P. Perez-pinera, D. G. Ousterout, and C. A. Gersbach, Advances in targeted genome editing, Curr Opin Chem Biol, vol.16, pp.268-277, 2012.

G. Silva, Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy, Curr Gene Ther, vol.11, pp.11-27, 2012.

A. Pingoud and W. Wende, Generation of novel nucleases with extended specificity by rational and combinatorial strategies, Chembiochem, vol.12, pp.1495-1500, 2011.

D. Carroll, Genome engineering with zinc-finger nucleases, Genetics, vol.188, pp.773-782, 2011.

N. Sun, Z. Abil, and H. Zhao, Recent advances in targeted genome engineering in mammalian systems, Biotechnol J, vol.7, pp.1074-1087, 2012.

L. Cong, Multiplex genome engineering using CRISPR/Cas systems, Science, vol.339, pp.819-823, 2013.

P. Mali, RNA-guided human genome engineering via Cas9, Science, vol.339, pp.823-826, 2013.

J. Boch, Breaking the code of DNA binding specificity of TAL-type III effectors, Science, vol.326, pp.1509-1512, 2009.

A. J. Bogdanove and D. F. Voytas, TAL effectors: customizable proteins for DNA targeting, Science, vol.333, pp.1843-1846, 2011.

M. J. Moscou and A. J. Bogdanove, A simple cipher governs DNA recognition by TAL effectors, Science, vol.326, p.1501, 2009.

O. De-lange, Breaking the DNA-binding code of Ralstonia solanacearum TAL effectors provides new possibilities to generate plant resistance genes against bacterial wilt disease, New Phytol, 2013.

A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, SCOP: a structural classification of proteins database for the investigation of sequences and structures, J Mol Biol, vol.247, pp.536-540, 1995.

I. Sillitoe, New functional families (FunFams) in CATH to improve the mapping of conserved functional sites to 3D structures, Nucleic Acids Res, vol.41, pp.490-498, 2013.

M. Punta, The Pfam protein families database, Nucleic Acids Res, vol.40, pp.290-301, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01294685

A. N. Mak, P. Bradley, R. A. Cernadas, A. J. Bogdanove, and B. L. Stoddard, The crystal structure of TAL effector PthXo1 bound to its DNA target, Science, vol.335, pp.716-719, 2012.

P. Horton, WoLF PSORT: protein localization predictor, Nucleic Acids Res, vol.35, pp.585-587, 2007.

O. Emanuelsson, S. Brunak, G. Von-heijne, and H. Nielsen, Locating proteins in the cell using TargetP, SignalP and related tools, Nat Protoc, vol.2, pp.953-971, 2007.

M. Ashburner, Gene ontology: tool for the unification of biology. The Gene Ontology Consortium, Nat Genet, vol.25, pp.25-29, 2000.

H. Ogata, KEGG: Kyoto Encyclopedia of Genes and Genomes, Nucleic Acids Res, vol.27, pp.29-34, 1999.

R. D. Finn, J. Clements, and S. R. Eddy, HMMER web server: interactive sequence similarity searching, Nucleic Acids Res, vol.39, pp.29-37, 2011.

, The Universal Protein Resource (UniProt) 2009, Nucleic Acids Res, vol.37, pp.169-174, 2009.

P. R. Mittl and W. Schneider-brachert, Sel1-like repeat proteins in signal transduction, Cell Signal, vol.19, pp.20-31, 2007.

L. Cong, R. Zhou, Y. C. Kuo, M. Cunniff, and F. Zhang, Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains, Nat Commun, vol.3, p.968, 2012.

S. Stella, Structure of the AvrBs3-DNA complex provides new insights into the initial thymine-recognition mechanism, Acta Crystallogr D Biol Crystallogr, vol.69, pp.1707-1716, 2013.

S. Arnould, Engineering of large numbers of highly specific homing endonucleases that induce recombination on novel DNA targets, J Mol Biol, vol.355, pp.443-458, 2006.

J. C. Miller, A TALE nuclease architecture for efficient genome editing, Nat Biotechnol, vol.29, pp.143-148, 2011.

M. L. Christian, Targeting G with TAL effectors: a comparison of activities of TALENs constructed with NN and NK repeat variable di-residues, PLoS One, vol.7, p.45383, 2012.

C. Mussolino, A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity, Nucleic Acids Res, vol.39, pp.9283-9293, 2011.

J. F. Meckler, Quantitative analysis of TALE-DNA interactions suggests polarity effects, Nucleic Acids Res, vol.41, pp.4118-4128, 2013.

F. Daboussi, Chromosomal context and epigenetic mechanisms control the efficacy of genome editing by rare-cutting designer endonucleases, Nucleic Acids Res, vol.40, pp.6367-6379, 2012.

Y. Kim, A library of TAL effector nucleases spanning the human genome, Nat Biotechnol, vol.31, pp.251-258, 2013.

D. Reyon, FLASH assembly of TALENs for high-throughput genome editing, Nat Biotechnol, vol.30, pp.460-465, 2012.

S. Schornack, M. J. Moscou, E. R. Ward, and D. M. Horvath, Engineering plant disease resistance based on TAL effectors, Annu Rev Phytopathol, vol.51, pp.383-406, 2013.

M. Holkers, Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells, Nucleic Acids Res, vol.41, p.63, 2012.

L. Yang, Optimization of scarless human stem cell genome editing, Nucleic Acids Res, 2013.

C. J. Sigrist, New and continuing developments at PROSITE, Nucleic Acids Res, vol.41, pp.344-347, 2013.

S. Hunter, 2011: new developments in the family and domain prediction database, vol.40, pp.306-312, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00697960

S. Raman, Structure prediction for CASP8 with all-atom refinement using Rosetta, Proteins, vol.77, pp.89-99, 2009.