J. A. Aten, J. Stap, P. M. Krawczyk, C. H. Van-oven, and R. A. Hoebe, Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains, Science, vol.303, pp.92-95, 2004.

G. J. Cost, Y. Freyvert, A. Vafiadis, Y. Santiago, and J. C. Miller, BAK and BAX deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells, Biotechnol Bioeng, vol.105, pp.330-340, 2010.

Y. Liu, U. Lakshmipathy, A. Ozgenc, B. Thyagarajan, and P. Lieu, hESC engineering by integrase-mediated chromosomal targeting, Methods Mol Biol, vol.584, pp.229-268, 2010.

H. Gao, J. Smith, M. Yang, S. Jones, and V. Djukanovic, Heritable targeted mutagenesis in maize using a designed endonuclease, Plant J, vol.61, pp.176-187, 2010.

A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, and J. C. Miller, Knockout rats via embryo microinjection of zinc-finger nucleases, Science, vol.325, p.433, 2009.

T. Mashimo, A. Takizawa, B. Voigt, K. Yoshimi, and H. Hiai, Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases, PLoS One, vol.5, p.8870, 2010.

Y. Doyon, J. M. Mccammon, J. C. Miller, F. Faraji, and C. Ngo, Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases, Nat Biotechnol, vol.26, pp.702-708, 2008.

M. L. Maeder, S. Thibodeau-beganny, A. Osiak, D. A. Wright, and R. M. Anthony, Rapid ''open-source'' engineering of customized zinc-finger nucleases for highly efficient gene modification, Mol Cell, vol.31, pp.294-301, 2008.

T. Flisikowska, I. S. Thorey, S. Offner, R. F. Lifke, and V. , Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases, PLoS One, vol.6, p.21045, 2011.

J. Hauschild, B. Petersen, Y. Santiago, A. L. Queisser, and J. W. Carnwath, Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases, Proc Natl Acad Sci U S A, vol.108, pp.12013-12017, 2011.

F. Daboussi, M. Zaslavskiy, L. Poirot, M. Loperfido, and A. Gouble, Chromosomal context and epigenetic mechanisms control the efficacy of genome editing by rare-cutting designer endonucleases, Nucleic Acids Res, 2012.

J. J. Young, J. M. Cherone, Y. Doyon, I. Ankoudinova, and F. M. Faraji, Efficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases, Proc Natl Acad Sci U S A, vol.108, pp.7052-7057, 2011.

A. Grabarz, A. Barascu, J. Guirouilh-barbat, and B. S. Lopez, Initiation of DNA double strand break repair: signaling and single-stranded resection dictate the choice between homologous recombination, non-homologous end-joining and alternative end-joining, Am J Cancer Res, vol.2, pp.249-268, 2012.

E. Mladenov and G. Iliakis, Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways, Mutat Res, vol.711, pp.61-72, 2011.

M. Mcvey and S. E. Lee, MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings, Trends Genet, vol.24, pp.529-538, 2008.

J. Ashworth, J. J. Havranek, C. M. Duarte, D. Sussman, R. J. Monnat et al., Computational redesign of endonuclease DNA binding and cleavage specificity, Nature, vol.441, pp.656-659, 2006.

M. Smith, A. Takeuchi, R. Pellenz, S. Davis, L. Maizels et al., Generation of a nicking enzyme that stimulates site-specific gene conversion from the I-AniI LAGLIDADG homing endonuclease, Proc Natl Acad Sci U S A, vol.106, pp.5099-5104, 2009.

Y. Niu, K. Tenney, H. Li, and F. S. Gimble, Engineering variants of the I-SceI homing endonuclease with strand-specific and site-specific DNA-nicking activity, J Mol Biol, vol.382, pp.188-202, 2008.

D. Sussman, M. Chadsey, S. Fauce, A. Engel, and A. Bruett, Isolation and characterization of new homing endonuclease specificities at individual target site positions, J Mol Biol, vol.342, pp.31-41, 2004.

J. Smith, S. Grizot, S. Arnould, A. Duclert, and J. Epinat, A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences, Nucleic Acids Res, 2006.

S. Arnould, C. Perez, J. P. Cabaniols, J. Smith, and A. Gouble, Engineered I-CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells, J Mol Biol, vol.371, pp.49-65, 2007.

P. Redondo, J. Prieto, I. G. Munoz, A. Alibes, and F. Stricher, Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases, Nature, vol.456, pp.107-111, 2008.

S. Grizot, J. Smith, F. Daboussi, J. Prieto, and P. Redondo, Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease, Nucleic Acids Res, vol.37, pp.5405-5419, 2009.

S. Baxter, A. R. Lambert, R. Kuhar, J. Jarjour, and N. Kulshina, Engineering domain fusion chimeras from I-OnuI family LAGLIDADG homing endonucleases, Nucleic Acids Res, 2012.

S. B. Thyme, J. Jarjour, R. Takeuchi, J. J. Havranek, and J. Ashworth, Exploitation of binding energy for catalysis and design, Nature, vol.461, pp.1300-1304, 2009.

J. Jarjour, H. West-foyle, M. T. Certo, C. G. Hubert, and L. Doyle, Highresolution profiling of homing endonuclease binding and catalytic specificity using yeast surface display, Nucleic Acids Res, vol.37, pp.6871-6880, 2009.

P. Volna, J. Jarjour, S. Baxter, S. R. Roffler, R. J. Monnat et al., Flow cytometric analysis of DNA binding and cleavage by cell surface-displayed homing endonucleases, Nucleic Acids Res, vol.35, pp.2748-2758, 2007.

S. Grosse, N. Huot, C. Mahiet, S. Arnould, and S. Barradeau, Meganuclease-mediated Inhibition of HSV1 Infection in Cultured Cells, Mol Ther, vol.19, pp.694-702, 2011.

F. Daboussi, M. Zaslavskiy, L. Poirot, M. Loperfido, and A. Gouble, Chromosomal context and epigenetic mechanisms control the efficacy of genome editing by rare-cutting designer endonucleases, Nucleic Acids Res, 2012.

S. Grizot, A. Duclert, S. Thomas, P. Duchateau, and F. Paques, Context dependence between subdomains in the DNA binding interface of the I-CreI homing endonuclease, Nucleic Acids Res, 2011.

S. Gilfillan, C. Benoist, and D. Mathis, Mice lacking terminal deoxynucleotidyl transferase: adult mice with a fetal antigen receptor repertoire, Immunol Rev, vol.148, pp.201-219, 1995.

K. Komori, K. Ichiyanagi, K. Morikawa, and Y. Ishino, PI-PfuI and PI-PfuII, intein-coded homing endonucleases from Pyrococcus furiosus. II. Characterization Of the binding and cleavage abilities by site-directed mutagenesis, Nucleic Acids Res, vol.27, pp.4175-4182, 1999.

Z. Sandor, M. L. Calicchio, R. G. Sargent, D. B. Roth, and J. H. Wilson, Distinct requirements for Ku in N nucleotide addition at V(D)J-and non-V(D)Jgenerated double-strand breaks, Nucleic Acids Res, vol.32, pp.1866-1873, 2004.

K. N. Mahajan, L. Gangi-peterson, D. H. Sorscher, J. Wang, and K. N. Gathy, Association of terminal deoxynucleotidyl transferase with Ku, Proc Natl Acad Sci U S A, vol.96, pp.13926-13931, 1999.

D. J. Mazur and F. W. Perrino, Excision of 39 termini by the Trex1 and TREX2 39-.59 exonucleases. Characterization of the recombinant proteins, J Biol Chem, vol.276, pp.17022-17029, 2001.

N. Bennardo, A. Gunn, A. Cheng, P. Hasty, and J. M. Stark, Limiting the persistence of a chromosome break diminishes its mutagenic potential, PLoS Genet, vol.5, p.1000683, 2009.

F. W. Perrino, U. De-silva, S. Harvey, E. E. Pryor, and D. W. Cole, Cooperative DNA binding and communication across the dimer interface in the TREX2 39 -.59-exonuclease, J Biol Chem, vol.283, pp.21441-21452, 2008.

J. Guirouilh-barbat, S. Huck, P. Bertrand, L. Pirzio, and C. Desmaze, Impact of the KU80 pathway on NHEJ-induced genome rearrangements in mammalian cells, Mol Cell, vol.14, pp.611-623, 2004.