.07461</td>
<td>612</td>
<td>Mt Annan BG, NSW, Aus.</td>
<td>−34.06984</td>
<td>150.76494</td>
<td>155</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callitris glaucophylla J.Thomps. & L.A.S.Johnson</td>
<td>13</td>
<td>New South Wales</td>
<td>−32.43481</td>
<td>149.84619</td>
<td>707</td>
<td>Mt Annan BG, NSW, Aus.</td>
<td>−34.06984</td>
<td>150.76494</td>
<td>155</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callitris gracilis R.T.Baker</td>
<td>8</td>
<td>South Australia</td>
<td>−34.02793</td>
<td>140.79888</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Callitris intratropica R.T.Baker & H.G.Sm.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Callitris macleanara (F.Muell.) F. Muell.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Callitris monticola J.Garden</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Callitris muelleri (Parl.) Benth. & Hook.f. ex F.Muell. Dümmer</td>
<td>8</td>
<td>New South Wales</td>
<td>−33.73242</td>
<td>150.37192</td>
<td>815</td>
<td></td>
</tr>
<tr>
<td>Callitris neocaledonica</td>
<td>Royal BG Sydney, NSW, Aus.</td>
<td>−33.86557</td>
<td>151.21415</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Callitris preissii Miq.</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Table 1 Continued.

<table>
<thead>
<tr>
<th>Species</th>
<th>Authority</th>
<th>Natural population location</th>
<th>Elevation (m)</th>
<th>Longitude</th>
<th>Botanic garden location</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Callitris rhomboides</td>
<td>A.Rich. & ex Rich.</td>
<td>Western Australia</td>
<td>–33.108 06</td>
<td>118.33439</td>
<td>346</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callitris roei</td>
<td>Endl. & Schidl.</td>
<td>New South Wales</td>
<td>–22.133 65</td>
<td>166.48887</td>
<td>305</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callitris sulcata</td>
<td>R.B. ex Rich.</td>
<td>Western Australia</td>
<td>–33.110 78</td>
<td>118.35428</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callitris tuberculata</td>
<td>R.T. Baker & H.G. Sm.</td>
<td>Australia</td>
<td>–35.018 28</td>
<td>139.46561</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callitris verrucosa</td>
<td>(Carriere)</td>
<td>Northern Australia</td>
<td>–22.231 9444</td>
<td>166.860556</td>
<td>244</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neocallitropsis pancheri</td>
<td>(Carriere)</td>
<td>Caledonia</td>
<td>–34.06984</td>
<td>150.764</td>
<td>155</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. canescens was sampled from two wild populations, in Western Australia and South Australia, as well as one individual from Mt. Anan BG, NSW.

References for data taken from previous studies: 1, Dezon et al. (2010); 2, Brodribb et al. (2010); 3, Litter et al. (2015).

Phylogenetic reconstruction

We built on the increased availability of molecular sequences to produce a new phylogeny of Callitris, Actinostrobus and Neocallitropsis. We took a broad view of species delimitations, i.e. treating C. columellaris, Callitris intratropica, and C. glaucophylla separately, as well as C. tuberculata, C. preissii, C. verrucosa and C. gracilis. Various treatments of these as subspecies and/or synonyms are available in the literature (Hill, 1998; Hill & Brodribb, 1999; Farjon, 2005, 2010; Eckenwalder, 2009). We

$$D_h = \left[\frac{\sum D_i^4}{N} \right]^{1/4}$$ \hspace{1cm} \text{Eqn 1}

where N is the total number of tracheids and D_h is the mean diameter required to achieve the same overall conductance with the same number of conductive elements. We then calculated the theoretical conductance (K_{th}; kg m$^{-1}$ MPa$^{-1}$ s$^{-1}$), which is the theoretical rate of flow through a cylindrical pipe according to the Hagen–Poiseuille law:

$$K_{th} = \frac{D_h^2 \pi \rho}{128 \eta} \times TF$$ \hspace{1cm} \text{Eqn 2}

where η is the viscosity of water at 20°C (1.002 \times 10$^{-3}$ MPa s) and ρ is the density of water at 20°C (1.002 kg m$^{-3}$). For appropriate units, we transformed D_h to m (\times 10$^{-3}$) and TF to m$^{-2}$ (\times 109).

Xylem water flow efficiency represents the joint conductivity of both tracheid lumens (i.e. K_{th}) and bordered pits (Hacke et al., 2005). We calculated pit conductivity K_{pit} (kg m$^{-1}$ MPa$^{-1}$ s$^{-1}$) as follows:

$$K_{pit} = \left(\frac{1}{K_{th}} - \frac{1}{K_e} \right)^{-1}$$ \hspace{1cm} \text{Eqn 3}

We macerated sapwood of 14 Callitris species and measured length (μm) and counted bordered pits (hereafter pitting) of 700 individual tracheids (50 per species), for a subset of species representative of the range of climate encountered by Callitris. To prepare maceration slides (after Franklin, 1945), splinters of outer sapwood were incubated for 12 h at 60°C in plastic vials (2 ml Eppendorf) that contained acetic acid and hydrogen peroxide (50 : 50). Following the incubation, splinters were repeatedly washed and dehydrated in ethanol (50–70–96%) with water before staining with safranin–ethanol solution. After excess stain was removed, samples were mounted on glass slides, and cells were imaged using a light microscope and a digital camera (Leica DFC 500); ImageJ was again used for image analysis.

Wood density was estimated using X-ray imagery (Polge, 1966) for three individuals per species on transversal sections of 1 mm thickness. We used a silicone scale of known densities for calibration, and analyzed the images using Winendro (Guay, 1966) for three individuals per section, from which we estimated mean wood density (g cm$^{-3}$).
used the PHLAWD pipeline (Smith et al., 2009) to obtain sequences from GenBank (Benson et al., 2011) with the aim of constructing a large multilocus dataset. We used a range of loci from plastid (rbcL, matK, trnL, psbB, petB) and nuclear DNA (ITS, needly, leafy). To complete the dataset, we used unpublished sequences (rbcL and matK) for the species *C. roei* (ITS, needly, leafy). To complete the dataset, we used unpublished sequences (rbcL and matK) for the species *C. roei*, *C. monticola*, *C. baileyi*, and *C. columellaris* (N. Nagalingum, pers. comm.).

Alignments from PHLAWD were manually trimmed and checked, and we selected the most appropriate DNA substitution models using maximum likelihood implemented in MEGA (Tamura et al., 2011) (see Supporting Information Table S1 for details). To check for incongruence between the chloroplastic and nuclear datasets, we first analyzed both matrices separately using maximum likelihood with RAXML (v.8.0.20) and bayesian inference implemented in BEAST v.1.8.2 (Drummond & Rambaut, 2007) (Fig. S1). Finally, we combined the data to construct a time-calibrated phylogeny for the subfamily Callitroidae (Cupressaceae). We used the recognized position of *Papuacedrus* as sister to all other species in this group to root the tree (Leslie et al., 2012; Mao et al., 2012). We set a minimum constraint on the age of crown Callitroidae (Leslie et al., 2012; Mao et al., 2012) by using the Patagonian fossil *Papuacedrus prechilenis* (Willf. et al., 2009), based on an ovulate cone from the early to mid-Eocene (51.9–47.5 Ma). The maximum age for the appearance of crown Callitroidae was conservatively set by evidence that crown Cupressaceae (i.e. subfamilies Callitroidae and Cupressoïdae) was present by 99.6 Ma, using leafy shoots and cones of the fossil *Widdringtonia americana* from the Cenomanian (McIver, 2001). Although this fossil is probably too old to belong to the extant genus *Widdringtonia*, it definitely belongs to the Cupressaceae s.s., that is, excluding the Taxodioid lineages. We used the earliest evidence of *Callitris* (Paull & Hill, 2010) to constrain the crown of the *Callitris* clade. *C. leayana* from early Oligocene Tasmania has cone scales and leaves in whorls of three, which are easily distinguishable from *Fitzroya*, the only other extant genus with this arrangement. However, this fossil bears characters of both *Callitris* and *Actinostrobus*, and the phylogenetic relationships between the two genera are still ambiguous (Pye et al., 2003; Piggim & Bruhl, 2010). Finally, we used *Fitzroya acutifolia* to calibrate the split between *Fitzroya* and *Diselma*, based on the high similarity between the fossil leaves and cones from the early Oligocene and extant *Fitzroya* (Paull & Hill, 2010). We used a uniform prior for the root calibration (49.9–99.6 Ma), and lognormal priors for the crown *Callitris* clade and the *Fitzroya–Diselma* split, specified so that the 95% confidence interval (CI) spanned 28.3–48.3 Ma. We ran the chain for 100 million generations, sampling every 10 000. We discarded the first 25% of the chain as burn-in and evaluated convergence using TRACER v.1.6 – all effective sample sizes were well above 200.

Figure 1 Map of locations of wild populations sampled for this study. Colors represent terrestrial eco-regions taken from Olson et al. (2001).

Statistical analyses

Vulnerability curve fitting was done in SAS 9.4 (SAS Institute Inc., Cary, NC, USA). All remaining data manipulation and analysis were run in R v.3.2.3 (R Core Team, 2015). We performed linear regressions on raw data and log-transformed data with nearly identical results, so we present only untransformed correlations to simplify interpretation. When significant relationships appeared nonlinear, we fitted a nonlinear model (i.e. $y = a \times \log(x) + b$) with nonlinear least-squares (NLS function) in...
However, to allow comparisons across bivariate relationships, in all cases we report the \(R^2 \) values from the linear correlations. Phylogenetic generalized least squares (PGLS) were run using the CAPER package v.0.5.2 (Orme, 2013). PGLS accounts for the statistical nonindependence in cross-species trait correlations by adjusting the residual error structure using a variance/covariance matrix derived from the phylogeny (Garamszegi, 2014). It explicitly allows for varying amounts of phylogenetic signal in the data by using Pagel’s lambda (Pagel, 1999), thus removing the risk of overcorrecting for phylogeny when shared evolutionary history does not affect trait relationships.

We used PHYTOOLS v.0.5 (Revell, 2013) to map the evolution of \(P_{50} \) onto the time-calibrated phylogeny using a Brownian motion model of evolution and maximum likelihood. We used APE v.4.0 (Paradis et al., 2004) to estimate ancestral states, to plot the number of lineages through time, and to obtain the gamma statistic (Pybus & Harvey, 2000).

Results

Variation in hydraulic traits

Xylem embolism resistance varied widely across the *Callitris* clade, from \(P_{50} = -3.8 \pm 0.1 \text{ MPa} \) in *C. neocaledonica* to \(-18.8 \pm 0.6 \text{ MPa} \) in *C. tuberculata* (mean \(\pm \text{ SE} \); Fig. 2; Table S2). \(P_{50} \) had a mean of \(-11.7 \pm 0.7 \text{ MPa} \) across the whole clade. Xylem specific hydraulic conductivity \((K_s) \) varied approximately sixfold, from \(0.187 \pm 0.014 \text{ kg m}^{-1} \text{ MPa}^{-1} \text{ s}^{-1} \) in *C. oblonga* to \(1.25 \pm 0.05 \text{ kg m}^{-1} \text{ MPa}^{-1} \text{ s}^{-1} \) in *C. intratropica*, with a clade-wide mean of \(0.52 \pm 0.05 \text{ kg m}^{-1} \text{ MPa}^{-1} \text{ s}^{-1} \). Our analysis of xylem anatomy uncovered extensive variation, with some species containing many small, densely packed tracheids (e.g. *C. tuberculata*, mean diameter = 9.04 ± 0.23 \(\mu \text{m} \), tracheid frequency = 3250 ± 126 n mm\(^{-2}\)), while others had fewer but wider tracheids (e.g. *C. sulcata*, 14.14 ± 0.77 \(\mu \text{m} \) and

Fig. 2 Time-tree of Callitroidae and the evolution of resistance to embolism (\(P_{50} \)) in the *Callitris* clade. (a) Phylogeny of Callitroidae. Blue bars at nodes represent 95% highest posterior density from the BAST analysis, and numbers represent Bayesian posterior probabilities (not shown if < 0.95). Branches of the phylogeny are colored according to \(P_{50} \) reconstructed using the Brownian motion model (scale bottom left). Stars mark fossil-calibrated nodes. Letters A–E indicate the five subclades within crown *Callitris*. (b) Bar plot of \(P_{50} \) for each species in the phylogeny, colored according to species aridity index (AI). Red, AI < 0.5; green, 0.5 < AI < 1; blue, AI > 1. *Callitris neocaledonica* is the only missing species: \(P_{50} = -3.8 \text{ MPa}, \text{ AI} = 2.0. \) Pli., Pliocene; P., Pleistocene.
1607 ± 178 n m−2). Accordingly, theoretical hydraulic conductance (K_0) also displayed a wide range of values, with the xylem of *C. sulcata* c. 10 times more efficient than that of *C. gracilis* (13.2 ± 1.7 and 1.15 ± 0.14 kg m⁻¹ MPa⁻¹ s⁻¹, respectively). Comparatively, variation in wood density was moderate yet significant, from 0.57 ± 0.02 g cm⁻³ in *C. oblonga* to a maximum of 0.74 ± 0.04 g cm⁻³ in *N. pancheri*.

Using occurrence data, we found that across the geographical range of the *Callitris* clade, mean annual precipitation (MAP) varied from c. 300 mm for *C. tuberculata* in Western Australia to over 2100 mm for *N. pancheri* in New Caledonia. Similar variation was found for the aridity index (AI), ranging from 0.21 to 2.03 for *C. tuberculata* and *C. neocaledonica*, respectively. Mean annual temperature varied from 12.8°C for *C. oblonga* to 26.8°C for *C. intratropica*.

We tested the role of water availability in determining species’ hydraulic properties. More negative P_{50} was strongly related to increasing aridity across species ranges (Fig. 3a,b; R^2 = 0.78 and 0.81 for MAP and AI, respectively). This trend was confirmed using PGLS, proving the adaptive role of xylem embolism resistance in *Callitris*. There was nonetheless wide variation in P_{50} for similar rainfall values. For example, in the most arid environments with MAP < 450 mm, embolism resistance was in the range P_{50} = −12 to −19 MPa. Tracheid dimensions also track rainfall, with increasing precipitation associated with wider tracheids (Fig. 3g,h; R^2 = 0.45 and 0.48 for MAP and AI, respectively). Neither K_0 (Fig. 3d–f) nor wood density (Fig. 3j–l) were linked to MAP in the studied clade. However, these traits were related to mean annual temperature, with warmer climates linked to higher transport efficiency and higher wood density, although R^2 values were low (Fig. 3f,l; R^2 = 0.245 and 0.135, respectively). By contrast, we found no evidence for an effect of temperature on P_{50} or tracheid diameter (Fig. 3c,i). Accounting for phylogenetic proximity using PGLS did not impact these trait–climate relationships (Table S3). We note that since MAP enters into the calculation of AI, these two variables are strongly correlated.

In our dataset, we found that P_{50} and tracheid diameter were strongly positively correlated, and P_{50} and tracheid frequency were negatively correlated, with resistant species having numerous smaller tracheids compared with species that were more vulnerable (Fig. 4a,b). No relationship was detected between P_{50} and void-to-wood ratio or wood density (Fig. 4c,d). In turn, K_0 appeared to be disconnected to some extent from tracheid and wood traits, showing only a significant relationship with tracheid frequency (Fig. 4f). The remarkably high conductance measured for *C. intratropica* must be highlighted, as it is the result of a highly unusual combination of hydraulic traits: narrow D_0 (Fig. 4e), low tracheid frequency (Fig. 4f), and moderate void-to-wood ratio (Fig. 4g) and wood density (Fig. 4h). Overall, hydraulic efficiency (P_{50}) and efficiency (K_0) were not closely linked to wood traits in the *Callitris* clade, yet resistant species developed smaller, more frequent tracheids. We also investigated the safety–efficiency tradeoff hypothesis, but we found no significant relationship between P_{50} and K_0 (Fig. 5). In this line, bordered pit conductivity was unrelated to P_{50} (Fig. 5c). By contrast, theoretical maximum hydraulic conductance (K_0) was negatively correlated with xylem embolism resistance. Resistant species had a theoretically less efficient xylem when only considering tracheid lumen conductivity (Fig. 5b), which is consistent with smaller tracheids being related to embolism resistance (Fig. 4a). By contrast, bordered pit conductivity (K_{bp}) was unrelated to P_{50}, and remained around or below 1 kg m⁻¹ MPa⁻¹ s⁻¹ across species (Fig. 5c). These relationships were not impacted by phylogenetic history (Table S4). Finally, tracheid length and average number of pits per tracheid were weakly correlated with embolism resistance, where more embolism-resistant species had shorter tracheids with fewer pits (e.g. *C. tuberculata*, 1167 ± 35 µm and 38 ± 2 pits) than more vulnerable species (e.g. *C. macleayana*, 1931 ± 43 µm and 81 ± 3 pits). However, higher pitting was not associated with an increase in overall conductance (Fig. S2).

Phylogeny and trait evolution

Our phylogenetic analyses recovered the well-recognized relationships within the subfamily Callitroideae, with the *Pilgerodendron–Libocedrus* clade sister to remaining species. The *Diselma–Fitzroya* clade is closely allied to *Widdringtonia* (Fig. 2). Within the *Callitris* s.l. group containing the paraphyletic *Callitris*, *Actinostrobus* and *Neocallicitropsis*, early divergences dated to between 30 and 25 Ma are not well resolved (Fig. 2). We found five separate subclades (see letters in Fig. 2): *C. drummondii* and *C. baileyi* (A), the three *Actinostrobus* species (B), two tropical northeastern clades composed of the New Caledonian species *N. pancheri* and *C. sulcata* (B) and *C. macleayana* (C) and a well-supported core *Callitris* clade encompassing the remaining Australian species (E), which is comfortably the most species-rich group within *Callitris* (14 species).

When examining diversification trends, our phylogenetic analysis indicates an upward shift c. 30 Ma (Fig. 6a), with the rapid successive diversifications of the five subclades identified in Fig. 2a. A second acceleration in diversification corresponds with the diversifications in the core *Callitris* clade (clade E in Fig. 2a), c. 17 Ma and continuing to the present. Tempo of diversification varied through time, with a γ-statistic of 2.36 ($P^2 = 0.02$), indicating either an early decrease in extinction rates or a pulse of speciation toward the present (Pybus & Harvey, 2000). By mapping the evolution of xylem embolism resistance onto the phylogeny, we showed that several lineages achieved extreme P_{50} under −15 MPa independently over the last 10 million yr, i.e. *A. arenarius*, *C. canescens*, *C. columellaris* and *C. tuberculata* (Fig. 2a). Overall, P_{50} was extremely labile, with large differences between closely related species, for example *C. monticola* and *C. roei* ($P_{50} = −8.8$ and −12.2 MPa, respectively), *C. oblonga* and *C. canescens* (−10.9 and −16.9 MPa), *N. pancheri* and *C. sulcata* (−4.1 and −8.2 MPa) and *A. pyramidalis* and *A. arenarius* (−11.8 and −15.2 MPa). Related species of the Callitroideae subfamily are relatively vulnerable to xylem embolism, e.g. *Papuacedrus papuana* ($P_{50} = −4.7$ MPa) and *Pilgerodendron uviferum* ($P_{50} = −4.4$ MPa). The ancestral P_{50} reconstruction inferred that the ancestral state in the Callitroideae subfamily was c. −7.2 MPa (95% CI: −1.6 to −12.4 MPa), and that the common ancestor of the *Callitris* clade was moderately resistant, with
Fig. 3 Relationships between xylem hydraulic traits and climate in *Callitris*. (a–l) Embolism resistance (*P*$_{50}$; a–c), xylem specific hydraulic conductivity (*K*$_s$; d–f), hydraulically weighted tracheid diameter (*D*$_h$; g–i) and wood density (j–l) in relation to water availability, as measured by mean annual precipitation (MAP, left), aridity index (AI, centre) and mean annual temperature (right). Linear regression lines are shown, with the adjusted R^2. Statistical significance is indicated by asterisks: $***$, $P < 0.001$; $**$, $P < 0.01$; $*$, $P < 0.05$; ns, nonsignificance at $\alpha = 0.05$. Dashed curves in (a) and (b) represent the best fit nonlinear model. C$_{tu}$, *Callitris tuberculate*; C$_{in}$, *C. intratropica*; N$_{pa}$, *Neocallitropsis pancheri*; P-ET, potential evapotranspiration. Red, AI < 0.5; green, 0.5 < AI < 1; blue, AI > 1. Error bars represent ± SE.
$P_{50} = −10.4\,\text{MPa}$ (95% CI: $−8 \text{ to } −12.9\,\text{MPa}$). Details for the reconstructed P_{50} values at each node of the phylogeny can be found in Fig. S3.

Discussion

Evolution of P_{50} and the adaptive radiation of *Callitris*

Our results provide strong evidence that the evolution of extreme xylem embolism resistance accompanied the radiation of the *Callitris* clade and was driven by the aridification of the Australian continent during the last 30 million yr.

The *Callitris* clade is by far the most embolism-resistant group of trees in the world, containing multiple extreme P_{50} records (i.e. *C. glaucophylla* (−14.4 MPa), *C. preissii* (−15 MPa), *A. arenarius* (−15.2 MPa), *C. columellaris* (−15.8 MPa), *C. canescens* (−16.9 MPa) and *C. tuberculata* (−18.8 MPa)). Only a handful of other gymnosperm species reach P_{50} values lower than −13 MPa, for example in *Juniperus* (Willson et al., 2008; Choat et al., 2012) and *Tetraclinis* (Bouche et al., 2014), and also conifers from the Cupressaceae family. Previous studies at broader evolutionary and geographical scales found a weak P_{50}–rainfall relationship, reporting both vulnerable and resistant species in areas of low precipitation (Brodribb & Hill, 1999; Maherali et al., 2004; Choat et al., 2012; Brodribb et al., 2014).

By contrast, our study at a regional, more restricted evolutionary scale reveals a strong relation between xylem embolism resistance and MAP (Fig. 2a). Further, our results suggest that variation in P_{50} can be largely predicted by local AI (Fig. 2b). These results reveal two contrasting patterns in extant *Callitris* that either occupy high rainfall environments and have relatively vulnerable xylem or are distributed in xeric or seasonally dry environments with much less vulnerable xylem.

The poor fossil record of *Callitris* (Hill & Brodribb, 1999; Paull & Hill, 2010) and uncertainty in deep divergences in both our study and previous work (Pye et al., 2003; Piggot & Bruhl, 2010) shrouds in uncertainty the inference of ancestral ecology or drought tolerance in the *Callitris* clade. However, our mapping of P_{50} across the Callitroidae suggests that the vascular apparatus of the last common ancestor of *Callitris* was less resistant to drought-induced xylem embolism (Fig. 2a). In line with our results, the earliest definite fossil member of this clade is dated to c. 30 Ma and is associated with an assemblage of rainforest taxa, but shares characters with modern *Callitris* species found in both dry and wet environments (Paull & Hill, 2010). Before this time most of Australia was covered with warm and temperate rainforests, with year-round wet climates, but the end of the Eocene (34 Ma) is marked by a global cooling event and a major drop in...
Fig. 5 Xylem safety vs efficiency relationship in Callitris. (a–c) Embolism resistance (P_{50}) in relation to xylem specific hydraulic conductivity (K_s; a), theoretical conductance (K_{tp}; b), and the derived total pit conductivity (K_{pit}; c). Linear regressions are reported with R^2. Statistical significance is indicated by asterisks: **, $P < 0.01$; ns, nonsignificance at $z = 0.05$. The dashed line (b) is the best-fit nonlinear model. Red, aridity index (AI) < 0.5; green, 0.5 < AI < 1; blue, AI > 1. C_tu, Callitris tuberculata; C_in, C. intratropica; N_pa, Neocalitropsis pancheri.

Sea level (Martin, 2006; Macphail, 2007). This cooling trend is visible in the oxygen-isotope composition record (Fig. 6c) and is linked to lower rainfall based on paleosols from central Australia (Fig. 6b). Concomitantly, vegetation shifts indicate the existence of dry seasons and the emergence of the open woodland ecosystems, at least in central Australia (Crisp et al., 2004; Martin, 2006; Fujioka & Chappell, 2010). The onset of more severe aridity in mainland Australia is dated to the mid-Miocene (Martin, 2006; Fujioka & Chappell, 2010; Metzger & Retallack, 2010). The extreme aridity over much of central Australia today is relatively young and linked to the glacial cycles in the northern hemisphere c. 1–4 Ma; (Crisp et al., 2004; Byrne et al., 2008).

Over this period, highly resistant xylem seems to have evolved multiple times independently in different lineages within the group, as a result of convergent evolution. For instance, analogous low P_{50} values are expressed in Actinostrobus and in the rest of the Callitris clade. Meanwhile, our analysis found that the diversification of the Callitris clade happened in two successive pulses, the first at c. 30 Ma and the second from the mid-Miocene onwards (i.e. from c. 16 Ma to the present), coinciding with the major shifts in the climate of the region. This may underpin increasing aridification as a major driving force in Callitris evolutionary history, and the evolution of extreme xylem embolism resistance as a main trigger of their diversification, providing Callitris with an outstanding competitive advantage over the last 30 million yr.

On the lower end of the Callitris xylem embolism resistance spectrum, we find a group of New Caledonian species (clade C; Fig 2a), which occur in tropical forests with significantly higher rainfall regimes. Previous work has shown that past climatic refugia may have persisted in the New Caledonia during the last glacial cycle, mitigating the significant drought that affected the region (Pouteau et al., 2015). The high P_{50} values observed in the New Caledonian clade may therefore result from a lack of drought-exerted selective pressure. Despite the remarkable diversity of conifers in New Caledonia (Jaffré et al., 1994; De Laubenfels, 1996), the Callitris clade is poorly represented with only three species, compared with 13 species of Araucaria. These are highly vulnerable to xylem embolism, with P_{50} typically in the range of -2 to -3 MPa (Bouche et al., 2014; Zimmer et al., 2016). Both these groups are threatened by climate change, as a result of their fragmented distributions and reduced habitat linked to human activity (Beaumont et al., 2011; Pouteau & Birnbaum, 2016). These taxa have different histories in Australia: Araucaria diversity has declined to only two extant species over the last 30 million yr (Kershaw & Wagstaff, 2011), probably because of their limited tolerance to drought (Zimmer et al., 2016). On the other hand, Callitris has thrived, largely thanks to the evolution of its xylem driven by reduced water availability.

Coevolution of xylem traits

A drought tolerance strategy based on a highly embolism-resistant xylem is expected to come with costs, notably with higher carbon investment in conduit walls to cope with extreme xylem tensions and a reduction in water transport efficiency as a result of the associated reduction in conduit size (Hacke et al., 2001; Sperry, 2003; Pittermann et al., 2006a,b, 2011). High embolism resistance in xeric Callitris species is associated with small conduits, which is consistent with the trend in conifers and angiosperms (Sperry et al., 2006). Similarly to the trend across all
conifers (Hacke et al., 2001), we found no species with high embolism resistance and low wood density. However, we found no evidence of an influence of aridity or P_{50} on wood density, and the highest wood density was found in *N. pancheri*, the species with the highest P_{50} measured in this study, a small slow-growing tree found on ultramafic soils in hot tropical climates with high rainfall. Wood density is a key functional trait that is determined by many factors, for example ring width, temperature and soil fertility (Chave et al., 2006; Heineman et al., 2016). It is worth noting here that all three New Caledonian species have high wood density and are found on skeletal, poor ultramafic soils, characterized by low concentrations of nitrogen, potassium,

![Diagram](image-url)

Fig. 6 Diversification of *Callitris* and climate trends of the past 65 million yr. (a) Lineage through time plot on log-scale. Two periods of higher diversification rate are indicated by black arrows. (b) Estimated mean annual precipitation (MAP; mm yr$^{-1}$) in Central Australia for the last 30 million yr, based on paleosol analysis (Metzger & Retallack, 2010). (c) Global temperature trend for the last 65 million yr. Data is deep-sea benthic foraminiferal oxygen isotopic composition ($\delta^{18}O$, $\%$o, left axis), a proxy for global temperature (Zachos et al., 2001, 2008). The temperature scale (right axis) indicates the corresponding temperature, but is only valid for an ice-free world (i.e. not for periods with extensive ice at the poles (from c. 35 Ma)). Pli., Pliocene; P., Pleistocene. PETM, Paleocene-Eocene Thermal Maximum; ETM1-2, Eocene Thermal Maximum 1-2.
phosphorus, and calcium, and sometimes toxic concentrations of magnesium, nickel and manganese (Jaffré, 1995). Additionally, and in spite of a significant reduction in tracheid diameter, we found no significant decrease in xylem specific hydraulic conductance with increasing aridity and increasing resistance to embolism. This is in agreement with the lack of a linear trend across all conifers (Brodribb & Hill, 1999; Gleason et al., 2016).

How do embolism-resistant Callitris species maintain high water flow while reducing tracheid diameter? Xylem specific conductivity in conifers is strongly influenced by tracheid length and the total area of pits connecting adjacent tracheids (Pittermann et al., 2005). In Callitris, however, we found no evidence of a relationship between tracheid length or number of pits and K_{∞}, while more resistant species did tend to have shorter tracheids and fewer pits (Fig. S2). This could be linked to the increased probability of a rare ‘leaky’ pit in tracheids with more numerous pits, similar to the ‘rare pit’ hypothesis in angiosperms (Choat et al., 2003; Wheeler et al., 2005). Resistance of pits to water flow is mainly linked to the size and distribution of pores in the pit membrane and the depth and width of the pit aperture tunnel (Hake et al., 2004; Bouche, 2015). Embolism resistance is linked to the scaling of the pit aperture by the torus in conifers (Domec et al., 2006; Cochard et al., 2009; Delzon et al., 2010; Pittermann et al., 2010; Bouche et al., 2014). Increasing torus size relative to pit aperture (i.e. increasing torus overlap) has been shown to be related to more negative P_{50} but does not reduce overall pit conductivity, which is mostly related to the size of pores in the margo and the pit aperture dimensions (Hake et al., 2004; Pittermann et al., 2010; Bouche, 2015).

Our results demonstrate that in the Callitris clade, water flow through vascular tissue is mostly limited by pit resistivity, indicated by $K_{\text{pit}} < K_{\infty}$, as in other conifers (Pittermann et al., 2006a). Additionally, bordered pits can be efficient for water transport, leading to high values of K_{∞} and can also limit air-seeding under high xylem tension (Pittermann et al., 2005; Domec et al., 2006). A prime example is C. intratropica, with average tracheid diameters ($D_h = 14.2$ μm; see Fig. 3) but by far the highest xylem conductivity in Callitris ($125 \times 10^{-3} \text{m}^2 \text{MPa}^{-1} \text{s}^{-1}$), coupled with highly resistant xylem ($P_{50} = -12.8$ MPa).

In other conifer genera, variation in xylem embolism resistance seems to be limited, for example in Pinus, in which P_{50} varies between $c. -3$ and -5 MPa (Delzon et al., 2010). The extraordinary lability of embolism resistance in the Callitris clade is probably linked to their capacity to uncouple xylem safety from construction cost and xylem efficiency. Additionally, Callitris species display a typical anisohydric behavior, allowing the xylem midday water potential to track declining soil water potential during drought (Brodribb et al., 2013). Unlike many other conifer species, they use leaf desiccation rather than high concentrations of ABA to induce stomatal closure, allowing them to recover more quickly after rewatering (Brodribb & McAdam, 2013; Brodribb et al., 2014). However, continued leakage of water vapor from the leaf surface through closed stomata exposes their xylem to more negative water potential during prolonged drought – hence the need for more negative P_{50} to avoid embolism-induced loss of hydraulic conductance. This derived strategy is followed by both Callitris and their sister-taxa in the Callitrioidae subfamily (e.g. Austrocedrus, Widdringtonia, Fitzroya). A possible cost of this strategy could be the reinforcement of the leaves of these species, allowing them to endure extremely low water potential before suffering leaf damage during drought (e.g. -8 MPa in Callitris rhomboidea (Brodribb et al., 2014), and -11 MPa in C. columellaris and C. preissii (Brodribb et al., 2010)). The more conservative water management strategy evident in many other conifers (e.g. Pinaceae, Araucariaceae) could help to explain the absence of very high embolism resistance in these clades (Delzon et al., 2010; Brodribb et al., 2014).

Our results confirm the evolutionary lability of xylem resistance to embolism, with a transition towards extreme resistance of several species within the Callitris clade. Combined with the onset of severe aridity in Australia, our results detail the remarkable adaptive radiation of this group. Despite overwhelming evidence for the role of decreasing water availability in shaping xylem traits, we found no evidence of its effect on xylem water transport efficiency and wood density. Species from more xeric areas develop smaller tracheids, but both wood traits and embolism resistance are totally disconnected from overall xylem conductivity. This suggests a lack of tradeoffs between construction costs and safety, on the one hand, and efficiency on the other. We also highlight a likely evolutionary role of pit-level traits in this clade, regarding hydraulic safety and efficiency. While this clade has shown a remarkable capacity to adapt and even thrive in increasingly arid conditions, modern climate change largely exceeds the pace of past climate upheavals. Many of the more vulnerable Callitris species have small restricted distributions and are already threatened by habitat destruction through land-use change and regular fires (IUCN, 2015), and could therefore be in severe danger of extinction in the coming decades.

Acknowledgements

The authors acknowledge Lin Kozlowski and Renee Smith for their analyses of wood anatomical traits, Anita Wesolowski and Vanessa Hequet for help with conducting sampling for this study, Frédéric Lagane for assistance with the wood density measurements, and Gaelle Capdeville for assistance with embolism assessment. The authors thank Stacey Smith for helpful comments on a previous version of the manuscript, and three anonymous reviewers for their suggestions to improve the manuscript. Part of this study was funded by the programme ‘Investments for the Future’ (grant no. ANR-10-EQPX-16, XYLOFOREST) from the French National Agency for research, and mobility grants within the COTE Cluster of Excellence (grant no. ANR-10-LABX-45).

Author contributions

M.L., S.P., J.-C.D. and S.D. designed the research; M.L., S.P., S.T. and S.D. collected the samples; N.N. provided DNA sequences; M.L. and S.P. measured the hydraulic traits; M.L. analyzed the data, ran the phylogenetic analysis, and led the manuscript preparation. All authors contributed to the writing of the manuscript.
References

Bailey IW. 1916. The structure of the bordered pits of conifers and its bearing upon the tension hypothesis of the ascent of sap in plants. Botanical Gazette 62: 133.

Bailey IW. 1916. The structure of the bordered pits of conifers and its bearing upon the tension hypothesis of the ascent of sap in plants. Botanical Gazette 62: 133.

Supporting Information

Additional Supporting Information may be found online in the Supporting Information tab for this article:

Fig. S1 Time-tree from the BEAST analysis using only cpDNA, and only nuclear sequences.

Fig. S2 Tracheid length and number of pits per tracheid against P50 and K5.

Fig. S3 Ancestral trait reconstruction of embolism resistance (P50) in the Callitris clade.

Table S1 GenBank accessions for the sequences used in this study, and model parameters specified for the BEAST analysis

Table S2 Trait data for the 23 species studied in this paper

Table S3 Correlation between climate variables and P50, tracheid diameter, and wood density

Table S4 Correlation between hydraulic (P50, K5) traits, wood density, and xylem traits

Please note: Wiley Blackwell are not responsible for the content or functionality of any Supporting Information supplied by the authors. Any queries (other than missing material) should be directed to the New Phytologist Central Office.