MCR-1 in ESBL-producing Escherichia coli responsible for human infections in New Caledonia

Frederic Robin, Racha Beyrouthy, Julien Colot, Pierre Saint-Sardos, Anne Berger-Carbonne, Guillaume Dalmasso, Julien Delmas, Richard Bonnet

To cite this version:

HAL Id: hal-01604766
https://hal.archives-ouvertes.fr/hal-01604766
Submitted on 16 Nov 2018
framework of the monitoring. We also thank the team of the Institute of Animal Hygiene and Environmental Health of the Free University of Berlin for providing reference strains R29 and R178 and Dr Jens Hammerl for scientific advice.

Funding

This work was supported by the Federal Institute for Risk Assessment (BfR) (BFR-43-001) and the RESET II Project (FKZ01KI1313B; German Federal Ministry for Education and Research).

Transparency declarations

None to declare.

Supplementary data

Figures S1 and S2 are available as Supplementary data at JAC Online (http://jac.oxfordjournals.org/).

References

MCR-1 in ESBL-producing Escherichia coli responsible for human infections in New Caledonia

Frederic Robin¹,²†, Racha Beyrouthy¹,²†, Julien Colot³, Pierre Saint-Sardos⁴, Anne Berger-Carbonne⁴, Guillaume Dalmasso⁴, Julien Delmas¹ and Richard Bonnet¹,²*¹Clermont Université, Université d’Auvergne, Inserm U1071, JNRA USC2018, Clermont-Ferrand, France; ²French National Reference Centre for Antibiotic Resistance, Bacteriology Laboratory, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France; ³Institut Pasteur in New Caledonia, Nouméa, New Caledonia; ⁴Santé Public, Saint-Maurice, France

*Corresponding author. Tel.: +33-(0)4-73-754-920; Fax: +33-(0)4-73-754-921; E-mail: rbonnet@chu-clermontferrand.fr
†These authors contributed equally.

Sir,

Following the report on the plasmid-mediated colistin resistance gene mcr-1 in Enterobacteriaceae from China from multiple sources,¹ this gene has been observed in Escherichia coli, Klebsiella spp., Salmonella spp. and Shigella spp. isolates, mostly of animal origin.¹–⁶ It has also been detected in humans in Asia, South-East Asia, Europe, the Middle East, North Africa and North and South America.⁶

In order to study the plasmid-mediated colistin resistance gene mcr-1 in Enterobacteriaceae isolated from clinical specimens in France, we performed retrospective screening in a database of 610 whole-genome sequences of ESBL-producing Enterobacteriaceae isolates collected in French hospitals.

The bacterial collection included consecutive and non-repetitive strains representative of ESBL-producing Enterobacteriaceae observed in clinical samples collected in French hospitals in different geographic areas (Metropolitan France n = 210, Guadeloupe n = 100, Guyana n = 100, Réunion Island n = 100 and New Caledonia n = 100). The whole-genome sequences were assembled de novo at a ≥ 60× coverage level from 2 × 150 bp paired-end reads produced by the NextSeq facility (Ilumina, San Diego, CA, USA). WGS data were used to characterize the isolates according to antibiotic resistance genes and plasmid incompatibility with the CARD resistance gene database and the website of the Center for Genomic Epidemiology, respectively. The strains were genotyped by MLST using the Warwick University scheme.

We detected gene mcr-1 in only two E. coli isolates, designated NC68 and NC101. These isolates were further tested for...
susceptibility to colistin by the broth microdilution method. The MIC of colistin was 4 mg/L for both isolates, as usually observed for mcr-1-encoding E. coli (all other E. coli had MICs < 0.25 mg/L).

NC68 belonged to ST167 and contained the plasmid replicons IncFII, IncX1 and IncI2. NC101 belonged to ST773 and contained different replicon plasmids (IncFII, IncFIA, IncFIB and IncI2). The isolates harboured different resistance genes, in addition to mcr-1 [blaCTX-M-55, aph(3’)-IIa, catA1, catA2, folA and mcr-1 for NC68 and blaCTX-M-23, strA, strB, aadA5, tetAR, sull, dfrA17, folP, mphA, ermB and mcr-1 for NC101]. The isolates were therefore not related and harboured different plasmids, except plasmids of incompatibility group IncI2, which have already been observed in association with gene mcr-1.

However, the IncI2 replicon sequences only shared 98% identity, suggesting the presence of two different mcr-1-encoding plasmids, designated pNC68 for strain NC68 and pNC101 for strain NC101. De novo assembly of reads and their alignment against the mcr-1-encoding plasmids submitted to GenBank revealed that the most closely related plasmid of pNC68 is the mcr-1-encoding reference plasmid pHNSHP45.3 The pNC68 sequence covered 99% of the pHNSHP45 sequence (absence of ORF45) and the shared sequences (63.2 kb) only differed by five single-nucleotide variants (SNVs) (the minimum coverage of SNVs was 60x and a 2 kb region containing 27 SNVs located in a transposase-encoding gene was removed). pNC101 differed significantly from pNC68 and pHNSHP45, covering only 86% of their sequences. The shared sequences (56.9 kb) differed by 219 SNVs (the minimum coverage of SNVs was 60x and a 1 kb putative recombinant region containing 58 SNVs was removed).

To our knowledge, these data show the first two human infection cases mediated by mcr-1-encoding E. coli in Oceania. The two isolates came from a Pasteur Institute subcollection of 48 ESBL-producing E. coli isolated in the hospital of Nouméa (New Caledonia) in 2014. No clear epidemiological relationships could be traced among these mcr-1-positive isolates. NC68 was isolated in April 2014 from ascitic fluid collected from a 42-year-old male hospitalized in an ICU and NC101 was isolated on June 2014 in the maternity department from gastric fluid of a newborn. The patients had no apparent direct contact with animals, had not been treated with colistin and had not recently travelled to other countries.

The two strains were not related and the gene was encoded by two different IncI2 plasmids, suggesting that these cases are not linked to a clonal diffusion of an mcr-1-encoding strain or to a plasmid outbreak. The resulting frequency (4.2%) of mcr-1 producers among ESBL-producing E. coli is unusually high for a human source. Although this frequency needs to be confirmed with a broad and recent collection, the situation we describe is different from those observed in other French hospitals, in which no case has been detected using a similar collection comprising 236 ESBL-producing E. coli (χ² test, P = 0.0016). The analysis of mcr-1 genetic support in strain NC68 showed a high genetic relatedness with plasmid pHNSHP45, initially reported in China.1 Although no direct link was identified, this result suggests that the origin of the specificity could be due to the relative geographical closeness of this area of high mcr-1 prevalence.

In the context of increasing problems posed by MDR Enterobacteriaceae, particularly those producing carbapenemases, for which colistin is one of the last active antibiotics, national and international recommendations for detection and control of the spread of this new, emerging resistance are necessary.

Acknowledgements
We are grateful to Alexis Pontvianne and Laurent Guillouard for their technical assistance.

Funding
This work was supported by the National Institute of Agronomic Research (INRAE-2018), the Université d’Auvergne, France and the Centre Hospitalier Regional Universitaire de Clermont-Ferrand, France and Santé Publique France.

Transparency declarations
None to declare.

References