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ABSTRACT

The shoot apical meristem (SAM) is at the origin of all the plant
above-ground organs (including stems, leaves and flowers) and is
a biological object of interest for the understanding of plant mor-
phogenesis. The quantification of tissue growth at a cellular level
requires the analysis of 3D microscopic image sequences of devel-
oping meristems. To address inter-individual variability, it is also
required to compare individuals. This obviously implies the ability
to process inter-individual registration, i.e. to compute spatial and
temporal correspondences between sequences from different meris-
tems. In the present work, we propose a spatial registration method
dedicated to microscopy floral meristem (FM) images, and the iden-
tification, for a given still image of a meristem, of its best corre-
sponding time-point in a sequence of an other individual (temporal
registration).

Index Terms— Confocal microscopy, developmental biology,
floral meristem, Arabidopsis thaliana

1. INTRODUCTION

In developmental biology, the study of growing organisms at cell
level for the understanding of tissue morphogenesis is necessary for
the study of underlying genetic mechanisms that govern the devel-
opment. The imaging techniques rapidly progressed over the last
decades, and it becomes now possible to study both animal and plant
growth by imaging in vivo temporal 3D stacks of respectively em-
bryos and meristems with excellent spatial resolution and with an
imaging frequency that is good enough to follow the organism de-
formations over the time, at cell level [1]. One central aim in mor-
phogenesis study is to compare individuals in order to understand
the impact of genetic backgrounds on the organism growth. To do
so, there is a need for inter-individual registration tools since it would
open the way to do quantified statistical studies of development vari-
ability. There exists some attempts to develop such inter-individual
registration on these new types of 3D+t developmental data on em-
bryos [2, 3], which exhibit a stereotyped development in the early
stages, but not on more complex organisms. In this article, our aim
is to propose a method that opens the way to build such a tool applied
to floral meristems (FM), which is one of the above-ground organs
of the plant elaborated by the shoot apical meristem (SAM).
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We reduce here the problem of comparing two temporal se-
quences of 3D images of different individuals into a comparison be-
tween a still (reference) 3D image and a temporal (test) sequence
of 3D images, since a sequence-to-sequence registration tool can be
directly deduced from an image-to-sequence one. The meristem is
compounded of cells grouped in distinct layers (L1, L2, L3) where
L1 and L2 are respectively the epidermal and the upper hypodermal
layer. The cells in L1 and L2 divide anticlinally, i.e. in a sideway
fashion that ensures that L1 and L2 remain distinct [4]. Meristem
development is not stereotyped at the cellular level, implying there
is no cell-to-cell mapping between meristems at the same develop-
ment stage. Nevertheless flowers from the same species display a
great robustness in their global shape [5] and the meristem devel-
opment stage is identifiable to its size [6]. Thus a goodness-of-fit
criterion on L1 and L2 layer interfaces can be considered as an ade-
quate registration quality measure.

Registering 3D images of FM comes then to register the L1 and
L2 layers: surface extraction will be described in section 2 while
surfaces spatial registration will be addressed in section 3. Given
a still 3D image, identifying its corresponding time-point (temporal
registration) in an other 3D+t sequence is achieved by selecting the
“best” spatial registration of the still image with respect to all im-
ages of the sequence, as detailed in section 4. Experimental results
processed on Arabidopsis thaliana microscopy image sequences are
presented in section 5.

2. FEATURES EXTRACTION

In this section, I denotes a floral meristem image. Here, we consider
that the cell segmentation of [ is well known (one can refer to [7, 8]
for cell segmentation frameworks). The L1 cells are easily extracted
as they are the only ones in contact with the image background, and
similarly L2 cells are extracted as they constitute the L1 sub-layer.
We define the following notations:

e L =1 (respectively 2, 3) denotes the background-L1 (respec-
tively the L1-L2, the L2-L3) interface;

e K denotes a set of interfaces (e.g. K = {1,2});

o S/ is the surface at the interface k;

o SL is the set of surfaces {Sé}kek;

e P/ is a point-set sampling S%;

e P} is the set of point-sets { P{ }rex.

Fig. 1 illustrates the P} extraction process for K = {1,2}.
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Fig. 1: Segmentation of a FM image I (left) and the point-sets P¥ ex-
traction result for X' = {1, 2} (right). The background-L1 (resp. L1-L2)
interface points are displayed in blue (resp. in red).

3. SPATIAL REGISTRATION

We consider here two point-sets Pf- and Pj-. Spatial registration
consists in computing the (here affine) optimal transformation A(}[L J

that registers P;- on P# with respect to a point-sets distance d:

opt _ . I J
Aj = arg Aé}}f}g{% d (PK: A(PK)) . (H
To do so, we apply a robust version of the Iterative Closest Points
(ICP) algorithm [9] with a trimmed Least Squares Estimation
(LSE) [10]. The following steps are thus processed:

1. Initialization of the transformation A := A .

2. Do until convergence of A:

(a) Computation of the points pairing function
¢$a : PL — Pk sothatfork € Kandp € P/,
¢a(p) = arg min dist (¢, A(p)),
qepP}

i.e. ¢a(p) is the nearest neighbor of A(p) in P} with
respect to the Euclidean distance.

(b) Refining of the linear transformation
A=arg min ron (164(0), A ()b yery )

A’ €AFF(R3

3. Letus denote A ; = A at the end of the process.

In this process, ruim denotes the trimmed average of the square resid-
uals of a set of paired points:

rim ({64(0), A’ (9)}y) = ﬁ Z dist (d)A(p),A’(p))Z’ 2)

pJ
pEPK

where #- denotes a set cardinal and Isjé C Py is the set obtained
by discarding the worst pairings. The most time-consuming part of
the proposed spatial registration process is the computation of the
point pairing function ¢4, which is proportional to the number of
points to be paired (i.e. # P;) and to the cost of the nearest neighbor
search (function of # P7). First, surfaces S7 can be sub-sampled
using feature parcellation [11] to decrease the computational time.
Second, we privileged a k-d tree representation [12] of the set of
points P% since the nearest neighbor research computational cost
is logarithmic with this structure. Finally, the spatial registration
computational cost is O(#Py. In(#P%)). Typically, if Pj, is a
parceling of S7, of about 10? points and P} is represented as a k-d
tree of about 5 - 10° points, the ICP process converges in about 20
seconds.

4. TEMPORAL REGISTRATION

We now consider a temporal sequence of 3D images {Iti}ie{O;n}
and a still 3D image J imaged from two distinct FM. The aim of the

temporal registration step is to extract the time-point t; € [to, ty]
that achieves the best spatial registration of J into the sequence. Al-
though the acquisition techniques offer the means for imaging with a
temporal resolution good enough to enable cell filiation extractions,
the morphological deformations remain important between succes-
sive images. In order to ensure a precise temporal registration, a
preliminary step is to refine the sequence temporal resolution (sec-
tion 4.1) by building a “continuous-like” movie {Sk (1) }eelto tn]

from the original temporally sparse sequence {SQ’ }iegony- Then,
we process to the so-called temporal registration step (section 4.2).

4.1. Sequence temporal resolution enhancement

The following three-fold process is repeated fori € {0 : n — 1}:

1. Estimate of the non-linear transformation T, ¢ that re-

samples /¢, on Iy

i+1
i1

2. Estimate of intermediary transformations {T¢, ¢ }re(e;,¢,,4]5
3. Building surface movie {S% () }eetts tia)s

The complete movie {Sf () }icfso,.,) is finally obtained by juxta-
posing the reconstructed surface movies.

4.1.1. Transformation T, 1, ,

In order to deal with the plant rigid movements that may occur be-
tween two acquisitions, we first compute a rigid registration between
I, and Iy, , . In the following, we assume that this rigid motion has
been compensated for in the original sequence.

We then compute an affine transformation Ay, ¢, 4, that lin-
early registers Iy, and It, , . This affine transformation is then used
as an initialization for the non-linear transformation (encoded by a
vector-field) Ty, ¢, = Id + Wyt ¢

VM € D([t'+1)7Tti<_ti+l(M) = M+uti<_t7',+1 (M)v 3)

i

where D(I) is the domain of the image I. We computed the rigid,
affine and non-linear transformations using the block matching
framework [13], which can be described as an ICP-like iterative
method where pairings are built by optimizing a similarity metric
between blocks of the images to be registered. However, experience
has shown that when the deformations are too important between
successive images of the sequence (because of a low temporal reso-
lution), the non-linear registration may fail. In this case, one can use
an alternative method as [7] that estimates the meristem cell lineages
while refining a non-linear deformation.

4.1.2. Intermediary transformations

To compute the vector-field ug¢; 41 different models could be
used. Here, we simply assume the linearity of the transformation

progression between time-points ¢; and ¢;41. Considering the inter-

polation coefficient o« = t,t_tj — € [0,1], the vector-field is given
i+1 7
by:
vt € [tivti+1]7 Wit — (1 - a)utietzdru “)

Then the transformation T, |+ is computed as the inverse trans-
form of Tt++t,,, = Id + ut++,,,. One can notice that assuming
linearity of the transformation progression between two consecutive
time-points, the vector-fields u¢,«+ and ut, , .+ are proportional
and verify the relation

«
Ut = _mutﬁlet, 5)

leading to Tti%t =1d+ Ut «t-



4.1.3. Building surface movie

We use the transformations { T, ¢ }i.+ given by (5) to build for each
k € K a continuous-like movie of surfaces {Si(£)}ie(t,¢,,] from

the temporally sparse sequence {S,?'i }ie{o:n}- In this work, we fix

Si(t) = S." Vie{0:n}, 6)
SEt) = Sy 0 Ty,ey Yt Eltiy tin. )

From now, the remaining problems are to determine for each ¢ the
spatial transformation that registers the set of surfaces Sy on the set
S (t) and to extract the optimal time-point t; € [to,t,] such that
S (t,) fits the best the transformed set of surfaces Si..

4.1.4. Side result: images interpolation

With the knowledge of both transformations Ty, ; and Ty, st
given by section 4.1.2, an interpolated image can be computed from
the re-sampled images I;, () = It, o Ty,«rand Iy, , (t) = I, ©
T, , ¢ with the relation

](t) = (1 - O‘)Iti (t) +a- Iti+1 (t) 3

where o € [0, 1] is defined in section 4.1.2. Fig. 2 shows an im-
age interpolation result. In the following, {I(t)}.cjt,,:,] denotes
the movie of interpolated images from the sequence {I¢; }ic{o:n}-
Although this interpolated movie does not present an interest for the
specific problem of image-to-sequence spatio-temporal registration,
it provides a continuous-like geometric interpretation of the meris-
tem growth throughout the FM developing stages (Fig. 3). We used
{I(t)}te[to,t,) to illustrate our registration results.

Interpolated I(t)

tittiqa
2

Fig. 2: Floral meristem interpolation result for ¢ = . Red circle

highlights a cell division.

4.2. Image-to-sequence temporal registration

The temporal registration process consists of extracting the time-
point ¢y that optimizes a surface similarity criterion s:

ty =arg max s (Sé(t),A‘}‘E;)HJ(S;J{)) . 9

t€[to,tn]

The reader may notice that in order to compute the transformations
A‘};ztt)g » the proposed spatial registrgt.ion method asks for a manual
initialization of the transformation A7}y, ;. However, considering
that the rigid movements of the movie are corrected (section 4.1.1),
one can use the same transformation initialization for any time
t € [to,tn] of the movie, i.e. A7}, ; = AT ;.

We propose to use a criterion built from the cumulative his-

togram of residual distances between paired points at the optimal

transformation. Let us define the residual distance function res; be-
tween two paired points after registration and the cumulative his-
togram of residual distances function Ay :

res; : p € Pj. — dist ((;SAOPI (p), A‘;Fz‘t)ﬁ](p)> e R4, (10)

I(t)«J

ht:d€R+r—>#{p€Pj£:rest(p)§d}. 11

The better the registration, the smaller the residuals. Thus, for a fixed
distance value d, we expect that h¢(d) will be maximal for ¢t = ¢,
meaning that ¢; is the time-point for which the transformation of
the point-set P;, best fits the target point-set P% (t). Let us denote
t;(d) = argmax; hi(d). We define the optimal registration time-
point ¢ as the time-point that maximizes the most frequently the
cumulative histogram h¢(d) for values of d taken in an adequate in-
terval D (Fig. 4), i.e. the most frequent value ¢;(d) over d € D. In
Figs 4 and 5, we chose to plot a normalized surface n(t, d) of the cu-
mulative histograms h;(d) where Vd, t, n(t,d) = h¢(d)/h, ) (d)
for a better visualization (hence n(t,d) € [0,1] and n(t;(d),d) =
1).

5. EXPERIMENTS

5.1. Data

To generate the data for imaging, we took wild type plants of Ara-
bidopsis thaliana and introduced a modified yellow fluorescent pro-
tein that contained an acyl signal sequence at its N-terminus. This
acylated YFP clearly marked the edges of the cell for subsequent
segmentation. Plants were initially grown in soil under continuous
light until they made the transition from the vegetative to reproduc-
tive phase of growth. For microscopy, plantlets exhibiting an in-
florescence stem of maximum length 1 cm were transferred in to a
plastic box containing molten, cooled 1% w/v agar comprising 2.2
grams litre ' MS salts and Gamborg B5 vitamins. Care was taken to
also transfer as much of the root as possible. After meristem dissec-
tion to remove the obstructing flowers, plants were imaged using an
upright Zeiss 780 or LSM700 confocal microscope equipped with a
20x water dipping objective lens. Confocal z-stacks were acquired
of aregion that encompassed a newly formed organ primordium with
voxel dimensions set to no more than 300 nm?>. Plantlets were kept
in the light between time points.

A 3D+t sequence consists in 6 to 18 3D images. 3D stacks are
made of 130 to 683 2D slices, with a slice thickness that may vary
from 130 to 610 nm. A 2D slice is typically of 400 x 400 pixels
with a pixel size of about 250 nm.

For the feature extraction step (section 2, Fig. 1), cell segmen-
tations of a complete 3D+t sequence (7 timepoints) and of a still
image from another sequence have been produced by MARS [7] and
further checked by an expert and manually corrected if required.

5.2. Inter-individual registration

We worked on datasets from two FM for the inter-individual registra-
tion method demonstration. Given the surfaces Sy from a still image
(FM at developing stage 3) and the surface movies { Sk (t)}; (sam-
pled every 2 hours) built from a sequence of 3D images (FM imaged
from stage 2 to 4 during 55 hours), we detail here the spatio-temporal
registration result of Sy onto {S% (t)}:. We fixed the distance set
D to 30 uniformly sampled values between Opm and 12um. Fig. 5
presents the registration result that was assessed by visual inspection
and considered as correct by biologists. We compared the robustness
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Fig. 3: Images from a sequence of Arabidopsis thaliana FM morphogenesis
(inside the green circle) at development stages ranging from stage 1 (no clear
distinction between the FM and the SAM) to stage 4 (sepals overlie FM).

Fig. 4: Inter-individual temporal registration. Normalized cumulative his-
togram (¢, d) — n¢(d) for: (a) K = {1} (only interface Background-L1)
and untrimmed LSE optimization; (b) K = {1, 2} (interfaces Background-
L1 and L1-L2) and trimmed LSE optimization. The red dots correspond to
points (¢s(d), d) where n(t;(d),d) = 1.

of the temporal registration result for different spatial registration pa-
rameters (untrimmed (U-) and trimmed (T-) LSE with K = {1}, then
trimmed LSE with K ={1, 2}). The results, synthesized bellow and
illustrated by Fig. 4, demonstrate the importance to consider both a
robust ICP instead of a basic one and several layer interfaces instead
of only one for the spatial registration:

e U-LSE, K ={1}: t;(d)=t;£2h for 50% of d € D values;
o T-LSE, K ={1}: t;(d)=ts+2h for 83% of d € D values;

e T-LSE, K ={1,2}:t;(d) =t exactly for 100% of d € D
values.

6. CONCLUSION
We presented a method for spatio-temporal registration of plant de-

veloping flowers at cell shape resolution. We showed the ability of
the proposed method to spatially and temporally register one still

Cumulative histogram
of residual distances

27h 29h

Fig. 5: Inter-individual temporal registration result with 3D views of the
registered meristem and the interpolated movie at several time-points.

image onto a 3D+t sequence of images by considering invariant fea-
tures, namely the cell epidermal and sub-epidermal layers L1 and
L2. Such an image-to-sequence registration tool offers the means
to build a 4D template (spatio-temporal dimensions) on which ev-
ery individual can be projected, opening the avenue to the statistical
analysis of population.

Future investigations will consist in performing more experi-
ments to first assess the validity of the proposed method and second
to build a 3D+t template from several individuals. Special attention
should be paid to a dedicated biological validation of the registration
results. Ongoing technical work is conducted on the surface movie
reconstruction that will be more elegant with a true surface interpo-
lation between two time points. Using more complex registration
techniques [7] will also enables to deal with more sparsely sampled
temporal sequences.

Acknowledgment: Authors are funded by the following grants:
IPL Morphogenetics (GM), ERC Morphodynamics (JT and YR),
ANR Dig-Em (GM and CG), ANR IBC (CG), HFSP project BioSen-
sors #RGP0054/2013 (CG).

7. REFERENCES

[1] PJ Keller, “Imaging Morphogenesis: Technological Advances and Bi-
ological Insights,” Science, vol. 340, no. 6137, pp. 1234168+, June
2013.

[2] L Guignard, C Godin, UM Fiuza, L Hufnagel, P Lemaire, and G Ma-
landain, “Spatio-temporal registration of embryo images,” in ISBI,
Beijing, China, Apr. 2014, IEEE.

[3] G Michelin, L Guignard, UM Fiuza, P Lemaire, C Godin, and G Ma-
landain, “Cell Pairings for Ascidian Embryo Registration,” in ISBI,
New York, United States, Apr. 2015, IEEE.

[4] MK Barton and RS Poethig, “Formation of the shoot apical meristem
in arabidopsis thaliana: an analysis of development in the wild type and
in the shoot meristemless mutant,” Development, vol. 119, no. 3, pp.
823-831, 1993.

[5] JLegrand, Toward a multi-scale understanding of flower development-
f,rom auxin networks to dynamic cellular patterns, Ph.D. thesis, Lyon,
Ecole normale supérieure, 2014.

[6] B Landrein, Y Refahi, F Besnard, N Hervieux, V Mirabet,
A Boudaoud, T Vernoux, and O Hamant, ‘“Meristem size contributes to
the robustness of phyllotaxis in arabidopsis,” Journal of experimental
botany, p. eru482, 2014.

[7]1 R Fernandez, P Das, V Mirabet, E Moscardi, J Traas, JL. Verdeil, G Ma-
landain, and C Godin, “Imaging plant growth in 4-D: robust tissue re-
construction and lineaging at cell resolution,” Nat Meth, vol. 7, pp.
547-553, 2010.

[8] G Michelin, L Guignard, U Fiuza, and G Malandain, “Embryo Cell
Membranes Reconstruction by Tensor Voting,” in ISBI, Beijing, China,
Apr. 2014, IEEE.

[9] PJ Besl and ND McKay, “A method for registration of 3-D shapes,”
IEEE T Pattern Anal, vol. 14, no. 2, pp. 239-256, 1992.

[10] PJ Rousseeuw and AM Leroy, Robust Regression and Outlier Detec-
tion, John Wiley & Sons, New York, NY, USA, 1987.

[11] G Flandin, F Kherif, X Pennec, D Riviere, N Ayache, and JB Po-
line, “Parcellation of brain images with anatomical and functional con-
straints for fmri data analysis,” in ISBI, Washington, United States,
2002, pp- 907-910, IEEE.

[12] JL Bentley, “Multidimensional binary search trees used for associative
searching,” Comm. of the ACM, vol. 18, no. 9, pp. 509-517, 1975.

[13] S Ourselin, A Roche, S Prima, and N Ayache, “Block matching: A gen-
eral framework to improve robustness of rigid registration of medical
images,” in MICCAI. 2000, vol. 1935 of LNCS, pp. 557-566, Springer.



